LéPiX

ThePhD (jm3689)
jm3689@columbia.edu

https://github.com/ThePhD/lepix

December 20, 2016

https://github.com/ThePhD/lepix

Contents

1 Introduction

1.1 Language Proposal
2 Tutorial

2.1 Invoking the Compiler . . .

2.2 Writing some Code

3 Language Reference Manual

4 Plan
4.1 Process
4.2 Timeline
43 Tools.
4.4 Project Log
5 Design
5.1 Interface

5.1.1 Top Level Work-flow

20

20

21

23

80

80

80

81

82

5.1.2 Error Handling 109

5.2 Division of Labor 0oL 110
Testing and Continuous Integration 111
6.1 Test Code 111
6.2 Test Automation 113

6.2.1 Test Suite 113

6.2.2 Online Automation 113

6.2.3 Online Automation Tools 113
6.3 Division of Laboro 115
Post-Mortem and Lessons Learned 116
7.1 Talk to your Teammates, Early 116
7.2 Manage Expectations, Know What You Want 117
7.3 Start Confrontations, 118
Appendix 120
8.1 Source Code Listing 120

Chapter 1

Introduction

LéPiX is a small, general-purpose programming language whose goal is to
make working with parallel computation and multidimensional arrays simple.
Featuring a preprocessor, namespacing, sliced multidimensional array syntax,
parallel blocks based on an invocation count and ID, and bottom-up type
derivation (automatic type deduction), the goal of the language is to produce
an environment that is heavily statically checked and ensures a degree of
correctness the user of the language can rely on.

However, this implementation of LéPiX specifically departed from some of
the original design goals due to time constraints and team issues. Therefore,
while parallelism and arrays were on the table, neither made it into the
implementation in the given time frame I had to put the rest of the language
(entire semantic analyzer plus all of the codegen) (about 2 weeks, plus post-
mortem time). The implementation here instead set out to demonstrate how
4 techniques can be achieved with the language:

1. Namespaces - namespacing as defined in the original language, but
lacking using statements inside definition blocks

2. Overloading - having multiple functions assigned to the same name,
separated internally by a name-mangling scheme based on arity and
arguments.

3. Bottom-up Type Derivation - deduction of return types for functions
based on the expression of returns (or none therein).

4. Call targets as expressions - DICE! and other languages — including
our own, at first — implemented function calls as an identifier plus
necessary function all syntax. This implementation of LéPiX treats it
as an expression, which presents unique challenges for the previous 2
goals.

1.1 Language Proposal

Below is our initial language proposal, in its entirety. It was very ambitious,
and Professor Edwards told us to scale our goals back considerably. From
it, we threw out GPU code generation in exchange for Parallelism and code
generation for LLVM IR alone, and also wanted to focus on syntax for
multidimensional arrays.

"http://www.cs.columbia.edu/ sedwards/classes/2015/4115-fall /reports/Dice.pdf

LéPiX - Ceci n’est pas un Photoshop

Fatima Koly (fak2116) Gabrielle Taylor (gat2118)

Manager Tester
fak21160@barnard.edu gat2118@columbia.edu
Jackie Lin (jl4162) Akshaan Kakar (ak3808)
Tester Codegen & Language Guru
jl4162@columbia.edu ak38080@columbia.edu

ThePhD (jm3689)
Codegen & Language Guru
jm3689@columbia.edu
https://github.com/ThePhD/lepix

September 28, 2016

Contents

1 An Overview

1.1
1.2

Introduction
Enter LEPIX

2 The LéPiX Language

2.1

Language
2.1.1 User Defined Types
2.1.2 Syntax
2.1.3 Builtdnso oo
2.1.4 Primitive Types

3 Examples

4 Codegen
4.1 LLVMIR e
4.2 SPIR-V e
5 Stretch Goals
5.1 User Defined Types.
5.2 Namespacing e
5.3 Named Parameters
5.4 Lambda Functions
5.5 Standard Library Implementation
5.6 Movies: Encodingo
5.7 Windowing: Realtime Visuals
5.8 ErrorNoises.o

10
10
10

Chapter 1

An Overview

1.1 Introduction

Heterogeneous computing and graphics processing is an area of intense re-
search. Many existing solutions — such as C++ AMP [5] and OpenCL 3]
— leverage the power of an existing language and add preprocessors and
software libraries to connect a user to allow code to be run on the GPU.
Due to its massively parallelizable nature, code executed on the GPU can
be orders of magnitude faster, but comes at the cost of having to master
a specific programming library and often learn new framework-specific or
platform-specific language subsets in order to compute on the GPU.

1.2 Enter LéPiX

We envision LéPiXto be a graphics processing language based loosely on
a subset of the C language. Using an imperative style with strong static
typing, we plan to support primitives that enable quick and concise pro-
grams for image creation and manipulation. The most novel feature we
have planned for the language is the ability to compile to both the CPU
as well as the GPU. The reason is to enable high performance and ease the
pain most notably found with trying to write applications which leverage the
power of the GPU at the cost of a steep learning curve for explicit non-CPU
device computation APIs, e.g. OpenGL Compute Shaders, DirectCompute,
OpenCL, CUDA, and others. The final goal is to enable the writing of com-
puter vision and computer graphics algorithms in LéPiX with relative ease
compared to other languages.

Chapter 2

The LéPiX Language

2.1 Language

The language itself is meant to follow loosely from imperative C, but it
subject to change as we refine our desired set of primitives and base oper-
ations. What follows is a loose definition of the primitive types, operations
we would like to implement to get a baseline for the language, and how
would would like to put those together syntactically and grammatically. All
of these definitions will be mostly informal.

The goal of LéPiX is to provide a strongly and statically typed language
by which to perform image manipulation easily. The hope is that powerful
algorithms can be expressed in the language by providing a useful set of
basic types, including the concept of a pixel and a natively slice-able matrix
type that will serve as the basis for an image.

e Primitive Data Type: the core types defined by the language itself and
given a set of supportable operations

e Built-ins: some of the built-in functions to help users
e Function Definitions: how to define a function in the language and use
it
e Operators: which operators put into the language and operate on the
primitive types
2.1.1 User Defined Types

Support for user-defined types is planned, but will be a stretch goal (5.1).
We want to support having user-defined types that can be used everywhere,

N

and for it to be able to overload the conceivable set of all operations.

2.1.2 Syntax

This is a basic guide to the syntax of the language. We are striving to develop
a C-Like imperative language. It will follow many of the C conventions, but
with some differences that we think will better fit the domain we are striving
to work within. As we do not have a formal grammer just yet, we will present
potential programs that we wish to allow to generate appropriate code. You
can find these example programs in 3. Below are some quick points about
the LéPiX language.

Namespacing As a stretch goal, LéPiX will attempt to support names-
pacing, to avoid record collision problems as present in OCaml (without the
use of modules) and to formalize the good practice of of prepending the short
name of the module / library to all functions in C code. Other languages
have explicit support. LéPiX will attempt to encourage code sharing and
reuse by including the use of namespacing.

Keywords The following words will be reserved for use with the language:
namespace, struct, class, typename, typedef, for, while, break, if, elseif , else, void,
unit, int, float, uint, pixel, image, vec, vector, mat, matrix. In addition, all iden-
tifiers containing __ (two underscores) are reserved for the use of the com-
piler and the standard library.

The standard library reserves the usage of the namespace lib. The lan-
guage will place intrinsics and built-ins within the lpx namespace.

Function Definitions Typical function definitions will follow a usual C-
style syntax. An example in pseudo-lexer code:

function <return type> name (<parameter list>) {
<statement / expression>

code/func—def.lex

Ideally, we would like the order of function definition not to matter,
so long as it appears somewhere in the whole source code listing. Early
versions of the LéPiX compiler might require definition before use, for sanity
purposes.

As a stretch goal, there are plans for lambda functions (anonymous func-
tion values) to be generated by a much more terse syntax.

Control Flow Control flow will follow a C-style syntax as well. An ex-
ample in pseudo-lexer code:

if expr {
<statement / expression>

elseif expr {
<statement / expression>

else {
<statement / expression>

code/flow—control.lex

Operations The LéPiX language will support most of the basic mathe-
matical operators. Other operators will be provided VIA functions. These
include:

e Mathematical - plus (+), minus (-), multiply (%),
divide (/), modulus (%), power of (xx*)

e Logical - and (&&), or (l|), less than (<),
greater than (>), equal to (==), not equal to (!=)
negate (!)

Some of these will use both the symbol and the name, such as "not” for
negation. Support for bitwise operations, such as left shift and right shift as
well as bitwise and / bitwise or, will come as a stretch goal, depending on
whether we can handle these basics. Ternary conditionals may also prove
useful, but will not be immediately supported.

Comments Single-line comments will begin with //. Multi-line and nestable
comments will begin with /+x/ will be supported as well.

2.1.3 Built-ins
Some useful built-in functions that will be provided with the language:

e Trigonometric functions: lib.sin, lib.cos, lib.tan, lib.asin, lib.acos, lib.

atan, lib.atan2

e Power Functions: lib.sqrt, lib.cbrt, lib.pow

e Exponential Functions: lib.expe, lib.exp2, lib.loge, lib.log2, lib.logl0

All degree arguments will come in radians. Other functions that op-
erate on built-in types will be provided as library functions, to allow for
replacement if necessary.

2.1.4 Primitive Types

Primitives are integral types and multi-dimensional array types. Vectors,
Matrices, and Pixels are all subsets of N-dimensional array types. String
will be presented as a built-in type, but may be implemented either as a
built-in or just an always-included library type. The purpose of string will
be specifically to handle reading in and writing out from the file system, as
that is the only way to handle such a case. See 2.1 for details.

Table 2.1: Primitive Types in LéPiX

Type variants Purpose
void nothing built in single-value /
empty type

. # can be 8/16/32/64 ,)

t d int 1t
7 (defaults to 32 without name) mighed megral pe

. # can be 8/16/32/64 . .

t d int 1t

uintt (defaults to 32 without name) HISIBHed thtegtat bybe
float# # can be 16/32/64 floating type

<type name>| <optional #>]

vec#H <type name>

mat#<type name>

string

pixel

(defaults to 32 without name)

array type; can be
multidimensional by
adding [<optional # >]

aliases for 1-dimensional
fixed-size arrays
aliases to 2-dimensional
fixed-size arrays

utf8-encoded string;
potentially more later

rgba (red-green-blue-alpha);
hsv (hue saturation value)

basic primitive that will
help us represent an
image in its decoded form;
can be sliced to

remove 1 dimension

base type for pixels

can be sliced into vectors

primarily, to address

the file system;

not really interested in

complex text handling;

basically treated as an array

of specially-typed uint8

in the future, this will be something
that will need to be customizable
to support varying image types

of different bit depths

15

16

18

w W

Chapter 3

Examples

The following are some examples of programs that we would like to be
written in LéPiX. This does not reflect final syntax and is mostly based on
equivalent or near-equivalent C-style code:
function image red(int width, int height) {
// Create an image of a specific width / height
image ret = image(width, height);
for (int i = 0; i < width; i4++) {
for(int j = 0; j < height; j++) {
// r, g, b creation
vet [1][j] = pixel (1,0,0);

}

return ret;

}

function int main () {
image img = red (img);
lib .save (img) ;
return 0;

Listing 3.1: red.lpx

The red example shows up some simple conditionals in a for loop to
write all-red to an image. It is not the most exciting code, but it has a lot
of moving parts and will help us test several parts of the library, from how
to call functions to basic iteration techniques.
function void flip (image img) {

for (int ri = 0; ri < img.height / 2; ri++4) {

// matrix slicing: get back array from index

pixel [] toprow = img[ri];
// O—based indexing
pixel [] bottomrow = img[img.height — ri — 1];
for (int ci = 0; ci < img.width; ++ci) {
// generic swap call in library
lib .swap (toprow [ci], bottomrow[ci]);

}

function int main () {
image img = lib.read (”meow.png”);
flip (img);
lib .save (img) ;

// implicit return O:
// we want this to be able to work with
// command—line environments as well

Listing 3.2: flip.lpx

This above code is a bit more complicated. It shows that we can save
a slice of a matrix’s (image’s) row, operate on it, and even call the library
function lib.swap on its pixel elements. It also demonstrates a string literal,
and passing it to the lib.read function to pull out a regular image from a
PNG, and then saving that same image. It also shows off an implicit return
0 (we expect our programs to be run in the context of a shell environment,
and to play nice with the existing C tools in that manner).

Chapter 4

Codegen

4.1 LLVM IR

The current goal for generating the code for this language is to use LLVM
and serialize to LLVM IR. This will allow our language to work on a multiple
of platforms that LLVM supports, provided we can successfully connect our
AST / DAG with the our code generator.

4.2 SPIR-V

For the GPU, we still want to compile to LLVM IR. But, with the caveat
that we make it work to push out to SPIR-V code using the Khronos LLVM
i-., SPIR-V Bidirectional Translator[1]'. The good news is that everything
from our source code processing steps to our DAG / AST generation can
be done in OCaml. However, SPIR-V is new and OCaml bindings for this
relatively new project are not something that is quite established: it is
conceivable that our code generator will be written in C++ as opposed to
any other language, simply because of the library power behind what is
already present is written in C and C++, and interfacing that with OCaml
might be exceptionally difficult. Granted, we could also write an OCaml
Code Generator for SPIR-V from scratch, but this does not seem like a
prudent use of our time.

It is also very important to note that the LLVM IR j-; SPIR-V Translator
produces SPIR-V, which by itself cannot be run on anything. We would need
a C or C++ compiled Vulkan Driver to take that bit of our program and run
it in SPIR-V land. Furthermore, many operations — such as data reading —

! Available here: https://github.com/KhronosGroup/SPIRV-LLVM

10

are not instructions we can exactly slot into SPIR-V code, and would require
a bootstrapper of some sort nontheless.

11

Chapter 5

Stretch Goals

5.1 User Defined Types

User-defined structures are a stretch goal of this project. The core idea
is that if we can manage to create pixel, vec#*, mat#*, etc. types using
the language, we would be able to simply make this kind of functionality
available to users. Currently, we plan to hard code these types in at the
moment, however.

5.2 Namespacing

Similar to user defined types, namespacing allows an element of organization
to be brought to written code. Currently, we are going to hard code built
ins to the lib and Ipx namespaces.

5.3 Named Parameters

This is an entirely fluff goal to make it easier to call certain functions. The
idea is that arguments not yet initialized by the ordered list of arguments
to a function call can be specified out-of-order — as long as others inbetween
are defaulted — by passing a name=(expression) pairing, separated by commas
like regular function arguments.

12

5.4 Lambda Functions

As mentioned in 2.1.2, we would like to support lambdas as a way of defini-
tion functions. Currently, we do not know what the most succinct and terse
syntax for our language would be.

5.5 Standard Library Implementation

It would be nice to fill out a standard library implementation, to vet the
LéPiX compiler. Candidates would include some basic functions in the lib
namespace for manipulation of the image type.

5.6 Movies: Encoding

If we can have built in types for image and the like, then LéPiX could theo-
retically handle movies by presenting to the user frames of data in sequential
order. Doing this is orders of magnitude difficult.

5.7 Windowing: Realtime Visuals

Part of the magic of the graphics card is its ability to perform specific kinds
of computation very quickly. It would be very beneficial to have some sort
of way to display those visuals without having to serialize them to disk
(e.g., a display function or a window of some sort which can be backed by a
write-only image).

5.8 Error Noises

The compiler should make a snobby ”Ouhh Hooo!” noise in french when the
user puts in ill-formed code.

13

Bibliography

1]

2]

Khronos Group, Khronos Registry: SPIR-V 1.1, April 18, 2016.
https://www.khronos.org/registry/spir-v/

Tan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Pat Hanrahan,
Mike Houston, Kayvon Fatahalian, Brook for GPUs, Stanford University,
2016. https://graphics.stanford.edu/projects/brookgpu/arch.html

Khronos Group, OpenCL 2.2, April 12, 2016.
https://www.khronos.org/opencl/

Chuck Walbourn, Microsoft, Compute Shaders, July 14, 2010.
https://blogs.msdn.microsoft.com/chuckw/2010,/07/14/directcompute/

Dillion Sharlet, Aaron Kunze, Stephen Junkins, Deepti Joshi,
Shevlin Park: Implementing C++ AMP with Clang/LLVM and
OpenCL, November 2012. http://llvm.org/devmtg/2012-11/Sharlet-
ShevlinPark.pdf

14

Chapter 2

Tutorial

2.1 Invoking the Compiler

Obtaining the LEéPiX compiler — lepixc — in order to build LéPiX programs
with it is simple, once the dependencies are set up. It requires a working
OCaml compiler of version >= 4.0.3. Building requires ocamlbuild, ocamlfind,
menhir and OPAM for an easy time, but if you are brave and willing to figure
out the nightmare it takes to get these dependencies working on Windows
than it can work on Windows machines as well.

From the root of the repository, run make —C source to create the compiler,
or cd into the source directory and invoke make from there.

When the compiler is made, it will be within the ./source folder of the
repository. An invocation without any arguments or filenames will explain
to the user how to use it, like so:

source/lepixc

Help
lepix [options] filename [filenames...]
filename | filenames can have one option —i or ——input
options:
—h —help print the help message
-p ——preprocess Preprocess and display source
—i —input Take input from standard in (
default: stdin)
—0 —output <value> Set the output file (default:

20

12

13

15

16

N

N

stdout)

—t —tokens Print the stream of tokens

—a ——ast Print the parsed Program

—s —semantic Print the Semantic Program

-1 —I1lvm Print the generated LLVM code

—c ——compile Compile the desired input and
output the final LLVM

-V ——verbose Be as explicit as possible with
all steps

history/lepixc.txt

Users can stack one-word options together using syntax like source/lepixc —ls,
which will pretty-print the Semantic Analysis tree and also output the LLVM
IR code.

2.2 Writing some Code

Function definitions are fairly C-Like, with the exception that all type-
annotations appear on the right-hand-side. Users can define variables and
functions by using the var and fun keywords, respectively.

To receive access to the standard library, put import lib in the program as
well. It will end up looking somewhat like this:

import lib

fun main () : int {
lib.print_n(” hello world”);
return O0;

}

One function must always be present in your code, and that is the main
function. It must return an int. If the user does not return an integer
value from main, then a return 0 will be automatically done for you. Also
of importance is that functions can have their return type figured out from
their return statements. For example, you can remove the : int above and
the code will still compile and run:

import lib
fun main () {

lib . print_n(” hello world”);
return O0;

21

!

This goes for more than just the main function, but any function you define!

22

Chapter 3

Language Reference Manual

On the next page is the language reference manual for the original LéPiX
language. The final implementation did not meet all of the requirements due
to having to work alone for the last two weeks and insufficient teammate
contribution during the project, but thankfully we still capture the majority
of the language’s constructs in every thing but the final code generation and
semantic analysis stages, leaving room to improve the implementation in the
future.

23

LéPiX Language Specification
Ceci n’est pas un Photoshop

Fatima Koly (fak2116) Gabrielle Taylor (gat2118)

Manager Language Guru
fak2116@barnard. edu gat2118@columbia.edu
Jackie Lin (jl4162) Akshaan Kakar (ak3808)
Tester Codegen
j1l4162@columbia.edu ak38080@columbia.edu

ThePhD (jm3689)
System Architect
jm3689@columbia.edu

https://github.com/ThePhD/lepix

October 26, 2016

Contents

I Introduction

1 Tutorial

1.1 Hello, World! . .

1.2 Variables and Declarations

1.2.1

1.2.2 Mutability

Variables

1.3 Control Flow . .

1.4 Functions

1.4.1

Defining and Declaring Functions

1.4.2 Parameters and Arguments

IT Reference Manual

2 Expressions, Operations and Types

2.1 Variable Names and Identifiers

2.1.1

Identifiers

10
10
10

11

12

13

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Literals 14

2.2.1 Kinds of Literals 14
2.2.2 Boolean Literals 14
2.2.3 Imteger Literals 14
2.2.4 Floating Literals 15
2.2.5 String Literals 15
Variable Declarations 16
2.3.1 let and var declarations 16
Initializationo 16
2.4.1 Variable Initialization 16
2.4.2 Assignment oL 17
Access L 17
2.5.1 Member Accesso 17
2.5.2 Member Lookup 17
Parenthesis oo 18
Arithmetic Expressions L. 18
2.7.1 Binary Arithmetic Operations. 18
2.7.2 Unary Arithmetic Operations 19
Incremental Expressions 19
2.8.1 Incremental operations 19
Logical Expressions L. 19
2.9.1 Binary Compound Boolean Operators 19
2.9.2 Binary Relational Operators 20

2.9.3 Unary Logical Operators
2.10 Bitwise Operations
2.10.1 Binary Boolean Operators
2.11 Operator and Expression Precedence
2.12 Expression and Operand Conversions
2.12.1 Boolean Conversions

2.12.2 Mathematical Conversions

Functions

3.1 Functions and Function Declarations
3.1.1 Function Definitions
3.1.2 Function Declarations

3.1.3 Function Scope and Parameters

Data Types
4.1 DataTypes o
4.1.1 Primitive Data Types

4.1.2 Derived Data Types

Program Structure and Control Flow

5.1 Statementso

5.2 Blocks and Scope Lo
5.2.1 Blocks o
5.2.2 SCOPE . . v

5.2.3 Variable Scope L.

25

25

25

26

27

28

28

28

29

30

5.2.4 Function Scope
5.2.5 Control Flow Scope
5.3 Namespaces o
5.4 if Lo
5.5 switcho
5.6 whileo
5.7 for
5.8 break and continue oL
5.81 break
5.82 break N
5.83 continue.

Parallel Execution

6.1 Parallel Execution Model
6.2 Syntax
6.3 Threadso

IIT Grammar Specification

7 Grammar
7.1 Lexical Definitions and Conventions
711 Tokens.
7.1.2 Comments.
7.1.3 Identifiers

38
38
38
39

40

41

7.2

7.3

714 Keywords 42
7.1.5 Literals oL 42
Expressions oo 44
7.2.1 Primary Expression 45
7.2.2 Postfix Expressions L. 45
7.2.3 Unary Expression 46
724 Casting 46
7.2.5 Multiplicative Expressions 47
7.2.6 Additive Expressionso L 47
7.2.7 Relational Expressions 47
7.2.8 Equality Expression 48
7.2.9 Logical AND Expression 48
7.2.10 Logical OR Expression 48
7.2.11 Assignment Expressions 48
7.2.12 Assignment Lists 0oL 48
7.2.13 Declarations. L oL 49
7.2.14 Function Declaration 49
Statements 50
7.3.1 Expression Statements 50
7.3.2 Statement Block 0L 51
7.3.3 Loop Statements 51
7.3.4 Jump Statements 52
7.3.5 Return Statements 52

7.4 Function Definitions

7.5 Preprocessor . .

7.6 Grammar Listing

Part 1

Introduction

Chapter 1

Tutorial

1.1 Hello, World!

This is an example of a Hello World program in LéPiX. It creates an array
from an initializer, and then proceeds to save it to the directory of the
running program under the name ”hello.bmp”:

fun main () : int {
// 2 dimensional array
// of integers, initialized as a string
// from a ”bitmap”
var arr : int [[]] = "\
A 1 I Y N A O R N
I O
L Y A A O A R
e e A A
LEE T T T L1 1T

lib.save(” hello .bmp”, arr);

Listing 1.1: hello world

1.2 Variables and Declarations

1.2.1 Variables

Variables are made with the var declaration. You can declare and assign
variables by giving them a name and then referencing that name in other
places.

i fun main () : int {

2 var a : int = 24 x 2 4+ 1;
3 /] a = 49

| var b : int = a % 8;

5 // b=1

6 var ¢ : int[[5, 2]] = |
7 0, 2, 4, 6, 8, 10;

8 1, 3,5, 7,9, 11;

0 15

10 var value : int = a + b + c[0, 4];
11 // value = 58

12 return value;

13 }

Listing 1.2: variable declaration and manipulation

1.2.2 Mutability

Variables can also be declared immutable or unchanging by declaring them
with let. That is, let is the same as a var const, and var is the same as

let mutable.

