Democritus Language Reference Manual

Amy Xu Emily Pakulski Amarto Rajaram Kyle Lee
xx2152 enp2111 aar2160 kpl2111

March 7, 2016

Contents

1 Introduction

2 Data types

2.1

2.2

Primitive Types.
int ...

pointer
Complex Types
Array

3 Lexical Conventions

3.1
3.2
3.3
3.4

Identifiers
Literals
Tokens
Punctuation
Semicolon
Curly Brackets
Parentheses
Comments

4 Expressions and Operators

4.1
4.2

4.3

44
4.5
4.6

Assignment
Arithmetic Operations .
Addition and Subtraction
Multiplication
Division
Modulus
Bit Shifting
Boolean Expressions . .
Equality
Negation
Comparison
Chained Expressions . .
Pointers and References
Array access
Operator Precedence and

w

B N = NSNS TSN

N N I e RN, B, B G|

O O O © © o oo W

Associativity 11

5 Statements

5.1
5.2
5.3

Expressions
Declarations
Control Flow . . .

if, elif, else
Looping with for

6 Functions

6.1
6.2

Overview

Built-in Functions

7 Concurrency

7.1
7.2
7.3
7.4

Overview

Atomic Inline Declarations o o e e
Atomic Parameter Declarations e

Spawning Threads

12
12
12
12
12
13

14
14
14

Chapter 1

Introduction

Democritus is a programming language with a static type system and native support for concurrent program-
ming via its atomic keyword, with facilities for both imperative and functional programming. Democritus
is compiled to the LLVM (Low Level Virtual Machine) intermediate form, which can then be optimized to
machine-specific assembly code. Democritus’ syntax draws inspiration from contemporary languages, aspir-
ing to emulate Go and Python in terms of focusing on use cases familiar to the modern software engineer,
emphasizing readability, and having “one — and preferably only one — obvious way to do it”!.

Lhttp://c2.com/cgi/wiki?PythonPhilosophy

Chapter 2

Data types

2.1 Primitive Types
int

A standard 32-bit two’s-complement signed integer. It can take any value in the inclusive range (-2147483648,
2147483647).

float
A 64-bit floating precision number, represnted in the IEEE 754 format.

char

An 8-bit ASCII character. We include the extended ASCII set, so we use all 256 possible values.

boolean

A 1-bit true or false value.

pointer

A 64-bit pointer that holds the value to a location in memory; very similar to those found in C.

2.2 Complex Types

Array

A fixed-size array, allocated on the stack and containing other primitive types. The size must be defined at
declaration. An array object can be accessed by C array notation, such as 1ist1[0].

string

An immutable array of characters, implemented as a native data type in Democritus.

struct

A struct is a simple user-defined data structure that holds various primitives, similar to the ones found in C.

Chapter 3

Lexical Conventions

In this section, we will cover the standard lexical conventions for Democritus. As with languages such as C,
Algol, or Pascal, Democritus is a free-format language. The parser will discard whitespace characters such
as ¢ ?,\t, and \n.

3.1 Identifiers

Identifiers for Democritus will be defined in the same way as they are in most other languages; any sequence
of letters and numbers without whitespaces and is not a keyword will be parsed as an identifier. Note that,
as in other languages, identifiers cannot begin with a number. Somewhat different, however, is the order of
variable declarations; in Democritus, declarations are made following the varname vartype structure. The
regular expression defining identifiers is as follows:

P@al=Cg? AR [%al="g? YRAI=C%7I rQr—r9r A

An example of declarations with identifiers:

2wrongID int; /% not a valid identifier declaration */
mySecond float; /% valid x/
my_Second char; /* valid x/

3.2 Literals

Literals, simply a sequence of numbers, may be identified with the regular expression

[101_19/]+ (x Int *)
[P0/ =797 1" ./ [0 —="9"]+ (x Float x*)

3.3 Tokens

The list of tokens used in Democritus are as follows:

o
%
Y
o
|

LPAREN }
RPAREN }
LBRACE }
RBRACE }
SEMI }

COLON }

r .7
4

r .7

A A A e o

"+’ { POINTER }

r&’ { AMPERSAND }
"function" { FUNCTION }
"void" { voiDp }
"struct" { STRUCT }
"string" { STRING }
"true" { TRUE }
"false" { FALSE }
"break" { BREAK }
"continue" { CONTINUE }
"atomic" { ATOMIC }

| { comma }

\ '+' { pPLUS }

| 7= { MINUS }

I { TIMES }

| ve { MoD }

\ ">>" { RSHIFT }

| <<t { LSHIFT }

| 7/ { DIVIDE }

| r=r { ASSIGN }

‘ n__nmn { EQ }

‘ nyp=n { NEQ }

| < { LT }

‘ ne=n { LEQ }

‘ nn { @ }

‘ " =n { GEQ }

| "as" { AND }

[t {or)

‘ wyn { NOT }

| "if" { 1F }

| "else" { ELSE }

| "elif"™ { ELIF }

| "for" { FOR }

| "return" { RETURN }

| "int" { INT }

| "float" { FLOAT }

| "char" { CH2AR }
"boolean" BOOLEAN

| { }

|

|

|

|

|

|

|

|

|

|

|

These words have been reserved by the compiler and hold special meaning within the language. Though
most are self-explanatory, we will delve into their usage later on.

3.4 Punctuation

Semicolon
As in C, the semicolon *; is required to terminate any statement in Democritus.

statement SEMI

Curly Brackets

In order to keep the language free-format, curly braces are used to delineate separate and nested blocks.
These braces are required even for single-statement conditional and iteration loops.

LBRACE statements RBRACE

Parentheses
To assert precedence, expressions may be encapsulated within parentheses to guarantee order of operations.

LPAREN expression RPAREN

Comments

For now, comments are initiated with /* and closed with */. They cannot be nested.

Chapter 4

Expressions and Operators

An expression consists of a combination of any of the following:
e a literal value

a variable name

e a binary operation

e a unary operation

a C-style array access operation

4.1 Assignment
Assignment is done with =. As mentioned above, variables and declared with the varname vartype syntax.
Variables can be assigned to a single value or to the result of an expression.

x float = 4.0;
y int = 5/2 + 1; /x y = 3 %/

Array assignment is done with Java-like syntax. Note that the size of the array must be specified in the
declaration.

x int [5] = {0,1,2,3,4};
Pointer types are denoted with a * which must be attached to the primitive type that they reference.

X int = 4; /¥ x = 4 x/
y intx = &x; /% xy = 4 x/

4.2 Arithmetic Operations

Democritus supports all the arithmetic operations standard to most general-purpose languages like C and
Java. Note that casting is not built into the language; this functionality will instead be implemented through
the standard library.

Addition and Subtraction

Addition works with the + character, behaving as expected.

x int = 4;

y int = 2;

X =x +vy; /kxx =6 x/

y =y — X /¥y = —4 x/
Multiplication

Multiplication follows the same rules as well.
x int = 4;

y int = 2;

X =x xy +vy; /x x =10 x/

Division
Democritus will default to integer division, unless both types provided are floats.

x int = 5;
y int = 2;
x=x/vy; /¥ x =2 x/

a float = 4.0;
b float = 2.0;
a=Db / a; /+« a= 2.0 approximately x/

Modulus

The remainder of an integer division operation can be computed via the modulo % operator.

x int = 8;
y int = 5;
X = X%y; /% x =3 x/

Bit Shifting
Integers can be bit-shifted with >> and <<

x int = 9;
y int x>>1; /x y =4 x/
x = y<<2; /x x = 16 %/

4.3 Boolean Expressions

Democritus features all of the standard logical operators, following Java-style syntax. Each expression will
return a boolean value of true or false.

Equality
Equality is tested with the == operator. Inequality is tested with !=.

x int = 8;
y int = 8;
z boolean = (x == y); /% z = true *x/
z = (x == (y + 1)); /% z = false x/
z = (x != (y + 1)); /* z = true %/
Negation

Negation is done with !, a unary operation.

Comparison

Democritus also features the <, <=, >, and >= operators.

x int = 9;
y int = 8;
z int = 8;
x>V ; /% true x/
y>=z; /* true x/
Z<X; /* true x/

Chained Expressions

Boolean expressions can be chained with && and ||, representing and and or, respectively. These operators
have lower precedence than any of the other boolean operators described above. The and operator has a
higher precedence than or.

x int = 9;

y int = 8;

z int = 8;

(x>y && y<Xx); /* false */
(x>y || v<x); /* true x/
(x>y && y<x || z==y) /% true %/

4.4 Pointers and References

Pointers and dereferencing operations utilize the same syntax as C. The unary operator & gives a variables
address in memory, and the operator * dereferences a pointer. See the assignment section for usage.