1 fun main () : int {

2 let a : float = 31.5;

3 var const b : float = 0.5;

4 var ¢ : int = 0;

5 ¢ = lib.trunc(a + b);

6 // compiler error: 'var const' variable is immutable
7 b = 2.5;

8 // compiler error: 'let' variable is immutable
9 a=1.1;

10 return c;

1}

Listing 1.3: mutability

N =

11
12

13

1.3 Control Flow

Control flow is important for programs to exhibit more complex behaviors.
LéPiX has for and while constructs for looping, as well as if, else if, else
statements. They can be used as in the following sample:

fun main () : int {
for (var x : int = 0 to 10) {
var x : int = lib.random_int (0, 40);

if (x < 20) {
lib . print ("It 's less than 20!7);

}
else {

lib.print ("It's equal to or greater than 207);
}

"intro/tutorial /code/flow.hak”

1.4 Functions

1.4.1 Defining and Declaring Functions

Functions can be called with a simple syntax. The goal is to make it easy to
pass arguments and specify types on those arguments, as well as the return
type. All functions are defined by starting with the fun keyword, followed by
an identifier including the name, before an optional list of parameters.

fun sum (arr : int[]) : int {
int a = 2;
int b = 3;
return a + b;
}
fun numbers () : int[] {
return [1, 2, 3];
}
fun main () : int {
return sum(numbers());
}

Listing 1.4: functions

10

1
2
3

!
-
5

16
17
18
19

20

1.4.2 Parameters and Arguments

All arguments given to a function for a function call are passed by value,
unless the reference symbol & is written just before the argument, as shown
in the below example. This allows a person to manipulate a value that was
passed in directly, rather than receiving a copy of it the argument.

fun fibonacci_to (n : int, &storage : int[]) : int {
int index = 0;
var result : int = 0;
var n_2 : int = O0;
var n_ 1 : int = 1;

while (n > 0) {
result =n 1 + n 2;
storage [index] = result;
n 2=mn1;
n 1 = result;
—n;
++index ;

}

return result ;

fun main () : int {
var storage : int [3] = [];
var x : int = fibonacci_to (3, storage);
return x;

Listing 1.5: arguments

11

Part 11

Reference Manual

12

Chapter 2

Expressions, Operations and
Types

2.1

2.1.1

1.

Variable Names and Identifiers

Identifiers

All names for all identifiers in a LéPiX program must be composed of
a single start alpha codepoint followed by either zero or more of a digit
or an alpha codepoint. Any identifier that does not follow this scheme
and does not form a valid keyword, literal or definition is considered
ill-formed.

All identifiers that containing two underscores __ in any part of the
name are reserved for usage by the compiler implementation details
and may not be used by programs. If an identifier has two underscores
the program is considered ill-formed.

All identifiers prefixed by ‘lib.” (i.e., belong in the lib namespace) are
reserved by the standard to the standard library and nothing may be
defined in that namespace by the program, aside from implementations
of the standard library.

13

2.2 Literals

2.2.1 Kinds of Literals

There are many kinds of literals. They are:

literal:

boolean-literal
integer-literal
floating-literal

string-literal

2.2.2 Boolean Literals

1. A boolean literal are the keywords true or false.

2.2.3 Integer Literals

1. An integer literal is a valid sequence of digits with some optional alpha
characters that change the interpretation of the supplied literal.

2. A decimal integer literal uses digits ‘0’ through ‘9’ to define a base-10
number.

)

3. A hexidecimal integer literal uses digits ‘0’ through ‘9’, ‘A’ through ‘F
(case insensitive) to define a base-16 number. It must be prefixed by
Ox or Ox.

4. An octal integer literal uses digits ‘0’ and ‘7’ to define a base-8 number.
It must be prefixed by 0c or 0C.

5. A binary integer literal uses digits 0 and 1 to define a base-2 number.
It must be prefixed by 0b (case sensitive).

6. An n-digit integer literal uses the characters below to define a base-n
number. It must be prefixed by 0n or ON. It must be suffixed by #n,
where n is the desired base. The character set defined for these bases

14

goes up to 63 characters, giving a maximum arbitrary base of 63. The
characters which are:

0—-9 A—7Z,a—3z _
7. Arbitrary bases for n-digit must be base-10 numbers.

8. Groups of digits may be separated by a ' and do not change the integer
literal at all.

2.2.4 Floating Literals

1. A floating literal has two primary forms, utilizing digits as defined in
2.2.3.

2. The first form must have a dot ‘.” preceded by an integer literal and/or
suffixed by an integer literal. It must have one or the other, and may
not omit both the prefixing or suffixing integer literal.

3. The second form follows 2, but includes the exponent symbol e and
another integer literal describing that exponent. Both the exponent
and integer literal must be present in this form, but if the exponent is
included then the dot is not necessary and may be prefixed with only
an integer literal or just an integer literal and a dot.

2.2.5 String Literals

¢y)

1. A string literal is started with a single »’ quotation
mark and does not end until the next matching single ©'’ or double “’’
quotation mark character, with respect to what the string was started
with. This includes any and all spacing characters, including newline
characters.

or double

2. Newline characters in a multi-line string will be included in the string
as an ASCII Line Feed \n character.

3. A string literal must remove the leading space on each line that are
equivalent to all other lines in the text, and any empty leading space
at the start of the string.

15

4. A string literal may retain the any leading space and common indenta-
tion by prefixing the opening single or double quotation mark with an
‘R’

2.3 Variable Declarations

2.3.1 1let and var declarations

variable-initialization:

let | wvar (mutable | const)optional < identifier> : <type>;

1. A variable can be declared using the let and var keywords, an identifier
as defined in 2.1.1 and optionally followed by a colon ‘:” and type name.
This is called a variable declaration.

2. A variable declared with let is determined to be immutable. Immutable
variables cannot have their values re-assigned after declaration and
initialization.

3. A variable declared with var is immutable. Mutable variables can have
their values re-assigned after declaration and initialization.

4. let mutable is equivalent to var const.

5. It is valid to initialize or assign to a mutable variable from an immutable
variable.

6. A declaration can appear at any scope in the program.

2.4 Initialization

2.4.1 Variable Initialization

variable-declaration:

let | wvar (mutable | const)optional < identifier> : <type> = (expression

);

16

1. Initialization is the assignment of an expression on the right side to a
variable declaration.

2. If the expression cannot directly initialize or be coerced to initialize
the type on the left, then the program is ill-formed.

2.4.2 Assignment

assignment-exrpression:

eTpression = erpression

2.5 Access

2.5.1 Member Access

member-access- expression:

(expression) . < identifier>

1. Member access is performed with the dot ‘.’ operator.

2. If the expression does not evaluate to a type that can be accessed with
the dot operator, the program is ill-formed.

3. If the identifier is not available per lookup rules in 2.5.2 on the evaluated
type, the program is ill-formed.

2.5.2 Member Lookup

1. When a member is accessed through the dot operator as in 2.5.1, a
name must be found that matches the supplied identifier . If there is
none,

17

2.6 Parenthesis

parenthesis-expression:
‘(’ expression ‘)7

1. Parentheses define expression groupings and supersede precedence rules
in 2.1.

2.7 Arithmetic Expressions

2.7.1 Binary Arithmetic Operations

addition-expression:
eTpression + erpression
subtraction-expression:
ETPTESSION — eTpression
division-expression:
expression / expression
multiplication-expression:
eTPTression ¥ exrpression
modulus-expression:

expression % expression

1. Symbolic expression to perform the commonly understood mathemati-
cal operations on two operands.

2. All operations are left-associative.

18

2.7.2 Unary Arithmetic Operations

UNATY-MINUS-ETPTESSION.:

— expression

1. Unary minus is typically interpreted as negation of the single operand.

2. All operations are left-associative.

2.8 Incremental Expressions

2.8.1 Incremental operations

post-increment-expression:
(expression)++
pre-increment-expression:
++(expression)
post-decrement-expression:
(expression)——
pre-decrement-expression:
——(expression)
1. Symbolic expression that should semantically evaluate to (expression)
= (expression) + 1.

2. (expression) is only evaluated once.

2.9 Logical Expressions

2.9.1 Binary Compound Boolean Operators

and-expression:

19

expression and exrpression

expression €965 expression
oT-expression:

exPression or erpression

expression || expression

1. Symbolic expressions to check for logical conjunction and disjunction.

2. For the and—expression, short-circuiting logic is applied if the expression
on the left evaluates to false. The right hand expression will not be
evaluated.

3. For the or—expression, short-circuiting logic is applied if the expression
on the left evaluates to true. The right hand expression will not be
evaluated.

4. All operations are left associative.

2.9.2 Binary Relational Operators
equal-to-expression:
eTPTeSSION == expression
not-equal-to-expression:
expression != expression
less-than-expression:
expression < erpression
greater-than-expression:
eTpression > erpression
less-than-equal-to-expression:
expression <= erpression

greater-than-equal-to-expression:

20

eTpression >= exrpression

1. Symbolic expression to perform relational operations meant to do
comparisons.

2. All operations are left-associative.

2.9.3 Unary Logical Operators
INVETSION-ETPTESSION:
lexpression
complement-expression:
“expression

1. Symbolic expression to perform unary logic operations, such as logical
complement and logical inversion.

2.10 Bitwise Operations

2.10.1 Binary Boolean Operators
bitwise-and-expression:
expression € erpression
bitwise-or-expression:
expression | expression
bitwise-xor-expression:

expression " expression

1. Symbolic expressions to perform logical / bitwise and, or, and exclusive-
or operations.

2. All operations are left associative.

21

2.11 Operator and Expression Precedence

Precedence is defined as follows:

2.12 Expression and Operand Conversions

2.12.1 Boolean Conversions

1. Expressions that are expected to evaluate to booleans for the purposes
of Flow Control as defined in 5.3 and for common relational and logical
operations as in 2.9 will have their rules checked against the following:

(a) If the evaluated value is already a boolean, use the value directly.

(b) If the evaluated value is of an integral type, then any such type
which compares equivalent to the integral literal 0 will be false:
otherwise, it is true.

(c) If the evaluated value is of a floating point type, then any such
type which compares equivalent to the floating point literal 0.0
will be false: otherwise, it is true.

(d) Otherwise, if there is no defined conversion, then the program is
ill-formed.

2.12.2 Mathematical Conversions

int to float float variable has the same value as integer.

float to int integer has largest integral value less than the float.

bool to int integer has value 1 if true, otherwise it will be 0.

int to bool | bool is true if int is not equal to 0 and false otherwise.

1. Implicit type conversions are carried out only for compatible types.
The implicit casting occurs during assignment or when a value is passed
as a function argument.

2. The four types of conversions that are supported are summarized in
the table below.

22

Table 2.1: Precedence Table

Precedence Operator Variants Associativity
++ -

1 E]) Postfix Left to Right
++ ——

2 + - Prefix, Unary Operations Right to Left
I~
*

3 /
%

4 +

) << >> Binary Operations Left to Right
<

6 N
>
>=

7 == !:

8 &

9 ~

10 |

11 l|
= +: -—

12 Zi: Z2 Assignments Right-To-Left

23

3. If there is no conversion operator defined for those two types exactly,
then the program is ill-formed.

24

Chapter 3

Functions

3.1 Functions and Function Declarations

Functions are independent code that perform a particular task and can be
reused across programs. They can appear in any order and in one or many
source files, but cannot be split among source files.

Function declarations tell the compiler how a function should be called, while
function definitions define what the function does.

3.1.1 Function Definitions

fun <identifier > ([<parameter_declarations>]) : <
return_type> {
<function_body>
[return <expression >;]

1. All function definitions in LéPiX are of the above form where they
begin with the keyword fun, followed by the identifier, a list of optional
parameter declarations enclosed in parentheses, optionally the return
type, and the function body with an optional return statement.

2. return types can be variable types or void.

25

3. Functions that return void can either omit the return statement or leave
it in or return the value unit:

fun zero (&arr:int[]) : void {
for (var i : int = 0 to arr.length) {
arr[i] = 0;
}
}

~

fun zero (&arr:int[] ¢ void {
for (var i : int = 0 to arr.length) {
arr[i] = 0;
}

return;

4. Functions that return any other variable type must include a return
statement and the expression in the return statement must evaluate to
the same type as the return type or be convertible to the return type:

fun add (argl:float , arg2:float) : float {
return argl 4+ arg2;
}

5. In the function add, argl and arg2 are passed by value. In the function
zero, arr is passed by reference.

6. Function input parameters can be passed by value, for all variable
types, or by reference, only for arrays and array derived variable types.
See 3.1.3 for more about passing by value and reference.

3.1.2 Function Declarations

1. All function declarations in LéPiX are of the form

fun <identifier > ([<parameter_declarations >]) : <
return_type >;

2. The function declaration for the add function from 3.1.1 would be

fun add (argl:float, arg2:float) : float;

26

3. Function declarations are identical to function definitions except for
the absence or presence of the code body.

4. Function declarations are optional, but useful to include when functions
are used across multiple translation units to ensure that functions are
called appropriately.

3.1.3 Function Scope and Parameters

1. Variables are declared as usual within the body of a function. The
variables declared within the body of a function exist only in the scope
of the function and are discarded when they go out of scope.

2. External variables are passed into functions as parameters. All variable
types except arrays and array derived variable types are passed by
value. Arrays and array derived variable types can be passed by both
value and reference.

3. Passing value copies the object, meaning changes are made to the copy
within the function and not the original. Passing by reference gives a
pointer to the original object to the function, meaning changes are to
the original within the function.

4. To pass by value to a function, use the variable name: add (x, y);

5. To pass by reference to a function, use the symbol & and the variable
name, as in zero (&arr);.

27

Chapter 4

Data Types

4.1 Data Types

The types of the language are divided into two categories: primitive types
and data types derived from those primitive types. The primitive types are
the boolean type, the integral type int, and the floating-point type float. The
derived types are struct, Array, and image and pixel, which are both special
instances of arrays.

4.1.1 Primitive Data Types

1. int

By default, the int data type is a 32-bit signed two’s complement
integer, which has a minimum value of —23! and a maximum value of

232,
2. float
The float data type is a single precision 32-bit IEEE 754 floating point.

3. boolean

The boolean data type has possible values true and false.

28

4.1.2 Derived Data Types

Besides the primitive data types, the derived types include arrays, structs,
images, and pixels.

1. array

An array is a container object that holds a fixed number of values of a
single type. Multi-dimensional arrays are also supported. They need
to have arrays of the same length at each level.

2. pixel

A pixel data type is a wrapper for an array that will contain the
representation for each pixel of an image. It will contain the rgh values,
each as a separate int, and the gray value of a pixel.

3. image

The image data type is just an alias for a 2-dimensional array. The 2-d
array will define the size of an image and contains a pixel as each of
its data elements.

4. struct

A structure is a collection of one or more variables, possibly of different
types, grouped together under a single name for convenient handling.
Structures help to organize data because they permit a group of related
variables to be treated as a unit instead of as separate entities.

29

Chapter 5

Program Structure and
Control Flow

5.1 Statements

1. Any expression followed by a semicolon becomes a statement. For
example, the expressions x = 2, lib .save(...), return x become statements:
X = 2;
lib.save(...);
return x;

2. The semicolon is used in this way as a statement terminator.

5.2 Blocks and Scope

Braces { and } are used to group statements in to blocks. Braces that
surround the contents of a function are an example of grouping statements
like this. Statements in the body of a for, while, if or switch statement are
also surrounded in braces, and therefore also contained in a block. Variables
declared within a block exist only in that block. A semicolon is not required
after the right brace.

30

5.2.1 Blocks

1.

At any point in a program, braces can be used to create a block. For
example,

var x: int
var y: int

var result: int;

{

23
4.

)

var z: int = 6
result = x +y + z;

In this trivial example, the statements on lines 5 and 6 live within their
own block.

Blocks do have access to named definitions of their surrounding scope,
however variables define within a block exist only within that block.

5.2.2 Scope

1.

2.

Scopes are defined as the collection of identifiers and available within
the current lexicographic block!.

Every program is implicitly surrounded by braces, which define the
global block.

5.2.3 Variable Scope

—_

. Variables are in scope only within their own block?.

. In the example in Section 5.2.1, z is declared within the braces.

Variables declared within blocks last only within lifetime of that block.

If we attempted to access z outside of this block, this would cause an
error to occur.

If a variable with a particular identifier has been declared and the
identifier is re-used within a nested block.

!This is usually between two curly braces {}
2E.g., between the brackets {}

31

6.

7.

The original definition of the identifier is shadowed and the new one
is used until the end of the block.

Variables are constructed, that is, stored in memory when they are
first encountered in their scope, and destructed at the scope’s end in
the reverse order they were encountered in.

5.2.4 Function Scope

1.

Function definitions define a new block, which each have their own
scope.

Function definitions have access to any variables within their surround-
ing scope, however anything defined in the function definition’s block
is not accessible in the surrounding blocks.

Variables defined in a parameter list belong to the definition-scope of
the function.

5.2.5 Control Flow Scope

5.3

. Control flow also introduces a new block with its own scope.

. Variables initialized in any control flow statement, that is within the

parenthesis before the block, belong to the control flow block and are
not accessible in the surrounding block.

In the statement for (var x = 0to 5) {... }, x only exists within that for
loop and destructed after the loop ends.

Namespaces

. Namespaces are essentially blocks that allow identifiers to be prefix with

an arbitrary nesting of names. They are declared with the namespace
keyword, followed by several identifiers delimited by a dot ‘.” symbol.

Accessing variables and functions inside of a namespace must have
the name of the namespace prefixed before the name of the desired
identifier.

32

5.4

The namespaces lib and compiler is reserved for use by standard library
implementations and the compiler.

Namespaces are the only bracket-delimited lexical scope that do not
dictate the lifetime of the variables associated with them. These
variables are part of the global scope.

if
if (expression; expression; ...)
statements
else
alternative —statements
. if statements are used to make decisions in control flow.

. Variations on this syntax are permitted, e.g. The else block of the if

statement is optional.

If the expression is evaluated and returns true, then the first portion of
the if statement is executed. Otherwise, if there is an else the portion
after it is executed, and if there is none then the function continues at
the next statement.

. Parenthesis are optional after the if block if there is a single statement.

If there are multiple statements, parenthesis are needed.

Variables can be initialized inside the expression portion of the if
statement as long as the final expression in a semi-colon delimited list
evaluates to a Boolean value.

if (var x = 20; var y = 50; x <y) {
statements
}

The scope for variables x and y is within that particular if statement.

If statements can also be nested so that multiple conditions can be
tested:

33

y = —1
else if (x > 0)
y =1

else
y =20

5.5 switch

switch (variable) {

case (constant expression):
statements

end ;

case (constant expression):
statements

end ;

case (constant expression):
statements

end ;

default: statements

1. switch statements can be used as an alternative to a nested if statements.

2. The variable is compared against the constant expression for each case,
and if it is equal to this expression then the statements in that case
are executed.

3. If the variable does not match any of the cases then the default case is
executed.

4. The statements in each case must be followed by an end statement.

As with if statements, if a variable is declared within the switch like switch (var
x = other_variable; x) { ... }, the scope for variable x is within that particular
switch block.

5.6 while

34

5.7

while (expression; expression; ... ; condition) {
statements

while loops are used to repeat a block of code until some condition is
met.

. Every time a loop condition evaluates to true, the while loop’s block

and statements are executed.

When the condition evaluates to false, the while loop’s execution is
stopped.

Expressions before condition are evaluated only once. For example:
while (var x = 20; x < 30) {...} is a valid the while loop, and only the final
x < 30 is evaluated on each loop execution.

Loops are dangerous because they can potentially run forever. Make
sure your conditions are done properly, or use Flow Control keywords
and primitives discussed in 5.8:
while (var x = 1; x <= 10) {

arr [x] = 1;

x =x + 1;

for
for (variable = lower_bound to upper_bound by size) {

statements
}

For loops are another way to repeat a group of statements multiple
times.

. The by keyword and argument size are optional and used to specify

how much the variable should change by each iteration of the loop:
for (x = 1to 10 by 2) { ...} will increment x by two each iteration rather
than the default value of 1.

Variables can be declared in the loop declaration, as in for (var x = 1 to

10) {...}.

35

4. For loops can also be used to decrement by swapping the positions of
the lower bound and upper bound arguments, and using a negative
value for the size (if using the by keyword) The while loop in Section
5.6 could be expressed as a for loop as follows.

for (var x =1 to 10) {
arr [x] = 1;
}

5. C-style for loops are also supported:

for (var x = 1; x <= 10; x++) {
arr [x] = 1;
}

5.8 break and continue

Break and continue statements are used to exit a loop immediately, before
the specified condition has been reached.

5.8.1 break

1. Break statements exit the block of a loop immediately.

while (...) {
statements above
break;
statements below

2. In the example above, statements_above would be executed only once.
The statements _below would never be executed.?
5.8.2 break N

1. Break statements can be used to exit nested loops by jumping out of
multiple scopes by adding an integral constant after the break keyword.

3Break statements are usually included inside of an if statement within the loop to
immediately exit on a particular condition.

36

2. The example below will allow the user to break out of both for loops
with only one break statement.*

for (...) {
for (...) {

statements above

if (condition)
break 2;

statements below

5.8.3 continue

1. Continue statements jump to the end of the loop body and begin the
next iteration.

for (...) {

statements above
if (expressions...) {
continue;

statements below

2. When a continue statement is executed, statements below the continue
keyword are not executed, and the loop post-action and condition are
immediately re-evaluated.

3. In the example above, statements_above would always be executed. The
statements below would be executed on iterations where the if condition
was false, since when the if condition were true execution would jump
back to the for loop’s top.

4This could be considered a structured version of goto for loops and should be used
with the programmer’s utmost discretion.

37

Chapter 6

Parallel Execution

Since a large number of elementary operations in the realm of image pro-
cessing are embarrassingly parallel matrix operations, the LéPiX language
supports a simple parallelization scheme.

6.1 Parallel Execution Model

1. Parallel Execution is when two computations defined by the language
are run at the exact same time by the abstract virtual machine, capable
of accessing the same memory space.

2. The primary parallel primitive is a parallel-marked block.

3. Use of parallel primitives does not guarantee parallel execution: com-
putation specified to run in parallel may run sequentially.!

6.2 Syntax

1. The syntax for parallel code is code simply marked with the keyword
parallel .

1This could be due to hardware limitations, operating system limitations, and other
factors of the machine.

38

6.3

In the situation where there are variables that must be shared by all the
threads, a comma separated list of variable identifiers can be specified
in parentheses using the keyword shared as in parallel { <block> }.

In the case of nested for loops, only the outermost loop carrying the
parallel keyword is parallel.

Threads

. The code inside of a parallel block can be dispatched to multiple

executing threads.

Each thread that is spawned in this way will have its own scope, which
is created when the thread is spawned and destroyed when the thread
is killed.

Each thread has its own copy of each variable that is declares within
the scope of the loop statements.

All variables are shared by default, except the ones declared in the
parallel scope.

39

Part 111

Grammar Specification

40

Chapter 7

Grammar

7.1 Lexical Definitions and Conventions

A program consists of one or more translation units, which are translated
in two phases, namely the preprocessing step and the lexing step. The
preprocessing step entails carrying out directives which begin with # in a
C-like style. The lexing step reduces the program to a sequence of tokens.

7.1.1 Tokens

1. Tokens belong to _categories. These are whitespace, keywords, opera-
tors, integer literals, floating point literals, string literals, identifiers,
and brackets.

2. Whitespace tokens are used to separate other tokens and are ignored
in any case where they do not occur between other non-whitespace
tokens.

7.1.2 Comments

1. Comments come in two flavors: single-line and multi-line.

2. Single line comment begin with // and continue until the next newline
character is found. Multi-line comments begin with /* and end with

41

*/. They are nested.

3. Comments are treated as whitespace tokens, but for various purposes

may still appear between other whitespace tokens in a program’s token
stream.

7.1.3 Identifiers

1. Identifiers are composed of letters, numbers and the underscore char-
acter (_) but must begin with a letter. Identifiers beginning with
underscores and numbers will be reserved for use within the implemen-
tation of the language.

7.1.4 Keywords

1. A set of identifiers has been reserved for use as keywords and cannot
be used in other cases. The list of keywords is in the table below.

int float void bool
unit char codepoint string
vector matrix vector vec
var let if else
for while by to
return true false mutable
const fun struct maybe
protected public private shared
as of parallel atomic

7.1.5 Literals

1. Literals are of three types: integer literals, floating literals, and string
literals, as detailed in 2.2.1. All of them use the following definitions
for their digits:

(decimal-digit) ::= one of
0123456789

42

(hezidecimal-digit) ::= one of
0123456789
ABCDEF
abcdef

(binary-digit) ::= one of
01

(octal-digit) ::= one of
01234567

(n-digit) ::= one of
0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

[

(decimal-digit-sequence) ::= ()
| (decimal-digit) (decimal-digit-sequence)

(binary-digit-sequence) ::= ()
| (binary-digit) (binary-digit-sequence)

(octal-digit-sequence) ::= ()
| (octal-digit) (octal-digit-sequence)

(hezidecimal-digit-sequence) ::= ()
| (hexidecimal-digit) (hexidecimal-digit-sequence)

(n-digit-sequence) ::= ()
| (n-digit) (n-digit-sequence)

. Integer literals consist of sequences of digits are always interpreted as
decimal numbers. They can be represented by the following lexical
compositions:

(integer-literal) ::= (decimal-literal)
| (binary-literal)
| (octal-literal)
| (hexidecimal-literal)
| (n-digit-literal)

(decimal-literal) ::= (decimal-digit-sequence)

43

(binary-literal) ::= 0b (binary-digit-sequence)
| 0B (binary-digit-sequence)

(octal-literal) ::= Oc (octal-digit-sequence)
| 0C (octal-digit-sequence)

(hexidecimal-literal) ::= 0x (hexidecimal-digit-sequence)
| 0X (hezidecimal-digit-sequence)

(n-digit-literal) ::= On (n-digit-sequence) ‘#’
| ON (n-digit-sequence)

. Floating point literals can be specified using digits and a decimal points
or in scientific notation. The following regular expression represents
the set of acceptable floating-point constants.

(e-part) = e (+ |- " -) (integral-literal)
(floating-literal) == (integral-literal) oy . (integral-literal)ope (e-part)opt
| (integral-literal) .op: (integral-literal)op: (e-part)

. String literals are sections of quote-delimited items. They are defined
as follows:

single-quote) ::= "’

double-quote) :=

(
{
(raw-specifier) = Ropt
(character) ::= (escape-character) (source-character)
{

character-sequence) ::= ()
| (character) (character-sequence)

(string-literal) ::= (raw-specifier) (double-quote) (character-sequence)
(double-quote)
| (raw-specifier) (single-quote) (character-sequence) (single-quote)

7.2 Expressions

The following sections formalize the types of expressions that can be used in
a LéPiX program and also specify completely, the precedence of operators
and left or right associativity.

44

7.2.1 Primary Expression

(primary_expression) ::= (identifier)
| (integer-constant)
| (float-constant)
| (expression)

1. A primary expression are composed of either a constant, an identifier,
or an expression in enclosing parentheses.

7.2.2 Postfix Expressions

(postfix_expression) := (primary_expression)
| (postfizx_expresion) (argument_list)
| (postfix_expression) [expression |
| (postfiz_expression) . identifier (argument list) ::= ()
| (argument_list) , (postfix_expression)

1. A postfix expression consist of primary expression followed by postfix
operators. The operators in postfix expressions are left-associative.

Indexing

1. Array indexing consists of a postfix expression, followed by an expres-
sion enclosed in square brackets. The expression in the brackets must
evaluate to an integer which will represent the index to be accessed.

2. The value returned by indexing is the value in the array at the specified
index.

Function Calls

1. A function call is a postfix expression (representing the name of a
defined function) followed by a (possibly empty) list of arguments
enclosed in parentheses.

2. The argument list is represented as a comma separated list of postfix
expressions.

45

Structure access

1. The name of a structure followed by a dot and an identifier name is a
postfix expression. The expression’s value is the named member’s of
the structure that is being accessed.

7.2.3 Unary Expression

unary_operator) =
; -
| !

|_
|>k

(unary expression) ::= (unary_operator) (postfix_expression)

1. A unary expression consists of jpostfix expression; preceded by a
unary operator (- ;, I, * &).

2. Unary expressions are left-associative.

3. The unary operation is carried out after the postfix expression has
been evaluated.

The function of each unary operator has been summarized in the table below:

- Unary minus

Bitwise negation operator

Logical negation operator

Indirection operator

7.2.4 Casting

The LéPiX language supports the casting of an integer to a floating point
value and vice versa. It also supports casting of an integer value to a boolean
value and vice versa. Integer to float casting creates a floating point constant
with the same value as the integer. Casting a floating point value to an
integer rounds down to the nearest integral value. Casting a boolean value

46

to an integer gives 1 if the value is true and 0 if it is false. Casting an integer
to a boolean value yields false if the value is 0 and true otherwise.

(cast_expression) ::= (unary expression)
| (unary_expression) as (type_name)

7.2.5 Multiplicative Expressions

The multiplication (*), division (/) and modulo (%) operators are left asso-
ciative.

(multiplicative__expression) ::= (cast_expression)
| (multiplicative_expression) * (cast_expression)
| (multiplicative_expression) | (cast_expression)
| (multiplicative__expression) % (cast_expression)

7.2.6 Additive Expressions

The addition (+) and subtraction (-) operators are left associative.

(additive__expression) ::= (multiplicative_expression)
| (additive expression) + (cast_expression)
| (additive_expression) - (cast_expression)

7.2.7 Relational Expressions

The relational operators less than (j), greater than (;), less than or equal to
(j=) and greater than or equal to (;=) are left associative.

(relational _expression) ::= (additive_expression)
| (relational_expression) (jadditive_expression)
| (relational_expression) (= jadditive_expression)
| (relational_expression) | (additive_expression)
| (relational expression) ;= (additive expression)

~ ~— ~ ~—

47

7.2.8 Equality Expression

equality_expression) ::= (relational_expression

lit ' lational '
| (equality expression) != (relational_expression)
| (equality expression) == (relational_expression)

7.2.9 Logical AND Expression

ogical_and_expression) ::= (equality expression
logical _and] lit '
| (logical_and_expression) && (equality expression)

1. The logical and operator (&&) is left associative and returns true if
both its operands are not equal to false.

7.2.10 Logical OR Expression

ogical_or_expression) = (logical _and_expression
logical ‘ logical _and '
| (logical_or_expression) || (logical _and_expression)

1. The logical OR operator () is left associative and returns true if
either of its operands are not equal to false.

7.2.11 Assignment Expressions

(assignment__expression) ::= (logical _or_expression)
| (unary_expression) = (assignment__expression)

1. The assignment operator (=) is left associative.

7.2.12 Assignment Lists

(assignment_list) ::= (assignment_expression)
| (assignment_list) ::= (assignment_list) , (assignment_expression)

48

1. Assignment lists consist of multiple assignment statements separated
by commas.

7.2.13 Declarations

(declaration) ::= let (storage_ class) (identifier) : (type_name) = (postfiz_expression)
| var (storage_class) (identifier) : (type_name) = (postfix_expression)
| (declaration) (array)

(storage_ class) ::= mutable
| const

(type_name) ::= void
| unit

| bool

| int

| float

| (type_name) (array)

(array) ::= [(int_list) |
| [(array) |

(int_list) ::= (integer)
| (int_list) , (integer)
1. Declarations of a variable specify a type for each identifier and a value

to be assigned to the identifier.

2. Declarations do not always allocate memory to be associated with the
identifier.

7.2.14 Function Declaration

(function_declaration) ::= fun (identifier) ((params_list)) : (type_name)
(params_list) ::= ()

| (identifier) : (type_name)
| (params_list) , (identifier) : (type_name)

49

1. Function declarations consist of the keyword fun followed by an identi-
fier and a list of parameters enclosed in parentheses.

2. The list of arguments is followed by a colon and a type name which
represents the return type for the function.

3. The arguments list is specified as a comma-separated list of identifier,
type pairs.

7.3 Statements

Statements are executed sequentially in all cases except when explicit con-
structs for parallelization are used. Statements do not return values.

(statement) ::= (expression_statement)
(branch__statement)
(compound__statement)
(iteration_statement)

(return_ statement)

7.3.1 Expression Statements

(expression_statement) = ()
| (expression) ;

1. Expression statements are either empty or consist of an expression.

2. These effects of one statement are always completed before the next is
executed.

3. This guarantee is not valid in cases where explicit parallelization is
used.

4. Empty expression statements are used for loops and if statements where
not action is to be taken.

50

7.3.2 Statement Block

(block) ::= { (compound_statement) }
| { (block) (compound_statement)}

(compound__statement) ::= (declaration)
| (statement)
| (compound_statement) ; (declaration)
| (compound_statement) ; (statement)

1. A statement block is a collection of statements declarations and state-
ments.

2. If the declarations redefine any variables that were already defined
outside the block, the new definition of the variable is considered for
the execution of the statements in the block.

3. Outside the block, the old definition of the variable is restored.

Branch Statements

(branch_statement) ::= if ((expression)) (statement) fi
| if ((expression)) (statement) else (statement) fi

1. Branch statement are used to select one of several statement blocks
based on the value of an expression.

7.3.3 Loop Statements

(loop_statement) ::= while ((expression)) (statement)
| for ((identifier) = (expression) to (expression)) (statement)
| for ((assignment_expression) = (expression) to (expression) by (expression)
) (statement)
| for ((expression); (expression); expression;) (statement)

1. Loop statements specify the constructs used for iteration and repetition.

51

7.3.4 Jump Statements

(jump_statement) ::= break (integer-literal)op
| continue

1. Jump statements are used to break out of a loop or to skip the current
iteration of a loop.

7.3.5 Return Statements

(return_ statement) ::= return
| return (ezpression)

1. Return statements are used to denote the end of function logic and
the also to specify the value to be returned by a call to the function in
question.

7.4 Function Definitions

(function_definition) ::= (function_declaration) (block)

1. Function definitions consist of a function declaration followed by a
statement block.

7.5 Preprocessor

(preprocessor_directive) ::= #define (identifier) (expression)
| #ifdef (identifier)
| #ifndef (identifier)
| #endif

| #import (identifier)

| #import “(file_name)”

| #import string (file_name)

52

1. Before the source for a LePix program is compiled, the program is
consumed by a preprocessor, which expands macro definitions and
links libraries and other user-defines to the current file, as specified by
appropriate preprocessor directives.

2. define macros create an alias for a value or expression.

3. ifdef and ifndef macros are used to check if a particular alias has already
been assigned. Import directives are used to link files/libraries with
the current program.

7.6 Grammar Listing

(primary_expression) ::= (identifier)
| (integer-constant)
| (float-constant)
| (expression)

(postfix_expression) ::= (primary_expression)
| (postfiz_expresion) (argument_list)
| (postfix_expression) [expression |
| (postfiz_expression) . identifier

(argument_list) ::= ()
| (argument_list) , (postfiz_expression)

(unary_operator) ::= ~
| !

| *
(unary_expression) ::= (unary_operator) (postfiz_expression)

(cast_expression) ::= (unary expression)
| (unary_expression) as (type_name)

(multiplicative_expression) ::= (cast_expression)
| (multiplicative_expression) * (cast_expression)
| (multiplicative_expression) | (cast_expression)
| (multiplicative__expression) % (cast_expression)

53

(additive__expression) ::= (multiplicative_expression)
| (additive_expression) + (cast_expression)
additive__expression) - (cast_expression
dditi : ; :

(relational _expression) ::= (additive_expression)
| (relational_expression) < (additive_expression)
| (relational_expression) <= (additive_expression)
| (relational_expression) > (additive__expression)
| (relational_expression) >= (additive_expression)

(equality expression) ::= (relational expression)
| (equality expression) != (relational_expression)
| (equality expression) == (relational_expression)
(logical _and__expression) ::= (equality expression)

| (logical_and_expression) && (equality expression)

(logical_or_expression) ::= (logical_and_expression)
| (logical_or expression) || (logical and _expression)

(assignment__expression) ::= (logical or _expression)

| (unary_expression) = (assignment_expression)

(assignment_list) ::= (assignment_expression)
| (assignment_list) ::= (assignment_list) , (assignment_expression)
(declaration) ::= var (storage_class) (identifier) : (type_name) = (postfix_expression)

(type_name) ::= bool
| int
| float
| (type_name) (array)

(array) = [(int_list) |
| [(array) |

(int_list) ::== (integer)
| (int_list) , (integer)

(function_declaration) ::= fun (identifier) ((params_list)) : (type_name)

54

(params_list) == ()
| (identifier) : (type_name)
| (params_list) , (identifier) : (type_name)

(statement) ::= (expression_statement)
| (branch_statement)
| (compound_statement)
| (iteration_statement)
| (return_statement)
(expression_statement) = ()
| (expression) ;

(block) ::= { (compound_statement) }
| { (block) (compound_statement)}

(compound__statement) ::= (declaration)
| (statement)
| (compound_statement) ; (declaration)
| (compound_statement) ; (statement)

(parallel_block) ::= parallel ((parallel_control_variables)) (block)

(branch_statement) ::= if ((expression)) (statement) fi
| if ((expression)) (statement) else (statement) fi
(branch_statement) ::= if ((expression)) (statement) fi
| if ((expression)) (statement) else (statement) fi

(loop__statement) ::= while ((expression)) (statement)
| for ((identifier) = (expression) to (expression)) (statement)
| for ((assignment_expression) = (expression) to (expression) by (expression)
) (statement)
| for ((expression); (expression); expression;) (statement)

(identifier_list) ::= (identifier)
| (identifier_list) , (identifier)

(jump_statement) ::= break (integer-literal)op
| continue
(return_statement) ::= return

| return (expression)

95

Chapter 4

Plan

Our plan was developed slowly and mostly solidified around the making of
our Language Reference Manual and a bit afterwards. We met once a week,
sometimes a second time if our Advisor had the time for it, and occasionally
held extra meetings to help get things done.

4.1 Process

Most of our planning was done in-person via weekly meetings. We also used
Github Issues to track things and also bikeshed some of our progress and
implementation. We closed issues as they passed and had issues tied to
Milestones in the project:

4.2 Timeline

Our timeline was given by the milestones we had for the project. We opened
them early, meaning that one of the milestones (GPU Codegen) was scrapped
when our team decided that we would not pursue such an avenue.

80

@

@

@r

@/

@/

®

Runtime (Std) Library feature.planned feature.shiny
#16 by ThePhD was closed 5 days ago Final Project
Threading

#15 by gabriellet was closed on Mov 20 7" v0.3.0 - Hello Wo...

Representing Arrays
#14 by ThePhD was closed on MNov 20

Language Reference Manual 'duplicate.close me
#13 by gabriellet was closed on Oct 10

Parallelism Primitives specification

#12 by ThePhD was closed on Oct 27 Dof2

Build Stuff /tools
#11 by ThePhD was closed on Oct 8

v0.1.0 - Languag...

LaTeX source comments specification

#10 by wilk was closed on Oct 8 v0.1.0 - Languag...

Uh. System Architect woops.haha

#9 by ThePhD was closed on Oct 7

.0 - Languag...

- Hello Wo...

v0.1.0 - Languag...

LLVM IR to SPIRV Bootstrap and Codegen feature.planned

#8 by ThePhD was closed on Oct 9 v0.2.0 - GPU Cod...

Tools teols

#7 by ThePhD was closed 5 days ago Final Project

Semantic Analyzer feature.planned |semantic

£#6 by ThePhD was closed 5 days ago Final Project

Hello World Program feature.planned

#3 by ThePhD was closed on Nowv 20 Dof4

Cod egen feature.planned

#4 by ThePhD was closed on Nov 20

Parser feature.planned

#3 by ThePhD was closed on Nov 20 5of5
Lexer feature.planned | lexer

#2 by ThePhD was closed on Nov 20 S50f5

.0 - Hello Wo...

v0.5.0 - Hello Wo...

v0.5.0 - Hello Wo...

0 - Hello Wo...

Reference Manual feature.planned [ELETELIEY specification

#1 by ThePhD was closed on Oct 27 0of7

Figure 4.1: Closed issues throughout the project https
ThePhD/lepix/issues?q=is/3Aissue+is’3Aclosed.

4.3 Tools

.0 - Languag...

i

://github. com/

Everyone was free to develop in whatever IDE or editor they wished, just
so long as they could invoke the makefile. As I was originally the System
Architect, I put together a list of all the tools someone would need to invoke
the build process in Figure 4.3. The command line dependencies here helped

me figure out what was needed when we started to do testing 6.

81

s

D2

https://github.com/ThePhD/lepix/issues?q=is%3Aissue+is%3Aclosed
https://github.com/ThePhD/lepix/issues?q=is%3Aissue+is%3Aclosed

“r 0 Open « 5 Closed

w
=]
| -+
4

Final Project

Closed a minute ago (D) Last updated less than a minute ago

The milestone for the final stretch. Edit Recpen Delete

100% complete 0 open 3 closed

v0.5.0 - Hello World

Closed on Mov 20 (D Last updated about 1 month ago 100% complete 0 open 6 closed
This milestone encapsulates that the lexer, parser, and code genera...(more) Edit Reopen Delete

v0.1.0 - Language Reference Manual

Closed on Oct 27 (D Last updated about 1 month ago 100% complete 0 open 5 closed

This milestone is for the completion of the specification, in both ...(more) Edit Reopen Delete

v0.3.0 - Language Reference Manual

Closed on Oct 22 (D Last updated about 1 month ago 0% complete 0 open 0 dlosed

From Professor Edwards' slides: "A careful definition of the syntax...(more) Edit Reopen Delete

v0.2.0 - GPU Codegen

Closed on Oct 22 (D Last updated about 1 month ago 100% complete 0 open 1 closed

[This milestone is defunkt since the group changed their mind.] C...(more) Edit Reopen Delete

Figure 4.2: Milestones for the project https://github.com/ThePhD/lepix/
milestones?state=closed.

4.4 Project Log

Asides from issues being closed and comments being made, the best project
log that shows how I did is the git commit log for all the branches, included
below. It was generated from git using the command git ——no—pager log ——
graph ——abbrev—commit ——decorate ——date=relative ——all.

* commit 5d983f7 (HEAD —> master, origin/master, origin/HEAD)

| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 27 minutes ago
|
|

Final clean implementation of bottom—type type derivation
for function returns, good literals , and overloading

Author: ThePhD <phdofthehouse@gmail .com>

|
7 % commit e323adc
|
| Date: 22 hours ago

82

https://github.com/ThePhD/lepix/milestones?state=closed
https://github.com/ThePhD/lepix/milestones?state=closed

10

12
13

15
16
17
18

19

N

NN N NN
[STE NG JUR R

—_—_ % — % —— % —— % —

_— % —

e VA

overloading tests among other things

commit 714d07f
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 days ago

last pdfs and reports and readme update

commit aab58db
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 days ago

remove temporaries and debug print statements

commit a7e8fa2 (origin/feature/semantic, feature/semantic)
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 days ago

Buh.

commit 816bad8
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 days ago

All T have left

commit ecbdf74
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 days ago

We're so close to the end. Don't give up. Trust in
yourself , and fight for what was right ...

commit fb3b94d
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 days ago

It finally builds... the basics of the Semantic AST,
finally more or less in place...!

commit c00e2ab
Author: ThePhD <phdofthehouse@gmail .com>

Date: 2 weeks ago

Beef up the semantic AST and fully complete the pretty
printer for it.

commit 817f6b8

83

92
93
94
95
96

97

98
99
100
101

A —

— e —— — % — —_—— % —— % —

Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

Ensure lowercase acceptance as well.
commit 79fc476

Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

Fixing up the parser for integer literals and other more

useful things.

commit 2bfb992
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

scanner and parser are up to snuff

commit 77847d7
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

handle extra cases in the parser for increment,
and assignment—ops

commit 92eed4d6
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

Beat up the parser lots.

commit 4eblaeb

Merge: 5efaebe 989eld2

Author: ThePhD <phdofthehouse@gmail.com>
Date: 3 weeks ago

Merge branch 'master' into feature/semantic

\ Merge: 9ccdT7e0 bebebad
Author: Jackie Lin <jackielin13@gmail.com>

|

|

|

|

|

* commit 989eld2
|

|

| Date: 3 weeks ago
|

|

|
| commit 9ccd7e0

| Author: Jackie Lin <jackielinl3@gmail .com>
| Date: 3 weeks ago

84

decrement ,

Merge branch 'master' of https://github.com/ThePhD/

102

|1

ws ||| tests

I

105 % | | commit 5efaebe

16 | | | Author: ThePhD <phdofthehouse@gmail .com>

w7 | | | Date: 3 weeks ago

ws |||

w00 |] | [ci skip] heavily modify the parser to handle type
qualifications , improve the AST, and begin to consider
scoping rules

o |||

111 % | | commit 6c4629a

112 | |/ Author: ThePhD <phdofthehouse@gmail .com>

s | /| Date: 3 weeks ago

14 |

115 || [ci skip] commit so I can jump back to helping on
master

16 | |

117 % | commit bebebad (origin/testing/travis, testing/travis)

118 | | Author: ThePhD <phdofthehouse@gmail .com>

119 | | Date: 3 weeks ago

120 ||

121 || REALLY fuck you, python3

122 | |

123 % | commit d5cbGef

124 | | Author: ThePhD <phdofthehouse@gmail .com>

125 | | Date: 3 weeks ago

126 | |

127 | | Fuck you too, python3

128 | |

120 % | commit fc38fe8

130 | | Author: ThePhD <phdofthehouse@gmail .com>

131 | | Date: 3 weeks ago

132 ||

133 | | specifically invoke python3 because environments are
stupid?

134 ||

135 % | commit alOdfaa

136 | | Author: ThePhD <phdofthehouse@gmail .com>

137 | | Date: 3 weeks ago

138 | |

130 | | 51 builds later, it should work...