4.5 Array access

Array access is done with [Z] where ¢ is the index being accessed.

x int([5] = {0,1,2,3,4};
y int = x[2]; /x y = 2 x/

10

4.6 Operator Precedence and Associativity

Precedence | Operator | Description Associativity
1 O Parenthesis Left-to-right
2 O Function call Left-to-right
{} Array creation s
[] Array subscript
3 * Dereference Right-to-left
& Address-of
! Negation
- Unary minus
4 * Multiplication Left-to-right
/ Division
% Modulo
5 + Addition Left-to-right
- Subtraction
6 >> Bitwise shift shift right Left-to-right
<< Bitwise shift left
7 >> = For relational > and > respectively | Left-to-right
<<= For relational < and < respectively
8 == I= For relational = and # respectively | Left-to-right
9 && Logical and Left-to-right
10 I Logical or Left-to-right
11 = Assignment Right-to-left

11

Chapter 5

Statements

5.1 Expressions

An expression statement consists of an expression followed by a semicolon. Expressions in expression state-
ments will be evaluated, and its value calculated.

a int = 500;
s char = 'a’;
2 + 4 — 3; /% Not used, thrown away */

5.2 Declarations

A declaration specifies a variable’s name and type, in that order. Values may also be initialized in the
declaration.

x int;
y char = ’"4’;

5.3 Control Flow

if, elif, else

An if statement causes a block (encapsulated by { and}) to be entered if the specified condition evaluates
to true.

An elif allows an alternate condition to be specified.

An else is entered if the ‘if” and ‘elif’s are not entered.

A boolean expression encapsulated within parentheses is required for every if and elif. Elif and else

belong to the first preceeding if statement.

x int = 1;
if (x == 1)

{
}

print ("x==11!");

12

elif (x == 2)

{
}

else

{
}

print ("x==21!1");

print ("fail");

Looping with for

Democritus eliminates the while structure, replacing it instead with a modified for loop. For can be used
to iterate by providing an initialization, termination condition, and update:

for(i int = 0; i < 10; 1i++)

{
}

/* Some code here x/

It can also be used as a while loop providing only one condition:

for(x < 10)

{
}

/* Some code here x/

13

Chapter 6

Functions

6.1 Overview

Functions can be defined in Democritus to return one or no data type. Functions are evaluated via ea-
ger evaluation and the function implementation must directly follow the function header. The syntax is
reminiscent of Scala, although Democritus doesn’t support implied returns. A function appears in the form:

function [function name] ([formal_arg type, ... 1) type {
[function implementation]
return [variable of return type]

}

Note: all functions need return statements at the end (no falling off the end). A void return is simply a
return with nothing following it.

Functions may be recursive and call themselves:

function recursive_func (i int) wvoid {
if (i < 0) {
return;
} else {
print h i 5
recursive_fun (i—1);

}

Functions may be called within other functions:

function main() void{
recursive_func (3);
return;

6.2 Built-in Functions

A handful of functions are natively built into Democritus for user flexibility and ease of usage. There are:

14

e print(s string) takes in a string (standard library functions will convert from other data types to strings)

e thread(f function, [argl type, arg2 type, ...]) takes in function and function args

15

Chapter 7

Concurrency

7.1 Overview

Democritus intends to cater to modern software engineering use cases. Developments in the field are steering
us more and more towards highly concurrent programming as the scale at which software is used trends
upward.

With this in mind, Democritus adds support for the atomic keyword, used as a modifier at the declaration
step. The keyword can be used both in an inline declaration and when declaring a function’s types. We also
wrap the pthread; datatype and related functions.

7.2 Atomic Inline Declarations

Under the hood, declaring a variable with the atomic keyword embeds a locking structure into the type, as
well as exposing the lock() and unlock() functions. If the keyword is used with a standard data type, the
compiler replaces the normal version of that type with a version that includes the lock and the functions
described above.

}
X int;
.lock(); x.unlock(); /* undefined! x/

X

atomic int;
.lock (); y.unlock(); /% defined! x/

<

7.3 Atomic Parameter Declarations

A function whose formal parameters are atomic will throw a compile-time error if a non-atomic type is passed
in. The idea is to force the programmer to document which functions are safe to use in a multi-threaded
context and which are not.

}

function [function name] ([formal_arg atomic typel]) atomic type {
formal_arg.lock();
/* do something x/

16

formal_arg.unlock () ;
return formal_arg

}

Naturally, rather than calling lock() and unlock() manually, the programmer can implement atomic

operations.

7.4 Spawning Threads

To spawn threads, Democritus uses a wrapper around the C-language pthread family of functions.

The thread; data type wraps pthread;.
To spawn a thread, the thread function takes a variable number of arguments where the first argument
is a function and the remaining optional arguments are the arguments for that function. It returns an error

code.
The detach boolean determines whether or not the parent thread will be able to join on the thread or

not.

{

thread (f function, boolean detach, [argl type, arg2 type, ...]) int;

}

17