140 ||

141 % | commit 38f438b

142 | | Author: ThePhD <phdofthehouse@gmail .com>

143 | | Date: 3 weeks ago

g ||

145 || ensure only python 3 is available on the system

146 ||

85

—_— % — %

_— % — % —

commit 7eb9368
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

Only need one of either —rm or —d
commit d2f844f

Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

Proper travis ci with safety net for made directories

for tests

commit aebffd0
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

make sure the shell is configured with eval opam...

commit cc6dca8
Author: ThePhD <phdofthehouse@gmail .com>
Date: 3 weeks ago

This is getting a tad tiresome, but it's my fault for

not having a good handle on travis—ci
commit cbbbe02

Author: ThePhD <phdofthehouse@gmail.com>
Date: 3 weeks ago

Proper escaping?

commit df0a2fl
Author: ThePhD <phdofthehouse@gmail.com>
Date: 3 weeks ago
escaped operators
commit 48edeca
Author: ThePhD <phdofthehouse@gmail.com>
Date: 3 weeks ago
Party with the cd comms
commit 14788e0
Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

"Docker never dies!” (Sleep infinity)

86

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212

214

—_—_— ———— — ———— % — ———— % —

—_— e % — % —

commit 35aflla

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

Attemping without heredoc and just docker exec...

commit d9d03ee

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

No —c on bash when using heredoc

commit 2f6003c

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

Attempting to make docker behave better?

commit 9d0cf03

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago
explicit printing

commit c6e8299

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

Fix the tests because I'm bad at writing python code,

weee

commit f27c¢410

Author: ThePhD <phdofthehouse@gmail.com>

Date: 3 weeks ago

blot out the Semantic Stuff until

commit 71c87ad

\ \ Merge: b032732 b5baelc

Date: 3 weeks ago

Conflicts:
.travis.yml

commit bbbaelc

Merge branch 'feature/semantic

87

1

its time

Author: ThePhD <phdofthehouse@gmail .com>

into testing/travis

o

SIS
IS B U]

DN N DN NN NN
Y O O gt ot gt v C Ul C
S © ® N o

(I

262
263
264

265

266
267
268

269

9 09 9 9 =
SN U

NONON NN NN N NN NN NNN NN N
@ 0 0 0 0 0 0 0 =N N =~ = N
D Uk W N R O © N O

00
~

—_— % —

e Y

Author: ThePhD <phdofthehouse@gmail.com>

Date: 3 weeks ago

default llvmm fails because Opam is a heaping pile of

commit 7al3678

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

Attempt to properly propogate bash errors and fix
travis files

commit 2ae921c

Author: ThePhD <phdofthehouse@gmail.com>

Date: 3 weeks ago

update test harness

commit 81fb441

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago

semantic analyizer start

commit a9011e3 (origin/feature/preprocessor, feature/
preprocessor)
Author: ThePhD <phdofthehouse@gmail.com>

Date: 3 weeks ago
fix gitignore

commit 11b86f8

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago
Full preprocessor

commit 63a06f6

implementation

Author: ThePhD <phdofthehouse@gmail .com>

Date: 3 weeks ago
update gitignore

commit b032732

Author: ThePhD <phdofthehouse@gmail .com>

Date: 4 weeks ago

Go fuck yourself ,

travis ,

88

and your

rules against tabs

commit 75b8679
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

Let's try this again...
commit 1e827e2

Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

messing around with docker

commit 0ladc38
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

One more missing package from depext

commit 8fa39e9
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

package names were wrong

commit 337c74b
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

source script to propogate errors better
autoshit and mcrap tools need to be there

commit 871197c
Author: ThePhD <phdofthehouse@gmail.com>
Date: 4 weeks ago

travis gooo
commit 868dc82
Author: ThePhD <phdofthehouse@gmail.com>
Date: 4 weeks ago
assume yes for ALL cases ...
commit 81d341a
Author: ThePhD <phdofthehouse@gmail .com>

Date: 4 weeks ago

say yes, all the time

89

—_—_— ———— — ———— % — ———— % —

—_— —— — % —

commit b4dbab8
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

update ignore

commit 5176344
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

update properly

commit e9fb2af
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

Keeep trying with docker....

commit 7b4leef
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

Poking at things 'till it works...

commit f4c7c3b
Author: ThePhD <phdofthehouse@gmail .com>
Date: 4 weeks ago

Properly bind the mount volume with the —v command,
swap into it

commit d6b090f
Author: ThePhD <phdofthehouse@gmail.com>
Date: 4 weeks ago

poke at env to understand what's going on
commit 667d0d1
Author: ThePhD <phdofthehouse@gmail.com>
Date: 4 weeks ago

travis _run file and friends
commit 2e8aab2
Author: ThePhD <phdofthehouse@gmail .com>

Date: 4 weeks ago

try it from a file now...

90

then

385

430 Date: 4 weeks ago

|
386 % | commit 83afd3b
387 | | Author: ThePhD <phdofthehouse@gmail.com>
sss | | Date: 4 weeks ago
380 | |
390 | | super duper docker
301 | |
302 % | commit 78f655d
303 | | Author: ThePhD <phdofthehouse@gmail.com>
304 | | Date: 4 weeks ago
395 | |
396 | | Goddamn tabs
307 | |
3908 % | commit cca9cd2
300 | | Author: ThePhD <phdofthehouse@gmail.com>
wo | | Date: 4 weeks ago
a1 ||
w02 || update travis work
03 ||
104 *% | commit c0e85a3
105 | | Author: ThePhD <phdofthehouse@gmail .com>
w6 | | Date: 4 weeks ago
a07 ||
s || Use a different language to attempt to stay out of the
python shell
209 ||
110 % | commit 9e00c5Hf
111 | | Author: ThePhD <phdofthehouse@gmail .com>
112 | | Date: 4 weeks ago
13 ||
4 || update tests file and travis CI yaml file
a15 | |
116 % | commit 8b71le6d
117 | | Author: ThePhD <phdofthehouse@gmail.com>
a8 | | Date: 4 weeks ago
9 ||
120 || Add .travis file to start CI
421 | |
122 % | commit 0f25039 (origin/feature/codegen, feature/codegen)
123 | | Author: ThePhD <phdofthehouse@gmail.com>
124 | | Date: 4 weeks ago
125 | |
426 | | Testing fixture
a27 | |
128 % | commit e200757
420 | | Author: ThePhD <phdofthehouse@gmail.com>
||
|

91

as2 || Example code for linking an external library. Various
small changes to the driver of lepix and the codegen in
preparation for the Semantic Analyzer and the AST.

133 || We still need something to preprocess source code...
another regular parser, perhaps?

134

||
135 % | commit f6a208d
436 | | Author: ThePhD <phdofthehouse@gmail.com>
137 | | Date: 4 weeks ago
138 ||
139 || Re—raise any bad errors we don't know how to catch
o ||
41 % | commit 6b73260
442 | | Author: ThePhD <phdofthehouse@gmail.com>
us | | Date: 4 weeks ago
s ||
445 | | CARAT DIAGNOSTICS YEEEAAH
ue ||
147 % | commit 07cla08
448 | | Author: ThePhD <phdofthehouse@gmail.com>
o | | Date: 5 weeks ago
150 ||
a5t || better polyfill code
52 ||
153 % | commit cf4flab
454 | | Author: ThePhD <phdofthehouse@gmail.com>
155 | | Date: 5 weeks ago
156 | |
a57 || Better options parser, again, mostly for the sake of
writing clearer , better code
158 ||
459 % | commit ¢50176d
160 | | Author: ThePhD <phdofthehouse@gmail .com>
61 | | Date: 5 weeks ago
a62 | |
63 | | properly guard additions to sub
64 | |
165 % | commit 9c6eca8
166 | | Author: ThePhD <phdofthehouse@gmail .com>
67 | | Date: 5 weeks ago
168 ||
160 || More functional string_split
ato ||
471 % | commit 251c6ea
i72 | | Author: ThePhD <phdofthehouse@gmail .com>
ar3 | | Date: 5 weeks ago
ara ||
175 || "cleaner” polyfill...?7
ate ||

92

177
478
179

180

182
183

484

186
487

188

489
190
191

492
193
194

495
196
197

498
199

500

501

502

503

505
506
507
508
509
510

*

| commit 058cd89

|/ Author: ThePhD <phdofthehouse@gmail .com>

Date: 5 weeks ago
goofing off with trying to write better functional code

commit f5cc25f
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

Full on driver and options implementation

Polyfill layer to replace any missing batteries / core
stuff

IO layer for opening and writing to a file

commit e97a9c4
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

More comments, restructuring , and lexer—error handling.

commit 5933dab
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

We now have a driver that handles the code

There is now an option to print out the token stream

The lepix top level performs a basic amount of error
handling now

The parser and lexer now do a very thorough job of
tracking line information; may want to propogate into the AST
somehow

commit b60947a
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

It might be beneficial to mess with how the lexing and
parsing are run through, so we can generate the proper line
numbers and token lists.

We should also look into reading from and writing to files
, even if we don't have the Batteries library and other bits
set up for this.

One day ...

commit 5fb47el

Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

93

| counted arrays, namespace declarations and proper parallel
binding declarations

|
* commit ce06c¢c8f

| Author: ThePhD <phdofthehouse@gmail .com>
| Date: 5 weeks ago

|

|

|

It works.
Now I'm going to redo the whole goddamn AST and Parser so
we can really get going...

commit 82b848f
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

Segmentation fault.
SEGMENTATIONFAULTLADTIES

commit ¢35d50d
\ Merge: 677d5bb c8e22b9
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

Merge branch 'feature/codegen'
commit c8e22b9
Author: ThePhD <phdofthehouse@gmail .com>

Date: 5 weeks ago

skeleton of semantic analyzer

e —

commit 677d5bb
/ Author: fennilin <jackielinl3@gmail.com>
Date: 5 weeks ago

Create 11-17-16

commit f736abb
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

properly append qualified id to list

commit 748f5c0
\ Merge: a347044 e120364
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

Merge branch 'feature/codegen'

94

583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

608

Conflicts:
.gitignore

|
|
|
|
* commit 120364

| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 5 weeks ago

|

|

|

|

|

Allow for interwoven function and data declarations

Properly concatenate qualified IDs

Start on code generation (nothing actually appears)

Make sure top—level does not trigger semantic analyzer (
its empty right now)

|
* commit 018952e

| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 5 weeks ago

|

|

Array type now takes a number plus a type, rather than
having a separate type for each one
| scratch source example that can be modified and
committed to any current contention for a person working on
the compiler

commit e8b60ed
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago
More ignore files and an empty main test.
commit f5dc624
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago
Remove built files (please don't commit these again...)

commit 6f0db16
Author: ThePhD <phdofthehouse@gmail .com>
Date: 5 weeks ago

Clean up these commits...

commit 9b1384b
\ Merge: ae4b9f6 907c6b0
| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 5 weeks ago
|
| Merge remote—tracking branch 'origin/master' into
feature /codegen

95

609
610
611
612
613
614
615
616
617

618

619
620
621
622
623

624

625
626
627
628
629
630
631
632
633
634
635

636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

e P S —

| commit a3470

directory

commit 907c¢6b0

|
|
|
|
|
| commit aedb9f6
|
|
|
|

44

Conflicts:
source/parser . mly
source/scanner . mll

Author: ThePhD <phdofthehouse@gmail.com>
Date: 5 weeks ago

Edited .gitignore to omit built files

Add qualified ID handling (we will improve it later to
handle arbitrarily long strings)

/ Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 5 weeks ago

in the source

Author: Akshaan Kakar <akshaan.crackers@gmail.com>

Added atomic statement blocks

commit 5956¢lb

|
|
|
| Date: 5 weeks ago
|
|
|
|

Author: Akshaan Kakar <akshaan.crackers@gmail.com>

Date: 5 weeks ago

Simple parallel blocks (without atomic sections) and

array literals now work

commit 7cc276a

in Parser+AST

Author: Akshaan Kakar <akshaan.crackers@gmail.com>

Date: 5 weeks

AST complete with mildly —pretty printing

commit dldcd73
Author: Akshaan
Date: 5 weeks

JK function
commit f810dd3

Author: Akshaan
Date: 5 weeks

ago

Kakar <akshaan.crackers@gmail .com>

ago

declarations work too LOL

Kakar <akshaan.crackers@gmail .com>

ago

96

654

655
656
657
658
659

660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

685

686
687
688
689
690
691
692
693
694
695
696
697
698

699

_— % —

—_— e ¥ —— % —

Almost done with AST and pretty printing for all language
constructs. Only function and variable decls to go

commit 71la6fch
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 5 weeks ago

Added simple top level. Edited ast, parser and lexer but
some errors remain. Pretty printing needs to be set up.

commit d29fa01
Author: Fatima <fatimakolil4@gmail .com>
Date: 6 weeks ago

Parallelblock and jump statements added

commit 772f3b9

Merge: e€039350 2a939a4

Author: Fatima <fatimakolil4@gmail .com>
Date: 6 weeks ago

Merge branch 'master' of https://github.com/ThePhD/lepix

commit 2a939a4
Author: Akshaan Kakar <akshaan.crackers@gmail .com>
Date: 6 weeks ago

Deleted intermediate files and yacc output

commit 80e8614
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 6 weeks ago

Parser simplified. Multiple expression grammar rules
collapsed into single rule

commit 7fd0c99
\ Merge: bb3f3bb 1dcf3f5
Author: ThePhD <phdofthehouse@gmail.com>
Date: 6 weeks ago

Merge remote—tracking branch 'origin/master'
commit bb3f3bb
Author: ThePhD <phdofthehouse@gmail.com>

Date: 6 weeks ago

Makin' a bootstrapper....

97

700
701
702
703
704
705
706
707
708
709
710

712

746

| commit ec7f5dc
| Author: ThePhD <phdofthehouse@gmail .com>
| Date: 6 weeks ago
|
| example LLVM code for the Linux architecture.
|
| commit e039350
/ Author: Fatima <fatimakolil4@gmail .com>

Completed—needs to be tested

commit 1dcf3f5
Author: Fatima <fatimakolil4@gmail .com>
Date: 6 weeks ago

Pretty printer started and array nodes added

*
|

|

|

|

|

|

|

| Date: 6 weeks ago
|

|

|

|

|

|

|

|

|

| commit aad0d34

\ \ Merge: f093cla 4fe3fa3

| | Author: Fatima <fatimakolil4@gmail .com>
| | Date: 6 weeks ago
||
||

Merge branch 'master' of https://github.com/ThePhD/
lepix

| commit 4fe3fa3
/ Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 6 weeks ago

|

*

|

|

|

| Added empty files for semantic checker and codegen
|

* commit 4660520

| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 6 weeks ago

|

| floating point hello world and other examples as well
|

* commit e87ca9b

|

|

|

|

Author: ThePhD <phdofthehouse@gmail.com>
Date: 6 weeks ago

example code in C for many of the hello worlds and basic

examples

Author: ThePhD <phdofthehouse@gmail .com>

|

* commit 32bb043

|

| Date: 6 weeks ago
|

98

3

That's some thick LLVM IR...

ar ||

7as | |

749 | * commit 9b966¢c6

750 | | Author: ThePhD <phdofthehouse@gmail.com>

751 | | Date: 6 weeks ago

2 |

753 || Perfect parallel_2d example

754 |

755 | * commit 6211aa9

756 | | Author: ThePhD <phdofthehouse@gmail.com>

757 | | Date: 6 weeks ago

s |

750 || It works, uguu.

760 | |

761 | * commit abdfc40

762 | | Author: ThePhD <phdofthehouse@gmail .com>

763 | | Date: 6 weeks ago

764 | |

765 | | Additional hello world and the beginnings of a fleshed
out parallel looping structure

766 | |

767 % | commit f093cla

768 |/ Author: Fatima <fatimakolil4@gmail.com>

769 | Date: 7 weeks ago

770 |

771 | edited ast

72|

773 % commit ad02f05

774 | Author: Gabrielle A Taylor <gat2118@columbia.edu>

775 | Date: 7 weeks ago

776 |

777 | Simple C threading program, sums 2d array vertically

778 |

779 % commit cd6f557

780 | Author: Gabrielle A Taylor <gat2118@columbia.edu>

781 | Date: 7 weeks ago

782 |

783 | Simple C threading program that sums 2d array

784 |

785 % commit f9ela85

786 | Author: Gabrielle A Taylor <gat2118@columbia.edu>

787 | Date: 7 weeks ago

788 |

789 | Simple C threading program

790 |

701 % commit 2e71b8e

792 | Author: Akshaan Kakar <akshaan.crackers@gmail.com>

7903 | Date: 7 weeks ago

794 |

99

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

820

836
837
838
839

840

\

|
*
|
|
|
|
|
|
|
|
|
|
|
|
*
|| /
|
|
|
*
|
|
|
|

—_— % —

Added top level file (lepix.ml) and deleted intermediate
files from lex and yacc

commit 6d409f9

Merge: 542ee64 dbf4809

Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 7 weeks ago

Merge branch 'master' of https://github.com/ThePhD/lepix
commit dbf4809
Author: fennilin <jackielin13@gmail .com>

Date: 7 weeks ago

Create 11-03—16

- %

commit 542ee64
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 7 weeks ago

Added missing tokens to parser

commit b47e043
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 7 weeks ago

All rules added to parser. No S/R or R/R conflicts. Need
to defined entry point for compiler (i.e. 'main'")

commit 980e2a3

Merge: Oecdbbf f6283ac

Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 8 weeks ago

Merge branch 'master' of https://github.com/ThePhD/lepix
Edited parser.mly

commit f6283ac

Author: ThePhD <phdofthehouse@gmail.com>

Date: 8 weeks ago
preprocessor is still eluding me with a parse error.

Need to get more info about this.

Author: ThePhD <phdofthehouse@gmail .com>

|

* commit 847cl3c

|

| Date: 8 weeks ago
|

100

841
842
843
844
845

846

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

874

876
877
878
879
880
881
882
883
884
885
886

887

smaller array size, return value at end of main function

|
|
* commit 4592035

| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 8 weeks ago

|

|

|

|

fix my dumb math

commit Oecdb5f
/ Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 8 weeks ago

Implemented parser for all expression types. No shift
reduce errors

commit b38b568
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 weeks ago

ignore intermediate files

commit 458c07e
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 weeks ago

|

*

|

|

|

|

|

*

|

|

|

| parallel example and preprocessor code
|

* commit all129c4

[\ Merge: b46b06f 2b3d9d7

| Author: ThePhD <phdofthehouse@gmail .com>
| Date: 8 weeks ago

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Merge branch 'master' into feature/preprocessor

Conflicts:
.gitignore

|

|

|

|

|

|

|

|

* commit 2b3d9d7

| Author: ThePhD <phdofthehouse@gmail.com>
| Date: 8 weeks ago

|

| update toplevel display file

|

* commit aba7a94

| Author: ThePhD <phdofthehouse@gmail.com>
|

|

|

|

Date: 8 weeks ago

updated specification source files

101

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

917

918
919
920
921
922
923

924

925
926
927
928
929
930
931

932

933
934

commit 35483aa
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 weeks ago

Toplevel PDFs we can link to.

commit 42168dd
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 weeks ago

final specificaiton before submission

commit e29b45e
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 weeks ago

update specification commit and ignore files

commit 8b811a3
Author: ThePhD <phdofthehouse@gmail .com>
Date: 8 weeks ago

update specification

commit cble9fl
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 9 weeks ago

Added appropriate rules for integer and float literals
in expr grammar in parser.mly

commit f1c2181

Merge: ab3al6f 8bee3d7

Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 9 weeks ago

Merge branch 'master' of https://github.com/ThePhD/

Merging

|
|
|
| commit a53al6f

| Author: Akshaan Kakar <akshaan.crackers@gmail .com>
| Date: 9 weeks ago

|

|

Added type, loops, conditionals and array access
grammars to parser

|
| commit b46b06f

102

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

968

969
970
971
972
973
974
975
976
977
978
979
980
981

982

Author: ThePhD <phdofthehouse@gmail.com>
Date: 8 weeks ago

update specification

.

|

|

.

|1

* | | commit 5740bf0

| | | Author: ThePhD <phdofthehouse@gmail.com>

| | | Date: 9 weeks ago

|

[| | Not quite there yet. Need to ask about it.

|

* | | commit 8e666f1

| | | Author: ThePhD <phdofthehouse@gmail.com>

| | | Date: 9 weeks ago

|

[| | the skeleton of the preprocessor for all of this stuff

|

* | | commit 3cbl3fa

| |/ Author: ThePhD <phdofthehouse@gmail.com>

[/] Date: 9 weeks ago

||

|| begin preparing the bootstrap.py

||

* | commit 8bee3d7 (origin/specification, specification)

| | Author: ThePhD <phdofthehouse@gmail.com>

| | Date: 9 weeks ago

||

|| specification updates

|

* | commit ¢3d3fb9

| | Author: ThePhD <phdofthehouse@gmail.com>

| | Date: 9 weeks ago

||

|| re—add specification to align git submodules without
breaking anything

||

* | commit 25a2e7d

| | Author: ThePhD <phdofthehouse@gmail.com>

| | Date: 9 weeks ago

||

|| remove specification source since it was bugged

||

* | commit 96a20b7

|/ Author: ThePhD <phdofthehouse@gmail .com>

| Date: 9 weeks ago

|

| update git modules

|

* commit daec995

103

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

Merge: 3d945dd d7811lca
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 9 weeks ago

Merge branch 'master' of https://github.com/ThePhD/lepix

commit d7811ca
Author: ThePhD <phdofthehouse@gmail .com>
Date: 9 weeks ago

remove old specification files

commit 604101b
Author: ThePhD <phdofthehouse@gmail .com>
Date: 9 weeks ago

make correct overleaf bridge in right place

commit 5418373

Merge: d539d38 bceadfl

Author: ThePhD <phdofthehouse@gmail .com>
Date: 9 weeks ago

Merge branch 'master' of github.com:ThePhD/lepix
Fix deletion of everything

commit d539d38

Author: ThePhD <phdofthehouse@gmail .com>

Date: 9 weeks ago

make overleaf bridge

commit 3d945dd
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 9 weeks ago

Added rules for single line comments as well as for
nesting multi—line comments

commit bcea4dfl
Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 9 weeks ago
Added regex for floating pointer literals to scanner.mll
commit 36e9aeb

Author: Akshaan Kakar <akshaan.crackers@gmail.com>
Date: 9 weeks ago

104

1031

)75

remove old lepix file name

6

|
1032 | Added augmented version of the MicroC scanner
1033 |
1034 % commit f9d771a
1035 | Author: Fatima <fatimakolil4@gmail.com>
1036 | Date: 2 months ago
1037 |
1038 | Basic tokens added to Parser
1039 |
1040 % commit 8174ed7
1041 | Author: ThePhD <phdofthehouse@gmail .com>
1042 | Date: 3 months ago
1043 |
1044 | Remove SPIRV-ILVM setup.
1045 |
1046 % commit bed07b3
1047 | Author: ThePhD <phdofthehouse@gmail .com>
1048 | Date: 3 months ago
1049 |
1050 | As it stands... we will not be doing SPIRV stuff. Since
the focus will JUST be on multicore, which can be done fine
on the CPU itself.
1051 |
1052 * commit 805e0cd
1053 | Author: ThePhD <phdofthehouse@gmail.com>
1054 | Date: 3 months ago
1055 |
1056 | This commit allows for grammar basics.
1057 |
1058 | Need to figure out how to wrap threads in LLVM IR code.
1059 |
1060 * commit de5101d
1061 | Author: ThePhD <phdofthehouse@gmail.com>
1062 | Date: 3 months ago
1063 |
1064 | SPIRV-LLVM node
1065 |
1066 * commit 83d693e
1067 | Author: ThePhD <phdofthehouse@gmail.com>
1068 | Date: 3 months ago
1069 |
1070 | Submodule LLVM <—> SPIRV
1071 |
1072 % commit 2a032f1
73 | Author: ThePhD <phdofthehouse@gmail.com>
74 | Date: 3 months ago
|
|
|

(
1(
1(
1(
1(
1(

R
~

105

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

—_—— % — % — — %

commit 31a94b4
Author: ThePhD <phdofthehouse@gmail
Date: 3 months ago

Spoopy language specification
commit 547718b
Author: ThePhD <phdofthehouse@gmail
Date: 3 months ago

Skeleton files , to get ready to
commit 2497bbd
Author: ThePhD <phdofthehouse@gmail

Date: 3 months ago

Purged.

106

. com>

. com>

work .

.com>

A

t:.ﬂq

ThePhD commented on Oct 3 Owner

VirtualBox, for VM needs:
Get VirtualBox here
Download and install, then install Ubuntu LTS 16 from here

You can create a Virtual Machine using that 16.04 LTS image. Just walk through the Virtual Box creation
wizard: you should be able to get going immediately. If you're missing the ability to make a 64-bit Ubuntu

Guest/VM, then on Windows you may need to specifically disable Hyper-V.

& ™ ThePhD self-assigned this on Oct 6

'i' "ﬂThePhD added this to the v0.1.0 - Specification milestone on Oct 8

> ™% ThePhD added the tools label on Oct 8

ThePhD commented on Oct 8 - edited Owner
Commands to execute on a fresh Virtual Box Ubuntu LTS 16 VM to have everything you need:

sudo apt install python3

sudo apt install git build-essential m4 autotools-dev autoconf pkg-config
sudo apt install ocaml menhir opam 1lvm llvm-dev llvm.3.8

sudo npm install -g ocamlBetterErraors

opam install 1lwvm

opam install 1lvm.3.8

opam llwvm depext llwvm

opam 1lvm depext 1lwvm.3.8

eval %(opam config enwv)

Some of the above OPAM commands will fail

This comment will be updated as new tools and things are deemed necessary

ThePhD commented on Oct 10 Owner

LaTeX Distrubition, for building the LaTeX sources: MikTeX
Cross-platform LaTeX editor, for working with LaTeX sources: TeX Studio

TeX Studio offers the ability to build and view changes in real-time and should work

Figure 4.3: Tools and development environment setup (https://github.

com/ThePhD/lepix/issues/7).

107

https://github.com/ThePhD/lepix/issues/7
https://github.com/ThePhD/lepix/issues/7

Chapter 5

Design

5.1 Interface

The overall interface works by simply inferring more and more information
from the previous step, in a manner like so:

Input (String) = Preprocessor [Separate Lexer, Parser| (String)
= Lexer (Token Stream) = Parser (Abstract Syntax Tree) =
Semantic Analyzer (Program Attributes, Semantic Syntax Tree)
= Code Generation (LLVM IR Module)

Each step feeds a slimmed-down step to the next parser. The diagram for
the workflow can be seen in Figure 5.1.

5.1.1 Top Level Work-flow

The way it works is simple at the highest level. Each stage produces one
piece of work and hands it off to the next. To support error-reporting, a
context argument is also provided to certain stages, geared to hold tracking
information for that stage.

Each component flows from the next, with Preprocessing being an optional
step that took in an input file and produced a source string. Because of the

108

|Lepix Compiler | +---zBbstract Syntax Tree (Raw) | +--—-> LLVM IR Code Generation |
R + R + o +
+-——>lepix.ml | scanner.mll+--->parser.mly | I codegen.ml I
| *error handlers o + | = + - + + +

I v I I v I

|
| |
| | *option handling

| | *glue between stages

| |
|

B T + B + B et +
4+-—->predriver.ml
| | *text preprocessor + | Semantic Syntax Tree
| I | et +
| e + | semast.ml +---> semant.ml |
+———»driver.ml o + |+ +
| *lex, parse, check, generate | v +——

| *=zourcet+line insertion |driver.ml: check call

|
|
|
I B et + e +
|
|
"

--—+Utility Bits

| * Error Messages: errors.ml (compiler exceptions and exit codes), messages.ml (formatting)
| * COption Helpers: options.ml

| * Missing Routines / OCaml Fill: polyfill.ml, base.ml

| * Basic IO routines: io.ml

I

Figure 5.1: Compiler and implementation organization.

way we handled input to the lexer and parser, defining an input channel
for either all the text or using an input stream such as stdin was simple to
handle.

5.1.2 Error Handling

True error handling with notices and carat diagnostics were only implemented
for the first 3 stages of the compiler: preprocessing, lexing and parsing.
Every thing else only has basic exception handlers and no context object
to propagate source information or provide carat diagnostics. Thankfully,
the test programs were small enough that it was easy to know what was
producing errors. The downside is that this means the compiler is not very
friendly to users beyond the initial parsing stages, and errors can be even
more cryptic than OCaml’s.

My primary motivation for good error handling came from OCaml’s lacking
error messages. Dozens upon dozens of ”syntax error” messages that did
not even seem to point to the right line, where let statements would chain
well with inner expressions and only error at the end of the program, even
though the error that threw off the parser in the first place was much further
up in the program. Using and definitions helped in that regard, but there

109

was still a lot of lost implementation time.

Unfortunately, our error handling again does not do a good job for the
semantic errors, which — once you get used to OCaml’s error messages — are
actually quite good. This would take a lot more time to do appropriately, so it
is unfortunate that I did not get to do more of it. I really liked implementing
carat diagnostics and good error messages with line and character information,
and I think it helped me fix the parser and lexer much faster and iterate
over it better.

5.2 Division of Labor

I wrote essentially the entire implementation, with little kept from older
commits. At one point, Fatima Koly and Akshaan Kakar’s for the parser
and lexer remained.

110

Chapter 6

Testing and Continuous
Integration

6.1 Test Code

Some of the more interesting test cases include one to include a preprocessing
directive (a temporary replacement for a decent module system), bottom-up
type derivation for return values from functions, and a demonstration of
overloading. The test cases are very involved and often nest elements to reveal
bugs or other inconsistencies in the code generator (for example, properly
implementing Llvm.build_load only in conditions where the type being asked
for is a form of pointer). Most of these tests also had a failure case on the
other side of it as well, especially in the case of overloading and bad literals.
There are still bugs with expressions not quite being checked when assigned
back to the original for proper convertibility, but I managed to cover a small
but good area of code for working on this by myself.

111

import lib

1
2
3 #import “imported.lepix”
!

5 fun main () : int {

6 var f : int = x.d();
7 lib . print_n(f);

8 return O0;

Listing 6.1: preprocess.lepix
1 fun two () {
2 return 2;
3}
4

5 fun main () {
6 return two();

T}
Listing 6.2: auto.lepix
import lib

namespace n.s {

oA W N e

var global : int = 8§;

!

3

o namespace n {

10 namespace s {

11 var stuff : float = 3.5;

12 }
13}

15 fun s () : int {

16 return 2;

17}

18

19 fun s (x : int) : int {

20 return x + 2;

21 }

22

23 fun main () : int {

24 var local : int = n.s.global;
25 var svalue : int = s();
26 lib.print_n(local);

27 lib . print_n(svalue);

28 lib . print_n(s(2));

29 lib .print_n(n.s.global);
30 lib.print_n(n.s.stuff);

112

return svalue;

Listing 6.3: overloads.lepix

6.2 Test Automation

6.2.1 Test Suite

Our test suite is a Python 3 Unit Test! suite, using the subprocess module to
write code that called the lepix compiler, lepixc. In the case of return code
0 (success), it would then call LLVM’s IR interpeter 1li with the —c flag to
run the program.

6.2.2 Online Automation

This was a decent bit of automation, but to further enhance our capability to
know what was broken and what was fixed, I implemented Travis Continuous-
Integration (travis-ci) 2 support through a travis.yml file in the top level our
repository. Travis-ci is free for any publicly available, open-source github
repository (the code is MIT Licensed).

6.2.3 Online Automation Tools

Docker came in handy when travis-ci had not updated their own pool of
images for a very long time. We configured travis-ci to run all our commands
in a small docker container using the latest ubuntu, ensuring that we had the
proper OPAM, OCaml, and other development tools we needed. This was
extremely helpful, and if anyone has problems in the future docker is a good
way to get around old and un-updated environments. It took quite a few
commits to get it working (see the testing/travis-ci branch and the plenty
of frustrated commits trying to work with docker, bash and everything else
to behave properly), but when it worked it was quite helpful for catching

Lunittest is built into the python standard library, ensuring less installation steps to
get going: https://docs.python.org/3/library/unittest.html.
2Qur builds are here: https://travis-ci.org/ThePhD/lepix/builds.

113

https://docs.python.org/3/library/unittest.html
https://travis-ci.org/ThePhD/lepix/builds

any bad changes and keeping a log of things that went wrong so it could be
looked at later to fix problems.

114

1
2
3
1
5

dist: trusty
sudo: required

language: cpp

services:
— docker

before install:

— docker pull ubuntu:latest

— docker run —v${PWD}:/ci_repo —d —mname lepix_ci ubuntu:latest
sleep infinity

— docker exec lepix ci bash —e —v —c "apt—get update”

— docker exec lepix_ci bash —e —v —c 7apt install —y git python3
build—essential m4 autotools—dev autoconf pkg—config ocaml
menhir opam llvm llvm—dev llvm.3.8”

— docker exec lepix_ci bash —e —v —c "opam init —y”

— docker exec lepix c¢i bash —e —v —c ”opam install —y core
depext llvm .3.87

script:

— docker exec lepix_ci bash —e —v —c¢ ”source ci_repo/ci/travis.
sh”

after script:
— docker stop lepix_ ci
— docker rm lepix ci

notifications:
email :

; on_success: change

on_failure: change

Listing 6.4: .travis.yml

6.3 Division of Labor

I wrote a large number of examples and also wrote tests, implemented
travis-ci integration, and wrote the python bootstrapper and test suite code.

115

Chapter 7

Post-Mortem and Lessons
Learned

This is going to be the most in-depth section because it is here where I can
explain primarily why I think the group did not meet its target and why I felt
like splitting off would be more worth it than staying with the team. While
I individually put in a lot of effort and achieved some very good technical
goals, the divide with my group near the end was still a problem and resulted
in a lot of codegen for constructs successfully put into the parser and AST
to not be implemented.

7.1 Talk to your Teammates, Early

When I experienced problems with my teammates not hitting deadlines,
I at first was confused. I did not know why they were not delivering the
portions of code they said they would deliver on the deadlines they imposed
on themselves, and at certain points when they did deliver I had to constantly
revise what they had done. Here are some examples of how I did not optimally
handle bad situations:

For one, the Parser and Lexer for this LéPiX implementation look nothing
like the one committed and declared to our advisor as ”complete”. It did
not parse our language and there were obvious holes in its syntax: for loops

116

variable initialization did not work, initializer lists for control flow did not
work, parallel block initializers were not considered, the parallel for syntax
we changed for a parallel block were not changed, namespaces were not
recognized and qualified identifiers did not exist.

Rather than tell my teammates what was wrong and what needed to be
fix and divide the work, I instead implemented all of the things mentioned
above, committed them, and then moved on. I felt that if my teammates
would not run the code against the example LéPiX code we had to see if it
works properly, that they were not doing the bare minimum to even know if
what they wrote was correct or good. I had to learn everything, put it all
together under pressure, and then fix it in time for the next Milestone.

7.2 Manage Expectations, Know What You Want

One of the next major issues is that team members had differing expectations
about the quality of work. In particular, I was expecting a very thorough,
consistent applied effort from my team and not things done a few weeks after
the Professor, TA, and others had urged us needed to be done long before
we had begun to look at it.

On the good side, the Language Reference Manual was done on-time with
participation from everyone. It was the one part of the project where — even
if we were working up to the deadline — everyone participated, took a section,
made their work clear and actually did their work during the times they said
they would.

Unfortunately, this flopped for actual implementation. One of our group
members held onto the Semantic AST for nearly five weeks of time, refusing
to commit code when asked and spinning down the time of myself and other
group mates eager to get started on Code Generation. The Lexer and Parser
were not up to parsing our language. Many disconnects appeared in how
the implementation was done, which was entirely strange because we had
specifically said we would wait for the Language Reference Manual to be
done to begin working so everyone would have a very clear goal and standard.

Talking to your teammates about what exactly is expected, even with a
document like the Language Reference Manual, would be helpful in the
future. You and your teammates should be able to look at previous projects,

117

and see

1. To achieve X feature it took Y lines of code.

2. Is that feasible if you give yourself Z amount of time to write Y lines
with W people?

3. What quality of implementation do you want? Proof of concept? Fully
vetted with compiler errors?

As an example, I wanted full source code information and carat diagnostics
throughout the program. I only managed to add that to the first half of
the project, and in my lack of help and time for the second half did not
implement it for Semantic AST and Codegen errors.

Other groups would consider this silly and not bother with it at all. Your
team should agree on just how much effort and polish your implementation
deserves, and have a frank discussion about whether people will do that
work.

If people impose deadlines on themselves and do not mean them, talk to them
immediately about it rather than just implementing it yourself in frustration.
Only when they do not respond to your inquiries do you turn to outside
sources and begin to re-evaluate what can and cannot be done with your
time.

7.3 Start Confrontations

When people in my group slipped deadlines, I vented my frustrations else-
where while implementing the code just in time for deadlines or pulling
together LaTeX documents and editing them furiously. I confronted my team
only once very early in September and CCed the professor and a TA with
an e-mail, where I demanded they never put me in a situation similar to the
one where I wrote the entire LéPiX proposal by myself and then have them
— only an hour or so before the deadline — tell me grammatical edits that I
needed to fix.

After that, I did not expect to have to send them anymore particularly
strongly-worded e-mails. They had agreed not to do something like that

118

again and indeed everyone participated in the Language Reference Manual.
We had communication over GroupMe about why the AST and Semantic
AST were not being done on time, but I had not made it clear that their
lack of implementation was unacceptable: I only patched it over in the days
before the deadline after I had grown tired of waiting and needed to have
implementation work done to do my part.

You must have confrontations. You must butt heads. Do this early, and
do it often when a group member does not hand in their work. Growing
frustrated in silence while implementing things you would have expected
your teammates to do will only wear you out and ultimately lead you to a
place where you will want to discard anything your team does, good or bad,
and not take their suggestions in because you feel like they will just let you
down.

119

Chapter 8

Appendix

8.1 Source Code Listing

1 .PHONY: default

> default: all;

3

4 # Clean intermediate files

clean

6 ocamlbuild —use—menhir —build—dir obj —clean

7rm —rf lepixc lepix

s rm —rf scanner.ml parser.ml parser.mli

o rm —rf prescanner.ml preparser.ml preparser.mli

10 rm —rf *.cmx *.cmi *.cmo *.cmx *.0

11 rm —rf parser.automaton preparser.automaton

12 rm —rf parser.output preparser.output parser.conflicts preparser
.conflicts

13

14 # Build top level lepix executable

15 lepix

16 ocamlbuild —use—ocamlfind —use—menhir —tag thread —pkgs core,
llvm ,llvm . analysis —build—dir obj lepix.native

17 ¢cp —f obj/lepix.native lepixc

18

19 install

cp lepixc /usr/local/bin/lepixc

uninstall
rm —f /usr/local/bin/lepixc

NONN NN N
[STE O U R

.PHONY: all

120

N

18

=~

~

NN NN NN
‘ ® [N

all : lepix

Listing 8.1: source/Makefile
(¥ LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(+ In Javascript, there's a concept called 'Polyfill '. It's
the concept that

stuff that's missing can be filled over by libraries
implemented by regular people

because the committee that oversees Javascript can't just
decide to

make certain implementations and other things standard.

This is that thing, for OCrapml. x)

(* Algorithm x)
let foldi f value start index len =

121

30 let end index = start index + len — 1 in

31 if start index >= end index then value else
32 let accumulated = ref value

33 in

34 for i = start _index to end index do

35 accumulated := (f !accumulated i)

36 done;

37 laccumulated

30 let foldi_ to f wvalue start index end index =
10 foldi f value start_index (end_ index — start_index)

12 (% Integer x)

13 let rec powi n = function

14 | 0 —> 1

15 | 1 —>n

16 | x —=>mn % (powin x — 1)

15 let int _of bool b = if b then 1 else 0

50 let int of string base b s =
51 let len = (String.length s) in

52 let acc num i = let ¢ = s.[i] in

53 let v.= if ¢>= "'0" || ¢ <= '9' then

54 int of char ¢ — int of char '0'

55 else

56 if ¢ >= "A" || ¢ <= "'Z' then

57 int of char ¢ — int_of char 'A' + 10
58 else

59 if ¢ >= 'a' || ¢ <= "z' then

60 int _of char ¢ — int_of char '0' + 10
61 else 0

62 and place = len — 1 — i

63 in

64 num + (v % (powi b place))

65 in

66 foldi acc 0 0 len

67

6s (% Num x)

69

70 exception BadBase of string

71 exception DigitGreaterThanBase of string

72

73 let num of string base part b s =

74 if b> 36 || b< 1 then raise(BadBase "num_of string base

122

base cannot be greater than 36 or less than 17) else
75 let n0 = Num.num_of int 0 in
76 let len = (String.length s) in
77 if len < 1 then n0 else
78 let (mid, starter) = try ((String.index s ".'), 1)
with ~ —> (len — 1, 0)
79 and nb = Num.num_ of int b

80 in

81 let acc (n, skipval) i = let ¢ = s.[i] in

82 if ¢ = "'." then (n, skipval — 1) else

83 let v = if ¢ >= '0"' & ¢ <= '9' then

84 (int_of char ¢) — (int_of char '0')

85 else

86 if ¢ >= "A" & ¢ <= 'Z' then

87 (int_of char ¢) — (int_of char 'A') + 10

88 else

89 if ¢ >= 'a' & ¢ <= "z' then

90 int_of_char ¢ — (int_of_char 'a') + 10

91 else 0

92 and place = mid — i — skipval

93 in

94 if v > b then raise(DigitGreaterThanBase (”
num_of string base: digit '” ° (String.make 1 ¢) =~ 7' (7

(string of int v) ° 7) is higher than what base '”7

(string_of _int b) ~ 7' can handle”)) else

95 let nv = Num.num_of int v

96 and nplace = Num.num of int place

97 in

98 (Num.add _num n (Num.mult num nv (Num.power num nb
nplace)), skipval)

99 in

100 let (n,) = foldi acc (n0, starter) 0 len in

101 n

102

103 let num_of string base b s =

104 num_of string base part b s

105

106 let num of string s =

107 let slen = String.length s in

108 try

109 let eidx = String.index s 'e' in

110 if eidx < 1 then raise(Not_found);

111 let eidxpl = (eidx + 1) in

112 let nval = num_of string base part 10 (String.sub s 0

eidx)

123

113 and eval = if eidxpl < slen then
num_of string base part 10 (String.sub s eidxpl (slen —
eidxpl)) else (Num.num_of int 0)

114 n

115 Num.mult_num nval (Num.power_num (Num.num_of int 10)
eval)

116 with

117 | Not_found —> num_of_ string_ base_part 10 s

118

119 (* Char *)

120 let is whitespace = function

121 ‘ "' —> true

122 ‘ '\t' —> true

123 ‘ '\n’ —> true

124 | "\r' — true

125 | _ — false

127 (% String)
125 let string to list s =

129 let 1 = ref [] in
130 let acc ¢ =

131 l := ¢ :: 115 ()
132 in

133 String.iter acc s;
134 List.rev !l

136 let iteri f start index len =

137 let end index = start index + len — 1 in
138 if start index < end index then

139 for i = start index to end index do

140 (f 1)

141 done

143 type split_option =

144 | RemoveDelimeter

145 | KeepDelimeter

146

a7 let string split with v s opt =
148 let e = String.length s

149 and vlen = String.length v

150 in

151 if vlen >= e then [s] else

152 let forward search start =

153 let acc found idx =

154 found && (s.[start + idx] = v.[idx])

124

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183

185
186
187
188
189

190

191
192

193

Bow N =

Permission

in

foldi acc true 1 (vlen — 1)

in

let add sub len slist start =
if len < 1 then (start, slist) else
let fresh = (String.sub s start len)

and last = start + len + vlen in
begin match opt with
| RemoveDelimeter —> (last, fresh :: slist)
| KeepDelimeter —>
let slist = v :: slist in
(last, fresh :: slist)
end
in

let acc (last, slist) start =

if (start < last) then
if (s.[start] = v.[0]

(last , slist) else
) then

if (forward search start) then

let len = start — last in
(add_sub len slist last)
else
(last , slist)
else
if (start = (e — 1)) then
let len = e — last in
(add_sub len slist last)
else

(last , slist)
in
let (_, slist) = (foldi
(* Return complete split
List .rev slist

let string starts with str

acc (0, []) 0 e) in

list *)

pre =

let prelen = (String.length pre) in
str) && pre = (String.sub str 0

prelen <= (String.length
prelen)

let string_ split v s =

string split_with v s RemoveDelimeter

../source/polyfill.ml

(x LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

is hereby granted, free of charge,

125

to any person

WoWw W W oW NN N NN N NN NN
TR W N = O © 00 N0 U R W N = O

36

obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHEIHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(* Base types and routines. x)

type token_source = {
token source name : string;
token number : int;
token line number : int;
token line start : int;
token column range : int x int;
token character range : int % int;
}
type target =
| Pipe

| File of string

let target to string = function
| Pipe —> 7 pipe”
| File(s) —> 7file: 7 " s

126

let target to_ pipe_ string

| Pipe —> if b then "stdin” else ”"stdout”
| File(s) — 7 file: s
type action =
| Help
| Preprocess
| Tokens
| Ast
| Semantic
| Llvm
| Compile
let action to int = function
| Help — -1
| Preprocess —> 0
| Tokens —> 1
| Ast — 10
| Semantic —> 100
| Llvim —> 1000
| Compile —> 10000
let entry point name = "main”
(* Core options =)
let default integral bit width = 32
let default floating bit width = 64
(x Error message helpers x)
let line_ of source src token info
let (absb, abse) = token_info.token character range
and linestart = token info.token line start
in
let (lineend, _) =
let f (endindex, should_skip) idx =
let ¢ = src.[idx] in
let skip_ this = ¢ = "\n' in
if should_skip || skip_this then

(endindex , true)
else

i b = match 1 with

(endindex + 1, false)

in

127

84

95
96
97
98
99
100
101

102

103
104
105
106

107

108
109
110

111

112

113

115

116

118

Polyfill.foldi f (linestart , false) linestart ((
String.length src) — linestart)

in
let srcline = String.sub src linestart (max 0 (lineend —
linestart — 1)) in
let srclinelen = String.length srcline in
let (srcindent,) =
let f (s, should_ skip) idx =
let ¢ = srcline.[idx] in
let nws = not (Polyfill.is_whitespace ¢) in
if should_skip || nws then
(s, false)
else
(s © (String.make 1 ¢), true)
in
Polyfill.foldi f (7”7, false) 0 srclinelen
in
let indentlen = String.length srcindent
and tokenlen = lineend — absb
in
(srcline, srcindent, (max (srclinelen — indentlen —

tokenlen) 0))

let brace tabulate str tabs =
let len = (String.length str) in
let lines = Polyfill.string_ split_with ”\n” str Polyfill.
KeepDelimeter in
let lineslen = (List.length lines) in
let buf = Buffer.create (len + (lineslen % 4)) in
let acc (buf, t) line =
let tmod = 0 — (Polyfill.int of bool (String.contains
line '}')) in
let t =t + tmod in
Buffer.add string buf (String.make t '\t'); Buffer.
add string buf line;
let t =t 4+ (Polyfill.int of bool (String.contains
line '{')) in
(buf, t)
in
let (buf, _) = List.fold_left acc (buf, tabs) lines in
Buffer.contents buf

../source/base.ml
(* LePiX Language Compiler Implementation

Copyright (c¢) 2016— ThePhD

128

W oW W W W W NN N NN NNNNN
GRA W R R O © ® N O U A W N = O

w

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense , and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT'. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. x)

(* Options / argument parser)

type option =
| Dash of string
| DoubleDash of string
| Argument of int * string

type options_context = {
mutable options help : string —> string;
}

let read options ocontext sys argv =
let argc = Array.length sys argv — 1 in
(* Skip first argument one (argv 0 is the path
of the exec on pretty much all systems) x)
let argv = (Array.sub sys_argv 1 argc)

129

69

-~
[I

PRI B B |

wt

and
and
and
and
and
and
in

action

= ref Base.Help
verbose = ref false
input = ref Base.Pipe

output = ref Base.Pipe
specified = ref []
seen_ stdin = ref false

(x Our various options x)
let update action a =
specified
if (Base.action to_int l!action) < (Base.
action_to_int a) then

= a :: !specified;

action := a;
in
let options = |
(1, ”h”, "help”, ”print the help message”,
fun _ _ —> (update_action(Base.Help))
);
(1, ”p”, "preprocess”, "Preprocess and display source”
bl
fun _ _ —> (update_action(Base.Preprocess))
)
(1, 71”7, 7input”?, ?Take input from standard in (
default: stdin)”,
fun _ _ —> (input := Base.Pipe; seen_stdin := true)
)
(2, 70”7, 7output”, ”Set the output file (default:
stdout)” |
fun _ o —> (output := Base.File(o))
);
(1, 7t”, "tokens”, "Print the stream of tokens”,
fun = —> (update_action(Base.Tokens))
)
(1, 7a”, 7ast”, ?Print the parsed Program”,
fun —> (update_action (Base.Ast))

(1, 7s7,
fun

)

(1,717,
fun

)

(17 ”C”’

output the
fun

”semantic”, "Print the Semantic Program”

_ —> (update_action(Base.Semantic))

"llvim”, 7 Print the generated LLVM code”,
—> (update_action(Base.Llvm))

7compile” , "Compile the desired input and
final LLVM” |

_ —> (update_action(Base.Compile))

130

77)

78 (1, ”v”, ?verbose”, "Be as explicit as possible with
all steps”,

79 fun = —> (verbose := true)

80)

81 }

82 and position_ option arg index positional index arg =

83 if Sys.file_exists arg then

84 input := Base.File(arg)

85 else

86 raise (Errors.OptionFileNotFound (arg))

87 in

88 let help tabulation =

89 let value text = "<value>" in

90 let value text len = String.length value text in

91 let longest option =

92 let acc len o = match o with

93 | (sz, _, long, ,) —

94 let newlen = (String.length long)

95 4+ if sz = 2 then 1 4+ value text len else 0
96 in

97 if newlen > len then newlen else len

98 in

99 let 1 =14 (List.fold left acc 1 options) in

100 if 1 < value text len then value text len else 1

101 in

102 let concat options t =

103 let builder s o = match o with

104 | (sz, short, long, desc, _) —>

105 let long len = String.length long in

106 let spacing_size = longest_option — long_ len — (
if sz = 2 then 1 + value_text_len else 0) in

107 let spacing_string = (String.make spacing_ size '
") in

108

109 t \Il” - t Ty " ShOrt

110 ©P\t—" " long * (if sz =1 then 7”7 else)

value_text)
111 " spacing_string

112 " desc

113 in

114 (List.fold _left builder ”” options)

115 in

116 let (_, input_short, input_long, ,) = List.nth

options 2 in

131

117

118

119

136

138
139
140
141
142

143

146

148

149

150

let msg = "Help:”
© 7\n” ° tabulation " "lepix [options] filename
filenames ...]”
© 7’\n” ° tabulation ~ 7\t” ~ "filename | filenames
can have one option —” ° input short =~ 7 or —7 °
input_ long
" 7’\n” ° tabulation "~ ”options:”
(concat_options (tabulation = 7"\t”))
in
msg
in
ocontext.options help <— help;
(*+ Exit early if possible x)
if arge < 1 then
(linput, !output, !action, !specified, !verbose)
else

let to_option idx arg =
let arglen = String.length arg in
match arg with

| _ when Polyfill.string starts_with arg "—7 —>
DoubleDash ((String.sub arg 2 (arglen — 2)))
| _ when Polyfill.string starts_ with arg ”"—” —> Dash

((String.sub arg 1 (arglen — 1)))
| _ —> Argument(idx, arg)

in
(¥ Convert all arguments to the Option type first x)
let options argv = Array.mapi to_ option argv in

(* Function for each argument x)
let f (index, positional index, skip_next) option_arg =
if skip_next then (1 + index, positional index, false)
else
let execute on_match sub_option (opt_failure,
should_block) opt_string pred = match opt_failure with
(¥ There is some failure, so just propogate it
through x)
| Some(x) —> (opt_failure, should block)
(¥ There is no failure, so now work with the list x)
| None —> begin match List.filter pred options with
(* We use filter instead of find because find is
dumb and throws an
exception instead of just returning an optional
because
whoever designed the OCaml standard library is an

132

152

153

154
155

156

175
176
177
178
179
180
181
182

183

184

186

187

absolute
bell end. x)
| (1, ., , , f) :: tail = (x Only needs 1
argument)
(f opt_string ”77);
(opt_failure, should_block)
| (2, ., , , f) :: tail = (x Needs 2 arguments
, look ahead by 1 x)
if (index + 1) >= argc then
raise (Errors. MissingOption (opt_string));
let nextarg = (options_argv.(l + index)) in
let = = match nextarg with
| Argument(idx, s) —> (f opt_string s)
| _ —> raise(Errors.BadOption(opt_string))
in
(opt_failure, true)
| _ —> (% Unhandled case: return new failure string
*
)
(Some opt_string, should_block)
end
and on failure dashes opt arglist arg =
let msg = dashes ~ opt
“ if (List.length arglist) > 1 then 7 (in

dashes "~ arg ~ 7)7 else "7
in
raise (Errors.BadOption (msg))
in
let (should_ skip next, was_positional) = match

option_arg with
| Dash(arg) —>
(¥ if it has a dash only x)
(* each letter can be its own thing x)
let perletter (opt_failure, should break) c =
let opt_string = (String.make 1 ¢) in
let short_pred (_, short, _, _,) =
short = opt string
in
execute_on_match_sub_option (opt_failure,
should break) opt_ string short_pred
in
(¥ look at every character. If there's 1 match
among them, go crazy x)
let arglist = (Polyfill.string_ to_list arg) in
let (opt_failure, causes_skip) = (List.fold left
perletter (Nomne, false) arglist) in

133

188 begin match opt failure with

189 | None —>

190 (causes_skip, 0)

191 | Some(opt) —> let _ = (on_failure "—" opt
arglist arg) in

192 (causes_skip, 0)

193 end

194 | DoubleDash(arg) —>

195 (¥ if it has a double dash... x)

196 (* each comma—delimeted word can be its own option

*)

197 let perword (opt_failure, problems) opt_string =

198 let long pred (_, _, long, ,) =

199 long = opt_string

200 in

201 execute_on_match_sub_option (opt_failure,
problems) opt_string long pred

202 in

203 (# look at word character. If there's 1 match among
them, go crazy x)

204 let arglist = Polyfill.string split 7 ,” arg in

205 let (opt_failure, causes_skip) = (List.fold _left

perword (None, false) arglist) in
206 begin match opt_failure with

207 | None —>
208 (causes_skip, 0)
209 | Some(opt) —> let _ = (on_failure "—7 opt

arglist arg) in
210 (causes_skip, 0)

211 end
212 (¥ otherwise, it's just a positional argument x)
213 | Argument(idx, arg) —>

214 (position_option index positional index arg);
215 (skip_next, 1)

216 in
217 (1 + index, positional_ index + was_positional
should _skip_next)
218 in
219 (* Iterate over the arguments x)
220 let _ = Array.fold_left f (0, 0, false) options_argv in
221 (* Return tuple of input, output, action x)
222 ('input, !output, laction, !specified, !verbose)

../source/options.ml
1 (* LePiX Language Compiler Implementation

> Copyright (c) 2016— ThePhD

134

-

NN ONONN NN
aoR W N

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense , and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT'. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. x)

(¥ Message formatters and helpers. x)

let preprocessing error pcontext =
let (t, info) = pcontext.Predriver.token in
let (source_line, source_indentation ,
columns_after indent) =
(Base.line_of_ source pcontext.Predriver.source_code

info)

in

let column_ range = info.Base.token column range in

let (column_text, is_columns_ wide) = Representation.
token range to string column range in

let msg = "Preprocessing Error in 7 ° pcontext.Predriver.
source_name ~ 7:7

“ 7?\n” * "\t” ° ”"Unrecognizable parse pattern at token #’

135

(string_ of int pcontext.Predriver.token_ count)

7. [id 7 string_ of int info.Base.token number 7
Representation . preparser_token_to_string t ~ 7]”
©7\n” ° "\t” ° 7Line: 7 " string_of_int info.Base.

token line number

"\n” © "\t” ° (if is_columns_wide then ”Columns:
else 7Column: 7) ° column_text

~ 77\n77

“ ”’\n” ° source_line

© ”\n” ° source_indentation "~ (String.make
columns_after indent ' ') © 7777

in

msg

let preprocessing lexer error pcontext core msg c s e =
let (t, info) = pcontext.Predriver.token in
let (source_line, source_indentation ,
columns_after indent) =
(Base.line_of_source pcontext.Predriver.source_code

info)

in

let column range = info.Base.token column range in

let (column_text, is_columns_ wide) = Representation.
token_ range_to_string column_range in

let msg = "Preprocessing Lexing Error in 7 ~ pcontext.

» oL

Predriver.source name
©7\n” ° "\t” ° core_msg ~ 7 at token#” ~ (string_of_ int
pcontext.Predriver.token count)

7. [id 7 string_ of int info.Base.token number 77
Representation . preparser_token_to_string t ~ 7]”
©7\n” ° "\t” ° 7Line: 7 " string_of_int info.Base.

token line number
©’\n” © "\t” ° (if is_columns_wide then ”Columns:
else 7Column: 7) ° column_text
~ m\n”
“ 7’\n” ° source_line
© ”\n” ° source_indentation "~ (String.make
columns_after indent ' ') © 77777
in
msg
let lexer error context core msg ¢ s e =
let abspos = s.Lexing.pos cnum in

let endabspos = e.Lexing.pos cnum in
let relpos = 1 4+ abspos — s.Lexing.pos_ bol in

136

66

69

80

81

82

83

84

let endrelpos = 1 4+ endabspos — e.Lexing.pos bol in

let (column_text, is_columns_ wide) = Representation.
token_ range_to_string (relpos, endrelpos) in

let msg = ”Lexing Error in 7 ° context.Driver.source name
PO

©7\n” * "\t” ° core_msg ~ 7 at character: 7 ° ¢

S ’\n” " 7\t” ° 7Line: 7 " string of int s.Lexing.
pos_ lnum

S ’\n” C "\t” ° (if is_columns_ wide then ”Columns:
else "Column: 7) "~ column_text

in

msg

let parser error context core msg =
let (t, info) = context.Driver.token in
let (source_line, source_indentation
columns_after indent) =
(Base.line_ of source context.Driver.source_ code info)
in
let column range = info.Base.token column range in
let (column_text, is_columns_wide) = Representation.
token range to string column range in
let msg = "Parsing Error in 7 ° context.Driver.
source_name ~ 7:7
©7\n” ° "\t” " core_msg ~ 7 at token #’ ~ (
string_of_int context.Driver.token_ count)

7. [id 7 © string_of int info.Base.token number ”
Representation.parser_token_to_string t =~ 7]”
~ w\nw ~ ',v\tw ~ ”Line: 7 ~ Strlngiofilnt infO,Base_

token line number

S ’\n” C "\t” ° (if is_columns_ wide then ”Columns:

else "Column: 7) ° column_text

© 7\n”

©~ 7’\n” ° source_line

"~ ”?\n” ° source_indentation * (String.make

columns_after _indent " ') "~ 77777

in

msg

../source/message.ml

(x LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person

obtaining a copy of this
software and associated documentation files (the ”Software”

137

16

NN N

s W

W oW W NN NNN NN
N - o © 00 ~ [} w

@w

34

38

), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”"AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(# Top—level of the LePiX compiler: scan & parse the input,
check the resulting AST, generate LLVM IR, and dump the
module x)

let =
let input = ref Base.Pipe in
let output = ref Base.Pipe in

let action = ref Base.Compile in
let verbose = ref false in

let specified = ref [] in

let context = {

Driver.source name = :
Driver.source_code = "7
Driver.original source_ code = 77

Driver.token count = 0;
Driver.token = (Parser .EOF,
{ Base.token_source_name = ””; Base.token_number = 0;
Base.token line number = 0; Base.token line start =
0;
Base.token_column_range = (0, 0); Base.

138

49

token_character_range = (0, 0) }
)
and pcontext = {
Predriver.source name = 7”7
Predriver.source code = "7 ;
Predriver.original source_ code =

)

” N

Predriver.token count = 0;
Predriver.token = (Preparser .EOF,
{ Base.token_source_name = ””; Base.token_number = 0;
Base.token line number = 0; Base.token line start =
0;
Base.token_column_range = (0, 0); Base.

token_character_range = (0, 0) }
)
o
in
let ocontext = {
Options.options_help = fun (s) —> (7”7);
} in

(+ Call options Parser for Driver x)

let =
try
let (i, o, a, s, v) = (Options.read_options ocontext
Sys.argv) in
input := 1i;
output := o0;
action := a;
specified := s;
verbose := v
with
| err — let _ = match err with
| Errors.BadOption(s) —>
let msg = ”Options Error:”
©7\n” ° "\t” ° ?”Unrecognized option: 7 " s

© "\n” ° (ocontext.Options.options help "\t”) in
prerr endline msg
| Errors.NoOption —>
let msg = ”Options Error:”
©’\n” * 7\t” " ”No inputs or options specified”
" 7\n” ° (ocontext.Options.options help "\t”) in
prerr endline msg
| Errors.MissingOption(o) —>
let msg = ”Options Error:”
S 7\n” * "\t” * ?Flag 7 " o " 7 mneeds an additional

139

90
91
92
93

94

96

97

98
99

100

101
102
103
104
105
106
107
108
109

110

112
113
114

115

116

argument after it that is not dashed”
" 7\n” ° (ocontext.Options.options_ help "\t”) in
prerr _endline msg
| Errors.OptionFileNotFound(f) —>
let msg = ”Options Error:”
©7\n” " "\t” ° 7"File 7 © f ° 7 was not found”
" 7\n” ° (ocontext.Options.options_ help "\t”) in
prerr _endline msg
| err —>
let msg = "Unknown Error during Option parsing:”
© ?\n” *~ "\t” ° ”"Contact the compiler vendor for
more details and possibly include source code, or try
simplifying the program”
in
prerr endline msg;
raise (err)
in
(* Exit if arguments are wrong x*)
ignore((exit Errors.option_error_exit_code))
in
(* Perform actual lexing and parsing using the Driver

here x)
try
let allactions = !specified in
let source_name = (Base.target_ to_pipe_string !input

true) in
let output_to_target (s) = match !output with
| Base.Pipe —> (print_endline s)
| Base.File(f) —> (Io.write_ file text s f)
in
let print predicate b =
fun v..> ((v=>b)
in
let print_help () =
let msg = (ocontext.Options.options_help "\t”) in
print endline msg
in
if laction = Base.Help then begin
print_help ()
end else
(¥ Since we do the actions in these functions multiple
times ,
We refactor them out here to make our lives easier
while we tweak
stuff x)

140

135

136

138
139

140

let get_source () =
let pre source text = match !input with
| Base.Pipe —> Jo.read_text stdin
| Base.File(f) — (Io.read_ file text f)
in
let source text = Predriver.pre process pcontext !
input pre_ source text in
context.Driver.source name <— source name;
context.Driver.original source code <—
pre source text;
context.Driver.source code <— source text;
source text
in
let dump_ tokens f tokenstream =
if (List.exists (print_predicate Base.Tokens)
allactions) then f(Representation.
parser_token list_ to_string tokenstream)
and dump_ast f program =
if (List.exists (print_ predicate Base.Ast)
allactions) then f(Representation.string of_ program
program)
and dump semantic f semanticprogram =
if (List.exists (print_predicate Base.Semantic)
allactions) then f(Representation.string of s_program
semanticprogram)
and dump module f m =
f(Llvin.string_of_ llmodule m)
in
let = match !action with
| Base.Help —> print_help ()
| Base.Preprocess —>
let source_text = get_source () in
outputitoitarget(source_text)
| Base.Tokens —>

let source_ text = get source () in
let lexbuf = Lexing.from string source text in
let tokenstream = Driver.lex source name lexbuf in

(dump_tokens output_to_target tokenstream)
| Base.Ast —>

let source_ text = get source () in

let lexbuf = Lexing.from string source text in

let tokenstream = Driver.lex source name lexbuf in
(dump_tokens print_endline tokenstream);

let program = Driver.parse context tokenstream in

(dump_ast output_to_ target program)

141

189
190
191
192
193

194

196
197

198

| Base.Semantic —>

let source_ text = get source () in

let lexbuf = Lexing.from string source text in

let tokenstream = Driver.lex source name lexbuf in
(dump_tokens print_endline tokenstream);

let program = Driver.parse context tokenstream in
(dump_ast print_endline program);

let semanticprogram = Driver.analyze program in

(dump_semantic output_to_target semanticprogram)
| Base.Llvm —>

let source_text = get_source () in

let lexbuf = Lexing.from string source text in

let tokenstream = Driver.lex source name lexbuf in
(dump_tokens print_endline tokenstream);

let program = Driver.parse context tokenstream in
(dump_ast print_endline program);

let semanticprogram = Driver.analyze program in

(dump_semantic print_endline semanticprogram);
let m = Codegen. generate semanticprogram in
if !verbose then (dump_module print_endline m);
(dump_module output_to_target m)

| Base.Compile —

let source_text = get_source () in

let lexbuf = Lexing.from string source text in

let tokenstream = Driver.lex source name lexbuf in
(dump_tokens print_endline tokenstream);

let program = Driver.parse context tokenstream in
(dump_ast print_endline program);

let semanticprogram = Driver.analyze program in

(dump_semantic print_endline semanticprogram);
let m = Codegen. generate semanticprogram in
Llvm analysis.assert valid module m;

(dump_module output_to_target m)

| err — let _ = match err with
(* Preprocessor—Specific Errors x)
(+ Preprocessing Parser Errors =)
| Preparser.Error —>
let msg = Message. preprocessing error pcontext in
prerr endline msg
| Errors.PreUnknownCharacter(¢, (s, e)) —>
let msg = Message. preprocessing lexer error
pcontext " Unrecognized character in program” c¢ s e in

142

199
200
201
202
203

204

prerr endline msg

(# General Compiler Errors x)
(¥ Lexer Errors x)
| Errors.UnknownCharacter(¢, (s, e)) —>
let msg = Message.lexer error context ”Unrecognized
character in program” c s e in
prerr _endline msg

| Errors.BadNumericLiteral(¢, (s, e)) —
let msg = Message.lexer error context ”Bad
character in numeric literal” ¢ s e in
prerr _endline msg

(* Parser Errors x)
| Parser.Error
| Parsing.Parse error —>
let msg = Message. parser_error context
Unrecognizable parse pattern” in
prerr endline msg
| Errors.MissingEoF —>
let msg = ”Parsing Error in” ~ context.Driver.

” L9

”

source name
©’\n” © "\t” ° ”Missing EoF at end of token stream
(bad lexer input?)”
in
prerr endline msg

(* Semantic Analyzer and Codegen Errors x)

(# Semantic Errors x)

(* TODO: positional information should be tracked
through the AST and SemAST,

all the way to codegen, as well... x)

| Errors.BadFunctionCall(s) —>
let msg = "Bad Function Call error: 7 " s
in

prerr endline msg
| Errors.FunctionAlreadyExists(s) —>
let msg = ”Function Already Exists error: 7 ~ s
in
prerr _endline msg
| Errors.VariableAlreadyExists(s) —>
let msg = "Variable Already Exists error: 7 ~ s
in
prerr _endline msg

143

260

261

262

| Errors.TypeMismatch(s) —>
let msg = ”Mismatched types error: 7 " s
in
prerr endline msg

| Errors.IdentifierNotFound(s) —>
let msg = "Identifier Not Found error:
in
prerr _endline msg

| Errors.InvalidFunctionSignature(s, n) —>

b2 ~ ~ b

let msg = ”"Invalid signature: S in n

in
prerr_endline msg

| Errors.InvalidMainSignature(s) —>
let msg = ”"Invalid signature: 7 ~ s
in
prerr endline msg

| Errors.InvalidBinaryOperation(s)

| Errors.InvalidUnaryOperation(s) —>
let msg = ”"Invalid operation: 7 " s
in
prerr endline msg

(# Direct Codegen Errors x)
| Errors.UnknownVariable(s) —>

let msg = ”Codegen (LLVM IR) error: 7 * s

in
prerr endline msg
| Errors.UnknownFunction(s) —>

let msg = ”Codegen (LLVM IR) error: 7 ~ s

in
prerr endline msg
| Errors.VariableLookupFailure (name,) —>

let msg = ”Codegen (LLVM IR) error: could not

”

properly find variable with the name " name
in
prerr _endline msg

| Errors.FunctionLookupFailure (name, mangledname) —>
let msg = ”Codegen (LLVM IR) error: looking for the

function with the name 7 * name ~ 7 (mangled
mangledname ~ 7)”
in

prerr endline msg
| Errors.BadPrintfArgument —>

9 A

name:

let msg = ”Codegen (LLVM IR) error: lib.print and

related functions only take either a string,

144

an integer ,

289
290

291

292
293
294
295
296
297

298

299
300
301
302

303

or a floating point argument”
in
prerr _endline msg

(* Common Errors x)
(¥ Missing File/Bad File Name, Bad System Calls x)
| Sys_error(s) —>

let msg = ”Sys error: \n\t” " s

in

prerr endline msg

(# Unsupported features x)
| Errors.Unsupported(s) —>
let msg = ”Unsupported (ran out of implementation
time): \n\t” ~ s

in
prerr endline msg

(* Unknown Errors x)
| err —
let msg = "Unknown Error during Compilation:”
© ?\n” © "\t” © ”"Contact the compiler vendor for
more details and possibly include source code, or try
simplifying the program”
in
prerr endline msg;
raise (err)
in
ignore(exit Errors.compiler_error_exit_code)

../source/lepix.ml
(x LePiX Language Compiler Implementation

Copyright (c) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

145

16

~

NN NN N NN N NN
! % b

30

38

39

10

41

42

15

46

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHEIHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(* A listing of exceptions and the methods that power them
to make the parser more expressive x)

(* Driver and Related class of errors x)
let option error exit code =1

(* Option Errors =)

exception NoOption

exception BadOption of string
exception MissingOption of string
exception OptionFileNotFound of string

(¥ Compiler class of Errors x)

let compiler error exit code = 2

(# Lexer Errors x)

exception PreUnknownCharacter of string % (Lexing.position
x Lexing.position)

exception UnknownCharacter of string = (Lexing.position =x
Lexing . position)

exception BadNumericLiteral of string % (Lexing.position x
Lexing. position)

(* Parser Errors x)
exception MissingEoF
exception BadToken

(* Semantic and Codegen Errors x)

exception Unsupported of string
exception FunctionAlreadyExists of string

146

16

exception
exception
exception
exception
exception
exception
exception
exception

VariableAlreadyExists of string
IdentifierNotFound of string

TypeMismatch of string

BadFunctionCall of string
InvalidMainSignature of string
InvalidFunctionSignature of string * string
InvalidBinaryOperation of string
InvalidUnaryOperation of string

(¥ Codegen Errors x)

exception
exception
exception
exception
exception

UnknownVariable of string
UnknownFunction of string
BadPrintfArgument

FunctionLookupFailure of string % string
VariableLookupFailure of string % string

../source/errors.ml

(¥ LePiX Language Compiler Implementation

Copyright

Permission

(¢) 2016— ThePhD

is hereby granted, free of charge, to any person

obtaining a copy of this

software and associated documentation files

(the ”Software”

), to deal in the Software

without restriction ,
rights to use,
publish |
of the Software,
permit persons to whom the Software is

merge ,

including without limitation the
copy, modify,

distribute , sublicense, and/or sell
and to

copies

furnished to do so,

subject to the following
conditions:

The above

be included

copyright notice and this permission notice shall
in all copies

or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHEIHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

147

o

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(¥ Drives the typical lexing and parsing algorithm
while adding pertinent source, line and character
information. x)

type context = {
mutable source_name : string;
mutable source code : string;
mutable original source code : string;
mutable token count : int;
mutable token : Parser.token x Base.token source;
}

let lex sourcename lexbuf =
let rec acc lexbuf tokennumber tokens =

let next token = Scanner.token lexbuf
and startp = Lexing.lexeme start p lexbuf
and endp = Lexing.lexeme end p lexbuf
in
let line = startp.Lexing.pos Inum
and relpos = (1 + startp.Lexing.pos_cnum — startp.
Lexing. pos_bol)
and endrelpos = (1 + endp.Lexing.pos_cnum — endp.Lexing
.pos_bol)
and abspos = startp.Lexing.pos cnum
and endabspos = endp.Lexing.pos cnum
in
let create token token =
let t = (token, { Base.token source name =
sourcename; Base.token number = tokennumber;
Base.token line number = line; Base.
token line start = startp.Lexing.pos bol;
Base.token column_ range = (relpos, endrelpos); Base
.token_character_range = (abspos, endabspos) }
) in
t
in

match next token with
| Parser .EOF as token —> (create_token token)

tokens
| token —> (create token token) :: (acc lexbuf (1 +
tokennumber) tokens)

in

acc lexbuf 0 []

148

let parse context token list =
(x Keep a reference to the original token list
And use that to dereference rather than whatever crap we

get from

the channel x*)

let tokenlist = ref(token_list) in

let tokenizer _ = match !tokenlist with

(* Break each token down into pieces, info and allx)

(token, info) :: rest —>

context .source name <— info.Base.token source name;
context.token count <— 1 4+ context.token count;
context.token <— (token, info);

(* Shift the list down by one by referencing

the beginning of the rest of the list x)

tokenlist := rest;
(* return token we care about x)
token

(x The parser stops calling the tokenizer when
it hits EOF: if it reaches the empty list , WE SCREWED UP

*
[] = raise (Errors.MissingEoF)

in
(x Pass in an empty channel built off a cheap string

and then ignore the fuck out of it in our 'tokenizer

internal function =)

let program = Parser.program tokenizer (Lexing.
from_string ”7”) in
program

let analyze program =
(* TODO: other important checks and semantic analysis

here

that will create a proper checked program typex)
let sem = Semant.check program in
sem

../source/driver.ml

(* LePiX — LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person

obtaining a copy of this

software and associated documentation files (the ”Software”

), to deal in the Software

without restriction , including without limitation the

149

N

WON NN N NN N NN N
© 0 ~ (=) S w

31

40

rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(¥ Routines for preprocessing source code. x)

type pre_context = {

mutable source name : string;
mutable source_ code : string;
mutable original source code : string;
mutable token count : int;
mutable token : Preparser.token x Base.token source;

}

let pre lex sourcename lexbuf =
let rec acc lexbuf tokens tokennumber =
let next token = Prescanner.token lexbuf
and startp = Lexing.lexeme start p lexbuf
and endp = Lexing.lexeme end p lexbuf
in
let line = startp.Lexing.pos lnum
and relpos = (1 + startp.Lexing.pos_cnum — startp.
Lexing.pos_bol)
and endrelpos = (1 + endp.Lexing.pos_cnum — endp.Lexing
.pos_bol)
and abspos = startp.Lexing.pos_ cnum

150

42

43

46

and endabspos = endp.Lexing.pos cnum
in
let create token token =
let t = (token, { Base.token_source_name =

sourcename; Base.token number = tokennumber;

Base.token line number = line; Base.

token line start = startp.Lexing.pos_ bol;

Base.token_column_range = (relpos, endrelpos); Base

token_ character_range = (abspos, endabspos) }

) in

t
in
let rec matcher = function

| [] = raise (Errors.MissingEoF)

| Preparser .EOF :: [] —> (create_ token Preparser .EOF
) :: tokens

| token :: [] —> (create_token token) :: (acc

lexbuf tokens (1 + tokennumber))

| token :: rest —> (create_ token token) :: (

matcher rest)

in

let

(*

in matcher next token
acc lexbuf [] 0

pre_parse context token list =
Keep a reference to the original token list

And use that to dereference rather than whatever crap we
get from

the channel x)

let tokenlist = ref(token_list) in

le
(*
\

(%

it

t tokenizer = match !tokenlist with
Break each token down into pieces, info and allx)
(token, info) :: rest —>

context .source _name <— info.Base.token source name;
context.token count <— 1 4+ context.token count;
context.token <— (token, info);

(* Shift the list down by one by referencing

the beginning of the rest of the list x)

tokenlist := rest;
(*+ return token we care about x)
token

The parser stops calling the tokenizer when
hits EOF: if it reaches the empty list , WE SCREWED UP

*)

in

[] = raise (Errors.MissingEoF)

151

99

100

101

102

103

104

N

(¥ Pass in an empty channel built off a cheap string

and then ignore the fuck out of it in our 'tokenizer

internal function x)

let past = Preparser.source tokenizer (Lexing.from_ string
”) in

past

let rec pre process context source source text =
let source name = Base.target to string source in
context.source name <— source name;
context.source code <— source text;
let reldir = match source with
| Base.Pipe —> (Sys.getcwd ())
| Base.File(f) —> Filename.dirname f
in
let generate v p = match p with
| Preast.Text(s) —> v "~ s
| Preast.ImportString(f) —> v =~ 7\"” ~ Io.
read file text (Filename.concat reldir f) = 7\"”

| Preast.ImportSource(f) —> let realf = (Filename.
concat reldir f) in

let ftext = Io.read file text realf in

let processedtext = (pre_process context (Base.File

(f)) ftext) in

v " processedtext
in
let tokenstream = pre_lex source_name (Lexing.
from_string source_text) in
(¥TODO: debug shit tokens at a later datex)
(*print_endline (Representation.
preparser_token_list_ to_string tokenstream);x*)
let past = pre parse context tokenstream in
List.fold left generate 7”7 past

../source/predriver.ml
(+ LePiX — LePiX Language Compiler Implementation

Copyright (c) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

152

16

w N =

=

NN ONONN NN NN
S N ?

®

AW N e

10

11

permit persons to whom the Software is furnished to do so,
subject to the following
conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(# Source types for preprocessing LePiX source code. x)

type pre_blob =
| Text of string
| ImportString of string
| ImportSource of string

type pre_source = pre_blob list
../source/preast.ml

(# LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall

153

16

19

o

w N =

N

W oW W W W NN NN NN NN N
TR W OB O © K N O U

36

be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(#+ Types and routines for the abstract syntax tree and
representation of a LePiX program. x)

type id = string
type qualified id = id list

type builtin_ type =
| Auto
| Void
| Bool
| Int of int
| Float of int
| String
| Memory

type constness = bool
type referenceness = bool

type type qualifier = constness x referenceness

type type name =
| BuiltinType of builtin_type % type_ qualifier
| Array of type name x int % type_ qualifier
| SizedArray of type name * int % int list =x
type qualifier
| Function of type_name % type_name list x type_qualifier

let no_qualifiers = (false, false)

154

90

91

92

let void_t = BuiltinType(Void, no_qualifiers)
let string t = BuiltinType(String, no_qualifiers)
let int32 t = BuiltinType (Int (Base.
default_integral bit_width), no_qualifiers)
let float64 t = BuiltinType(Float(64), no_qualifiers)

type binding = id % type_name

let add_const (id, t) = match t with

| BuiltinType(bt, tq) —> let (_, refness) = tq in
(id, BuiltinType(bt, (true, refness)))

| Array(tn, d, tq) —> let (_, refness) = tq in
(id, Array(tn, d, (true, refness)))

| SizedArray (tn, d, il, tq) —> let (_, refness) = tq in
(id, SizedArray(tn, d, il, (true, refness)))

| Function(tn, pl, tq) —> let (_, refness) = tq in
(id, Function(tn, pl, (true, refness)))

type binary_op = Add | Sub | Mult | Div | Modulo
| AddAssign | SubAssign | MultAssign | DivAssign |
ModuloAssign
| Equal | Neq | Less | Leq | Greater | Geq
| And | Or

type prefix op =
| Neg | Not | Prelncrement | PreDecrement

type postfix op =
PostIncrement | PostDecrement

type literal =
| BoolLit of bool
| IntLit of int64 * int
| FloatLit of float * int
| StringLit of string

type expression =
| Literal of literal
ObjectInitializer of expression list
ArrayInitializer of expression list
QualifiedId of qualified id
Member of expression * qualified id
Call of expression * expression list
Index of expression x expression list
BinaryOp of expression * binary op * expression

155

93 | PrefixUnaryOp of prefix_op % expression
94 | Assignment of expression % expression
95 | Noop

96

97 type parallel expression =

98 | Invocations of expression

99 | ThreadCount of expression

100

101 type variable definition =

102 | VarBinding of binding % expression

103

104 type general statement =

105 | ExpressionStatement of expression

106 | VariableStatement of variable definition

107

s type control initializer = general statement list =x

general statement
109
110 type statement =
111 | General of general_ statement
| Return of expression
| Break of int
114 | Continue
| ParallelBlock of parallel expression list x statement
list
116 | AtomicBlock of statement list
117 | IfBlock of control initializer * statement list

118 | IfElseBlock of control_initializer * statement list =
statement list

119 | WhileBlock of control initializer % statement list

120 | ForBlock of general statement list * expression x
expression list *x statement list

121 | ForByToBlock of expression % expression x expression x

statement list

123 type function definition =

124 qualified _id (% Name x)

125 * binding list (x Parameters x)
126 * type_name (x Return Type x)
127 *x statement list (x Body x)

128

120 type basic definition =
130 | VariableDefinition of variable definition
131 | FunctionDefinition of function definition

156

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

AW N e

type import definition =
| LibraryImport of qualified id
type definition =

| Import of import_definition

| Basic of basic_definition

| Namespace of qualified id % definition list

type program =
| Program of definition list

(* Useful destructuring and common operations)
let binding_type = function
(L at) = qt

let binding name = function
(n,) —=>n

../source/ast.ml
(¥ LePiX Language Compiler Implementation

Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

157

N
NN B

NN NN

=W NN = O O o N

Ot

36

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(* Semantic checking for the Lepix compiler that will
produce a new

SemanticProgram type with things like locals group into a
single type

and type promotions / conversions organized for operators.

*)
module StringMap = Map.Make(String)

type s prefix op = Ast.prefix op

type s binary op = Ast.binary op

type s qualified id = Ast.qualified id
type s id = Ast.id

type s_type_ qualifier = Ast.type qualifier
type s _builtin type = Ast.builtin_ type

type s type name =
| SBuiltinType of s_builtin_type % s_type_qualifier
| SArray of s_type name % int % s_type_ qualifier
| SSizedArray of s_type name % int % int list =x
s type qualifier
| SFunction of s_type name % s_type_name list x
s type qualifier
| SOverloads of s_type name list
| SAlias of s_qualified id % s_qualified_ id

let no qualifiers = Ast.no qualifiers

let void_t = SBuiltinType (Ast.Void, Ast.no_qualifiers)

let auto_t = SBuiltinType (Ast.Auto, Ast.no_qualifiers)

let string_t = SBuiltinType (Ast.String , Ast.no_qualifiers)
let bool _t = SBuiltinType (Ast.Bool, Ast.no_qualifiers)

let int32 t = SBuiltinType (Ast.Int(32), Ast.no_qualifiers)
let int64_t = SBuiltinType (Ast.Int (64), Ast.no_qualifiers)
let float64_t = SBuiltinType(Ast.Float (64), Ast.

no_qualifiers)

type s binding = s id % s type name

type s literal =
| SBoolLit of bool

158

56 | SIntLit of int64 % int
57 | SFloatLit of float = int
| SStringLit of string
60 type s_expression =
61 | SObjectInitializer of s_expression list x s_type_ name
SArraylnitializer of s expression list * s_type name
SLiteral of s literal
SQualifiedId of s qualified id % s type name
SMember of s expression *x s qualified id * s type name
SCall of s expression * s expression list % s type name
SIndex of s expression % s expression list x
s_type_name
68 | SBinaryOp of s_expression % s_binary_op % s_expression
* S type name
69 | SPrefixUnaryOp of s prefix_op # s_expression x
s type name
70 | SAssignment of s_expression % s_expression x
s_type_name
| SNoop

66

type s locals =
| SLocals of s_binding list

IR S BN
w N

w

type s parameters =
| SParameters of s binding list

PSS BN B |
~

[

type s_variable definition =
| SVarBinding of s_binding % s_expression

=

®

[
—

0

B

type s general statement =

83 | SGeneralBlock of s_locals % s_general statement list
84 | SExpressionStatement of s_expression
85 | SVariableStatement of s_variable definition

87 type s_capture =
SParallelCapture of s binding list

[0
o0

90 type s_control initializer =
91 | SControllnitializer of s general statement x
S expression

93 type s parallel expression =

94 | SInvocations of s_expression
95 | SThreadCount of s_expression

159

96

97 type s_statement =

98 | SBlock of s_locals % s_statement list
| SGeneral of s_general statement

100 | SReturn of s_expression

101 | SBreak of int
|

99

102 SContinue

103

104 | SIfBlock of s _control initializer (% Init statements
for an if block x)

105 * s_statement (x If code x)

106

107 | SIfElseBlock of s_control initializer (x Init
statements for an if—else block x*)

108 * s_statement (x If code x)

109 * s_statement (x Else code %)

110

111 | SWhileBlock of s_control_initializer (x Init statements
plus ending conditional for a while loop x)

112 x s_statement (% code inside the while block, locals
and statements x)

113

114 | SForBlock of s_control initializer (* Init statements
plus ending conditional for a for loop x)

115 x s_expression list (% Post—loop expressions (increment
/decrement))

116 * s_statement (% Code inside =)

117

118 | SParallelBlock of s_parallel expression list (%
Invocation parameters passed to kickoff function x)

119 * s_capture (x Capture list: references to outside
variables x)

120 * s_statement (% Locals and their statements =)

121

122 | SAtomicBlock of s statement (% code in the atomic block
*)

123

124

125 type s_function_ definition = {

126 func_name : s qualified id;

127 func parameters : s parameters;

128 func return type : s type name;

129 func body : s statement list;

130 }

160

133
134

136
137
138
139
140
141
142

143

160
161
162
163
164
165

166

174

type s basic definition =
| SVariableDefinition of s_variable definition
| SFunctionDefinition of s_function_definition

type s builtin_ library =
| Lib

let builtin_library names = |
(71ib”, Lib)
]

type s_loop =
| SFor
| SWhile

type s module =
| SCode of string
| SDynamic of string
| SBuiltin of s_builtin_library

type s definition =
| SBasic of s_basic_definition

type s_attributes = {

attr parallelism : bool;
attr arrays : int;
attr strings : bool;
}
type s_environment = {
env_usings : string list;
env_symbols : s type name StringMap.t;
env definitions : s type name StringMap.t;
env_imports : s module list ;
env_loops : s loop list;

}

type s program =
| SProgram of s_attributes % s_environment x s_definition
list

(+ Helping functions)
let rec coerce type name of s expression injected =
function
| SObjectInitializer(a,) —> SObjectInitializer (a,

161

injected)

SArrayInitializer (a,) —> SArraylnitializer(a,
injected)

SQualifiedId (a,) —> SQualifiedId (a, injected)
SMember(a, b,) —> SMember(a, b, injected)
SCall(a, b, _) —> SCall(a, b, injected)

SIndex(a, b,) —> SIndex(a, b, injected)
SBinaryOp(a, b, ¢, _) —> SBinaryOp(a, b, ¢, injected)
SPrefixUnaryOp(a, b, _) —> SPrefixUnaryOp(a, b,
injected)

SAssignment(a, b,) —> SAssignment(a, b, injected)
183 ‘ e —> e

184

~
<)

176
177
178
179

180

182

185 let unqualify = function
186 | SBuiltinType(bt, _) —> SBuiltinType(bt, no_qualifiers)
187 | SArray(tn, d,) —> SArray(tn, d, no_ qualifiers)

188

SSizedArray (tn, d, il,) —> SSizedArray(tn, d, il,

no_qualifiers)

189 | SFunction(tn, pl, _) —> SFunction(tn, pl, no_qualifiers
)

190 | t —> ¢t

191

102 let string of qualified id qid =

193 (String.concat 7.7 qid)

194

195 let parameter bindings = function

196 | SParameters(bl) —> bl

197

vs let type mname of s literal = function

199 | SBoolLit(_) —> bool_t

200 | SIntLit(_, b) —> SBuiltinType(Ast.Int(b),

no_qualifiers)
201 | SFloatLit(_,b) —> SBuiltinType(Ast.Float(b),
no_qualifiers)
202 | SStringLit(_) —> string_t
203
204 let rec type name of s expression = function
| SObjectInitializer(, t) — t
| SArraylInitializer(_ , t) —> t
| SLiteral(lit) —> type_ name_of s literal lit
| SQualifiedId(_, t) —> ¢
209 ‘ SMember (7 5 y
|
|
|

205
206

207

208
o,) >t

210 SCall(i, ., t) > t

211 SIndex(_, _, t) —> t

212 SBinaryOp(_, ., _, t) —> ¢t

162

213 | SPrefixUnaryOp(_, _, t) —> t

214 | SAssignment(_, _, t) —> t

215 | SNoop —> void_t

216

217 let return type name = function

218 | SFunction(rt, ,) —> rt

219 | t — ¢t

220

201 let args type name = function

222 | SFunction(_, args, _) —> args

223 ‘ t —> H

224

225 let mangled name of type qualifier = function

226 | (_, referencess) —> if referencess then "p!” else 71”7

227

228 let type name of s function definition fdef =

229 let bl = parameter bindings fdef.func parameters in

230 let argst = List.map (fun (_, t) = t) Dbl in

231 let rt = fdef.func return_ type in

232 SFunction(rt, argst, no_qualifiers)

233

234 let mangled name of builtin type = function

235 | Ast.Void —> 7v”

236 ‘ Ast.Auto —> 7a”

237 | Ast.Bool —> ”b”

238 | Ast.Int(n) — 71”7 ° string of int n

239 | Ast.Float(n) —> 7”7 " string_of int n

240 | Ast.String —> 7s”

241 | Ast.Memory —> "m”

242

2143 let rec mangled name of s type name = function

244 | SBuiltinType(bt, tq) —>
mangled name of type qualifier tq
mangled name_ of builtin_type bt

245 | SArray(tn, dims, tq) —>
mangled name of type qualifier tq ~ 7a” = string of int
dims ~ 7:;” " mangled name of s type name tn

246 | SSizedArray(tn, dims, sizes, tq) —>
mangled name_ of type qualifier tq ~ 7a” ~ string of int
dims ~ 7:;” ° mangled name of s type name tn

247 | SFunction(rt, pl, tq) —
mangled _name_of_ type_qualifier tq = "r;” ~ (String.
concat ”7;” (List.map mangled name_of s type name pl))
Ty mangled name of s type name rt

248 | _ —> "UNSUPPORTED”

163

NN N

let mangle name args qid tnl =
string of qualified id qid ~
if (List.length tnl) > 0 then

K “ (String.concat ” 7 (List.map
mangled_name_of s type name tnl))
else
let mangle name qid = function

| SFunction(rt, pl, tq) —> mangle name_args qid pl
| _ —> string_of qualified id qid
../source/semast.ml

(¢# LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHEIHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(* Contains routines for string—ifying various parts of the
infrastructure of the compiler, to make it easy to

164

understand what the fuck we're doing. *)

(x Lexer types: dumping and pretty printing tokens

module StringMap = Map.Make(String)

preparser token to_ string = function
Preparser .HASH —> "HASH”

Preparser IMPORT —> "IMPORT”
Preparser .STRING —> ”STRING”
Preparser . TEXT(s) —> "TEXT(” "~ s = 7)

Preparser .STRINGLITERAL(s) —> ”STRINGLITERAL(”

Preparser .EOF —> "EOF”

parser token to string = function

Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.
Parser.

LPAREN —> "LPAREN"

RPAREN —> "RPAREN”

LBRACE —> "LBRACE’

RBRACE —> "RBRACE”

LSQUARE —> "LSQUARE"
RSQUARE —> "RSQUARE

SEMI —> " SEMI”

COMMA —> "COMMAY

PLUSPLUS —> "PLUSPLUS”
MINUSMINUS —> *MINUSMINUS”
PLUS —> "PLUS”

MINUS —> ”MINUS”

TIMES —> " TIMES”

DIVIDE —> ”DIVIDE”

MODULO —> “MODULO”
PLUSASSIGN —> “PLUSASSIGN”
MINUSASSIGN —> ”MINUSASSIGN”
TIMESASSIGN —> *TIMESASSIGN”
DIVIDEASSIGN —> ”DIVIDEASSIGN”
MODULOASSIGN —> ”MODULOASSIGN”
ASSIGN —> ”ASSIGN”

EQ — "EQ”

NEQ —> "NEQ’

LT —> "LT”

LEQ —> "LEQ’

GT —> "GT”

GEQ —> "GEQ’

AND —> "AND”

165

")

Parser .OR —> "OR”

Parser .NOT —> ”"NOT”

Parser .DOT —> ”DOT”

Parser .AMP —> ”AMPERSAND”

Parser .COLON —> ”COLON”

Parser .PARALLEL —> "PARALLEL”

Parser .INVOCATIONS —> ”INVOCATIONS”

Parser .THREADCOUNT —> ”THREADCOUNT”

Parser .ATOMIC —> "ATOMIC”

Parser .VAR —> ”VAR”

Parser .LET — "LET”

Parser .CONST —> "CONST”

Parser .FUN —> "FUN”

Parser .NAMESPACE —> ”"NAMESPACE”

Parser .IF — 7IF”

Parser .ELSE —> "ELSE”

Parser .FOR —> "FOR”

Parser .TO — "TO”

Parser .BY —> "BY”

Parser .WHILE —> ”WHILE”

Parser .RETURN —> ”"RETURN”

Parser .INT(b) —> 7"INT” * string_ of_int b

Parser .FLOAT(b) —> "FLOAT” " string_ of int b

Parser .BOOL —> ”BOOL”

Parser .STRING —> "STRING”

Parser .VOID — "VOID”

Parser .AUTO — "AUTO”

Parser .MEMORY —> "MEMORY”

Parser .TRUE —> "TRUE”

Parser .FALSE —> "FALSE”

Parser .BREAK —> "BREAK”

Parser .CONTINUE —> ”"CONTINUE”

Parser .IMPORT —> ”IMPORT”

Parser .STRINGLITERAL(s) —> ”"STRINGLITERAL(” " s

Parser .INTLITERAL(i) —> "INTLITERAL(” ~ Num.

string_of _num i "~ 7)”

101 | Parser .FLOATLITERAL(f) —> "FLOATLITERAL(” ~ Num.
string_of num f ~ 7)”

102 | Parser.ID(s) — 7ID(” ~ s "~ 7)”

103 | Parser .EOF —> "EOF”

104

05 let token_ range_ to_string (x, y) =

106 let range is wide = ((y — x> 1) in

107 if range is wide then

108 (string of int x =~ 77

66

68
69
70

71

w

~ ~ ~ ~ -
BN

=]

3
~

90

95
96
97
98

99

o)
w

100

string_of_int y,

166

109

110

111

112

146

149

150

range_is_wide)
else
(string_of_int x, range_is_wide)

let token source to string t =
let (s, _) = token_ range to_string t.Base.
token_column_range in
string of int t.Base.token line number

” L9

S

let preparser_ token list to_ string token list =
let rec helper = function
| (token, pos) :: tail —>
"[7 © (preparser_token_ to_string token)
token_ source_to_string pos = 7]
helper tail
| [] = 7\n” in helper token list

~ ” .

let parser token list to string token list =
let rec helper = function
| (token, pos) :: tail —>
7[” ° (parser_token_ to_string token)
token_source_to_string pos "~ 7] 7
helper tail
| [] = ”\n” in helper token list

AL,

(* Program types:
dumping and Pretty—Printing x)

let string of id i = i

let string of qualified id qid = (String.concat 7.7 (List
.map string_of _id qid))

let string of binary op = function
Ast . Add — 747
Ast.Sub — 77

|
|
| Ast.Mult —> 7”7

| Ast.Div —> 7 /7

| Ast.Modulo —> "%

| Ast.AddAssign —> 7+="

| Ast.SubAssign —> 7—="

| Ast.MultAssign —> 7%="

167

159
160
161
162

163

179

180

182

183

184

186

Ast.DivAssign — 7 /="
Ast.ModuloAssign —> "%="
Ast.Equal —> "="
Ast .Neq —> 7!=7
Ast.Less — 7<”
Ast.Leq —> "<&
Ast.Greater —> 7>7
Ast.Geq —> ">="
Ast.And —> &7
Ast.Or — 7 [|”

string of unary op = function
Ast.Neg —> 77

Ast.Not —> 717
Ast.PreDecrement —> 7—7
Ast.Prelncrement —> "+’

rec string of expression = function

Ast. Literal (Ast.IntLit (1, _)) — Int64.to_string 1
Ast.Literal (Ast.BoolLit (true)) —> "true”

Ast.Literal (Ast.BoolLit (false)) — " false”

Ast. Literal (Ast.StringLit(s)) — 7\"” "~ s = 7\"”
Ast.Literal (Ast.FloatLit(f, _)) —> string_of_float f
Ast. QualifiedId (qid) —> string_of_qualified _id qid
Ast . BinaryOp(el, o, €2) —>
string of expression el
v string of expression e2

Ast . PrefixUnaryOp (o, e) —> string of unary_op o
string of expression e

Ast.Index(e, 1) —> string of expression e ~ 7[7 ~ (

b b2

String.concat 7, 7 (List.map string_ of_ expression 1))

”

string of binary op o

77}7:

Ast .Member(e, qid) —> string_ of expression e
string of qualified id qid

Ast. Assignment (el, e2) —> string of expression el
’ string of expression e2

Ast. Call(e, el) —

string_of expression e ~ 7 (7 ° String.concat 7, 7 (List
.map string of expression el) ~ 7)”

Ast .Noop —> ”{ noop }”

Ast. ArrayInitializer(el) — ”[7 ° String.concat "7, 7 (
List .map string_ of_ expression el) = 7 |7
Ast. ObjectInitializer(el) — 7{ 7 ° String.concat 7, ”
(List .map string of expression el) = 7 }”

168

187

188

189

190
191
192
193
194
195
196
197
198
199
200

201

203

204

205
206
207
208
209

210

212

214

let string of parallel expression = function
| Ast.ThreadCount(e) —> ”thread count ="
string of expression e
| Ast.Invocations(e) —>
string of expression e

”invocations = 7

let rec string of expression_ list el =

b))

String.concat 7, 7 (List.map string_of_expression el)

let rec string of builtin type = function
| Ast.Auto —> "auto”
| Ast.Bool —> ”bool”
| Ast.Int(b) —> 7int” " string of int b
| Ast.Float(b) —> 7float” ~ string of int b
| Ast.String —> ”string”
| Ast.Memory —> ”memory”
| Ast.Void —> "void”

let string of type_ qualifier = function
| (¢, r) = (if ¢ then 7const” else 7”7) °~ (if r then ”
&77 else 9)

let rec string of type name tn =
let tqual tq =
let s = string of type qualifier tq in
if s =77 then 7”7 else s v
in match tn with
| Ast.BuiltinType(t, tq) —> tqual tq
string of builtin_ type ¢t
| Ast.Array(t, d, tq) —> tqual tq ~ string_of_ type_name t
(String.make d '[') ° (String.make d '|')
| Ast.SizedArray(t, d, il, tq) —> tqual tq °
string_of type name t "~ (String.make d '[') ° (String
.concat 7, 7 (List.map string_ of_int il)) °~ (String.
make d ']")
| Ast.Function(r, args, tq) —> tqual tq =~ 7 (7 °~ (String
.concat 7 (List.map (fun v —> string_ of type_ name v
) args)) © 7)” ° string_ of type name 1

let string of binding = function
| (n, t) > n string of type name t

let string of variable definition = function

| Ast.VarBinding(b, Ast.Noop) —> "var 7 °
string_of_ binding b

169

236

245

246

249

| Ast.VarBinding(b, e) —> 7var 7 " string_of_ binding b

=7 " string of expression e

let string of general statement = function
| Ast.ExpressionStatement(e) —> string of expression e
| Ast.VariableStatement(v) —>
string of wvariable definition v

let string of condition initializer = function
| (il, cond) —> (String.concat ” (List .map
string_of general statement il))
“ (if (List.length il) > 0 then 7;” else 77)
(string_of_general statement cond)

let rec string of statement s =
let string_ of_ statement_list sl = String.concat ”” (List.
map string of statement sl) in
match s with
| Ast.General(b) —> string_of_ general statement b "~ 7:\
n’;
| Ast.Return(expr) —> "return 7 " string of expression
expr ~ 7;\n”;
| Ast.IfBlock(ilcond, s) — 7if (7 °
string_of_condition_initializer ilcond = 7)”
©7{\n” ° string_of_statement_list s *~ 7 }\n”
| Ast.IfElseBlock(ilcond, s, s2) — 7if (7 °
string_of_ condition_initializer ilcond =~ 7)”
©7{\n” ° string of statement list s "~ ”7}\n”
“else {\n” "~ string of statement list s2 "~ 7}\n”

| Ast.ForBlock(gsl, cond, incrl, sl) —> "for (” (
String.concat 7, ” (List.map string of general statement
gsl)) = 7,7

».0»

string of expression cond ;
string of expression_list incrl ~ 7) {\n” °
string_of _statement_list sl °~ 7 }\n”
| Ast.ForByToBlock(el, e2, e3, sl) —> 7"for (7 °
string of expression el 7 to 7 7 string of expression
e2 © 7 by ” " string_of_ expression e3 ~ 7) {\n”
string _of statement_ list sl = 7 }\n”
| Ast.WhileBlock(ilcond, s) —> 7while (7 °
string_of_ condition_initializer ilcond ~ 7) {\n”
string_of statement_list s *~ 7 }\n”
| Ast.Break(n) —> (if n = 1 then ”break” else ”break”
string_of _int n) © 7;\n”
| Ast.Continue —> ”continue;\n”

170

276

| Ast.ParallelBlock (pel,sl) — 7parallel(” "~ (String.
concat 7 (List .map string of parallel expression pel)
) -7) {7

© 7’\n” ° string_of_ statement_list sl ~ 7}\n”
| Ast.AtomicBlock(sl) — "atomic {\n” ~
string_of statement_list sl = 7 }\n”

let string of statement list sl =
String.concat ”” (List.map string of statement sl)

let string of function definition = function
| (name, parameters, return_type, body) —>

7 fun 7 string of qualified id name
(7 ° (String.concat 7, 7 (List.map
string_of_ binding parameters)) =~ 7) : 7
string_of type_name return_type ~ 7 {\n”

string of statement list body

s

let rec string of basic definition = function
Ast.FunctionDefinition (fdef) —

string of function definition fdef

Ast. VariableDefinition (vdef) —>
string_of_variable_definition vdef = 7;\n”

let string of import definition = function
Ast.Librarylmport (qid) —> ”import
string_of _qualified_id qid ~ 7\n”

let rec string of definition = function
| Ast.Import(idef) —> string of import_ definition idef
| Ast.Basic(bdef) —> string of basic_definition bdef
| Ast.Namespace(qid, defs) —> "namespace ”
string of qualified id qid =~ 7 {\n”
(String.concat 7”7 (List.map string of definition defs

)) * 7 Hw

let string of program = function
| Ast.Program(p) —> let s = (String.concat
string of definition p)) in
Base.brace tabulate s 0

%

(List .map

(* Semantic Program types:
dumping and pretty printing x)

171

285 let rec string of s type name tn =

286 let tqual tq =

287 let s = string of type qualifier tq in

288 if s =77 then 7”7 else s ~ 77

289 in match tn with

290 | Semast.SBuiltinType(t, tq) —> tqual tq °
string of builtin_type ¢t

201 | Semast.SArray(t, d, tq) —> tqual tq

string_of_s_type_name t "~ (String.make d '[') " (
String .make d ']')

292 | Semast.SSizedArray(t, d, il, tq) —> tqual tq
string_of s _type name t "~ (String.make d '[') " (
String.concat 7, 7 (List.map string_ of int il)) = (
String .make d ']"')

203 | Semast.SFunction(r, args, tq) —> tqual tq =~ 7 (7 ~ (
String.concat 7, 7 (List.map (fun v —
string_of s type_name v) args)) ~ 7)” °
string _of s type name r

204 | Semast.SOverloads(fl) — "overloads[”

295 " (String.concat 7, 7 (List.map string_of s_type_ name
fl)

296 - 7’]”

207 | Semast.SAlias(target, source) —> "using 8
string of qualified id target =~ 7 —> 7 °
string of qualified id source

298

200 let string of s binding = function

300 | (n, t) =>n ~ 7 : 7 " string of s type name t

301

302 let string of s locals = function

303

Semast. SLocals (bl) — if (List.length bl < 1) then 77
else (String.concat ”;\n” (List.map

string_of _s_binding bl)) *~ 7;”

305 let string of s literal = function

306 | Semast.SBoolLit(b) —> string of bool b

307 | Semast.SIntLit(i,) —> Int64.to_ string i

308 | Semast.SFloatLit(f,) —> string_ of_ float f

309 | Semast.SStringLit(s) —> 7\””7 "~ s ~ "\"”

310

311 let rec string of s expression = function

312 | Semast.SObjectInitializer (el, tn) —>

313 string_of _s_type_name tn = 7{ 7

314 " String.concat 7, 7 (List.map string of_ s _expression
el)

172

~ 2

| Semast.SArrayInitializer(el, tn) —>
string_of_s_type_name tn "~ 7[7

String.concat 7, 7 (List.map string_ of_ s_expression
el)
SERE
Semast. SLiteral (1) —> string_ of s_literal 1
Semast. SQualifiedId (qid, tn) — 7 [[7 ~
string_of_s_type_name tn =~ 7]] 7 °
string of qualified id qid
Semast . SMember(e, qid, tn) — 7[[7 °

string_of s _type name tn ~ 7 |] 7 °
string of s expression e 7 string of qualified id
qid

| Semast.SCall(e, el, tn) — 7 [[” ° string of s_type name
tn 7]]” ° string of s expression e © 7(7 ° (Strin
concat 7, 7 (List.map string of s_expression el)) ~

)77

Semast . SIndex (e, el, tn) —> " [[7
string_of_s_type_name tn =~ 7]] 7 °

string_of s_expression e = "[7 ° (String.concat "7, 7 (
List .map string of s_expression el)) = 7 |”
Semast . SBinaryOp (1, op, r, tn) —> 7 [])
string_of_s_type_name tn =~ 7]] 7 °
string of s expression 1 ” string of binary op op
o string of s expression r

Semast . SPrefixUnaryOp (op, r, tn) — 7][]
string_of s _type name tn "~ 7]] 7 ° string_ of unary_ op
op ~ string of s expression r
Semast . SAssignment (1, r, tn) —> 7 []
string_of_s_type_name tn =~ 7]] 7 °
string of s expression 1 =~ 7 =7~
string of s expression r
Semast . SNoop —> 7 (noop)”

let string of s capture = function

Semast . SParallelCapture (bl) — let capturecount = List.
length bl in

if capturecount = 0 then 7 [[no captures]]\n” else

" [[captures]] { 7 ° (String.concat 7, 7 (List.map
string_of_s_binding bl))

~ b2 }\Il”

let string of s variable definition = function
| Semast.SVarBinding(b, e) —> 7var ’

173

~ ” b2

string of s binding b b= " string of s expression e

338

330 let rec string of s general statement = function
340 | Semast.SGeneralBlock (locals, gsl) — "{\n” ~
string_of_s_locals locals ~ ”\n” ° (String.concat ”7;\n”

(List .map string of s_general statement gsl)) ~ 7\n}”
Semast . SExpressionStatement (sexpr) —>
string of s expression sexpr

Semast . SVariableStatement (v) —>

string of s variable definition v

341

~
S

343

314 let string of s general statement list gsl =

345 String.concat ”7:;\n” (List.map
string_of_s_general statement gsl)

346

347 let string of s parallel expression = function
348 | Semast.SInvocations(e) —> string of s _expression
349 | Semast.SThreadCount(e) —> string of s_expression e

350

351 let rec string of s statement s =

352 let initializer begin = function
353 | Semast.SGeneralBlock (locals, gsl) —>
354 let precount = List.length gsl in

355 if precount > 1 then

9
356 {

357 " string of s locals locals

358 © ?\n” ° string_of_s_general statement_list gsl
359 " 7\n”

360 else

361 7

362 | =7

363 in

364 let initializer end = function

365 | Semast.SGeneralBlock (locals, gsl) —

366 let precount = List.length gsl in
367 if precount > 1 then

368 ” }\H’7

369 else

370 7y

371 | =7

372 in match s with

373 | Semast.SBlock(locals, sl) — "{\n” ~ string_ of s locals

locals = ”\n” "~ (String.concat "\n” (List.map
string_of s_statement sl)) ~ 7\n}\n”
374 | Semast.SGeneral(g) —> (string of s general statement

174

408

109

410

g)
Semast . SReturn (sexpr) —> "return
string of s expression sexpr = 7;”
Semast . SBreak (n) — if n < 2 then "break;” else ”break
string of int n 77
Semast . SContinue —> ”continue;”
Semast . SAtomicBlock (s) —> 7atomic {”
string_of s_statement s
s
Semast. SParallelBlock (pel, captures, s) —>
"parallel (" © (String.concat 7, 7 (List.map
string_of_s_parallel _expression pel)) =~ 7) {”
" 7?\n” ° string_of_s_capture captures
“ 7’\n” ° string_of_s_statement s
oIS
Semast . SIfBlock (Semast. SControllnitializer (inits , cond)
, 8) =
initializer _begin inits
©7if (7 7 string_of_s_expression cond * V) {7
"\n” ° string_of_s_statement s
s
" initializer end inits
Semast . SIfElseBlock (Semast. SControllnitializer (inits ,
cond), is, es) —>
initializer begin inits
©7if (7 ° string_of_s_expression cond © V) {”
© ”\n” ° string_ of s _statement is
oLtk
" Velse {7
© ”’\n” ° string_of_s_statement es
s
" initializer end inits
Semast . SWhileBlock (Semast. SControllnitializer (inits ,
cond), s) —>
initializer begin inits
"while (7 ° string_of_s_expression cond ~ 7) {7
© 7’\n” ° string_of_s_statement s
©
" initializer end inits
Semast . SForBlock (Semast. SControlInitializer (inits , cond
), increxprl, s) —>
let incrl = String.concat 7, 7 (List.map
string_of _s_expression increxprl) in
initializer begin inits
" 7for (;7 ° string_of_s_expression cond

2

9

incrl

175

~ 99) {77

411 "~ 7’\n” ° string_of_s_statement s

412 © 7 \n”

13 " initializer end inits

115 let string of s statement list sl =
116 (String.concat ”\n” (List.map string of s statement sl

))

417

ns let string of s block = function
119 | (locals, sl) — 7{\n” " string_of s locals locals
120 " 7\n” ° string of s statement_ list sl

421 " ?\n}\n”
123 let string of s parameters = function
124 | Semast.SParameters(parameters) —> String.concat 7, 7 (

List .map string of s binding parameters)

26 let string of s function definition f =

127 “fun ” © string of qualified id f.Semast.func name

128 ©7(” string_of_s_parameters f.Semast.func_parameters
77) R 9

129 " string_of s _type name f.Semast.func return_type 7 {\
11'/'/

430 " string of s statement list f.Semast.func body

131 S 7 \n”
132
33 let string of s basic definition = function
434 | Semast.SVariableDefinition (v) —>
string of s variable definition v
435 | Semast.SFunctionDefinition (f) —
string of s function definition f
436

37 let string of s builtin_library = function

438 | Semast.Lib —> 71ib”

139

10 let string of s module = function

141 | Semast.SCode(s) —> ”import [[code]] 7 ~ s

142 | Semast.SDynamic(s) —> 7import [[dynamic]] 7 * s
443 | Semast.SBuiltin(bltin) —> "import [[builtin]] 7

string of s builtin_library bltin
115 let rec string of s definition = function

146 | Semast.SBasic(b) —> string_ of_ s_basic_definition b ~ 7\
n'/'/

176

459

160

461

462

163

164

465

166

167

468

let string of s program = function

| Semast.SProgram(attr, env, sdl) —>

let symbolacc k tn 1 =
let entry = (string_of s type_name tn) ~ 7 7 % k in
entry :: 1

and importacc m =
string _of s module m

in

let implist = List.map importacc env.Semast.env imports

and symbollist = StringMap.fold symbolacc env.Semast.
env_symbols []

and defsymbollist = StringMap.fold symbolacc env.Semast.
env_definitions []

in

let i = 7imports:\n\t” °~ (String.concat ”"\n\t” implist)
and s = "symbols:\n\t” ~ (String.concat "\n\t”
symbollist)

and d = ”"code symbols:\n\t” ~ (String.concat ”"\n\t”
defsymbollist)

and a = "strings: 7 ° string of bool attr.Semast.

attr strings

" 7\narrays: ”

string of int attr.Semast.attr arrays

"~ ?\nparallelism: 7 ° string_of_bool attr.Semast.

attr parallelism

in

let p = String.concat 7”7 (List.map string_ of_ s_definition
sdl) in

Base.brace_ tabulate (a ~ 7\n\n” ~ i °~ "\n\n” ~ s * 7"\n
\n'/', ~d M\H\H“ ~ p) 0
../source/representation.ml

(* LePiX — LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

177

10

11

ST

NONON NN N NN

36

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(¥ Ocamllex Scanner for LePiX Preprocessor x)

let whitespace = ['" ' "\t' '"\r']
let newline = ['"\n']
rule token = parse

| newline as ¢ { Lexing.new_line lexbuf; let b = Buffer.
create 1024 in Buffer.add char b c¢; sub_token b lexbuf }

| '#! { let t = Preparser .HASH in t :: hash token
lexbuf }

| _ as ¢ { let b = Buffer.create 1024 in Buffer.
add_char b c¢; sub_token b lexbuf }

| eof { [Preparser .EOF] }

and sub token text buf = parse

| newline as ¢ { Lexing.new_line lexbuf; Buffer.add char
text _buf c; sub_token text_ buf lexbuf }

| '#! { let s = Buffer.contents text_buf in let t
= Preparser . TEXT(s) in let 1 = Preparser .HASH :: (
hash_token lexbuf) in t :: 1 }

| _ as ¢ { Buffer.add char text_buf c¢; sub_token
text _buf lexbuf }
| eof { let s = Buffer.contents text_buf in let ¢

s
= Preparser . TEXT(s) in [t; Preparser .EOF] }
and hash token = parse

| newline { Lexing.new_line lexbuf; token lexbuf }
| whitespace { hash_ token lexbuf }

178

42

43

45

46

17

49

50

| ! { let b = (Buffer.create 128) in
string literal b lexbuf }
| 7import” { Preparser .IMPORT :: hash token lexbuf }
| 7string” { Preparser .STRING :: hash token lexbuf }
| eof { [Preparser .EOF] }
| { raise (Errors.UnknownCharacter(String.make 1

c, (Lexing.lexeme start p lexbuf, Lexing.lexeme end p
lexbuf))) }

and string literal string buf = parse

| newline as ¢ { Lexing.new_line lexbuf; Buffer.add_ char
string buf c¢; string literal string buf lexbuf }

| { let sl = Preparser.STRINGLITERAL(Buffer.
contents string buf) in [sl] }

| "\\\"” as s { Buffer.add_string string_buf s;
string literal string_ buf lexbuf }

| _ as ¢ { Buffer.add_ char string buf c;
string literal string buf lexbuf }

../source/prescanner.mll
al
(* LePiX — LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

179

19

NN W

NN NN N
o w

W oW W W W NN
=W NN = O ©

Ot

36

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(# Parser for the LePiX preprocessor: compatible with both
ocamlyacc and

menhir, as we have developed against both for testing
purposes. x)

%o}

%token HASH

%token IMPORT STRING

%token <string> TEXT

%token <string> STRINGLITERAL
%token EOF

%start source
%type<Preast.pre source> source

VO

blob:
| HASH IMPORT STRINGLITERAL { Preast.ImportSource($3) }
| HASH IMPORT STRING STRINGLITERAL { Preast.ImportString($4

)}
| TEXT { Preast.Text($1) }

blob_list: { [] }
| blob_list blob { $2 :: $1 }

source:

| blob_list EOF { List.rev $1 }

../source/preparser.mly
(# LePiX — LePiX Language Compiler Implementation

Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies

180

16

TR W N = O

NONONON N NN N NN
< ® N O U o

30

36

38
39
10
11
12

43

of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHEIHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(¥ Ocamllex Scanner for LePiX Preprocessor x*)

{

open Parser

}

let whitespace = [" ' "\t' '"\r']

let newline = ["\n']

let binary_digit = '0" | 1"

let hex digit = ['0'="9"'] | ["A'"='F'] | ['a'="f"]

let octal digit = ['0'—="'7"]

let decimal digit = ['0'="9"]

let uppercase_ letter = ['A'—'Z']

let lowercase letter = ['a'—'z']

let n_digit = decimal_digit | uppercase_letter |
lowercase letter

rule token = parse
whitespace { token lexbuf }
newline { Lexing.new_line lexbuf; token lexbuf }

|

|

| 7 /%7 { multi_comment 0 lexbuf }
| 7 /)7 { single comment lexbuf }
| (" { LPAREN }

|) { RPAREN }

181

! { LBRACE }

'} { RBRACE }

i { LSQUARE }

' { RSQUARE }

" { SEMI }

! { COLON }

h! { COMMA }

"+ { PLUS }

! { MINUS }

Tx! { TIMES }

A { DIVIDE }

" { PLUSASSIGN }
n—=" { MINUSASSIGN }
e { TIMESASSIGN 1
” = { DIVIDEASSIGN }
"Y=" { MODULOASSIGN }
L { PLUSPLUS }
n——" { MINUSMINUS }
"% { MODULO }

= { ASSIGN }

'&! { AMP }

— {EQ)

= {NEQ)

<! { LT }

= {LEQ)

7> { GT }
=[G)

"&&” { AND }

! { DOT }

'&! { AMP }

"7 { OR }

7 { NOT }

Tt { IF }

"else” { ELSE }

" for” { FOR }

“while” { WHILE }

byt {BY)

7to” { TO }

"return” { RETURN }

“auto” { AUTO }

"int” ((decimal_digit+)? as s) { let bits = if s =77
then Base.default_integral_ bit_width else (

int_of string s) in INT(bits) }

"float” ((decimal digit+)? as s) { let bits = if s =77
then Base.default_floating_ bit_width else (

182

92
93
94
95
96
97
98
99
100
101
102
103
104

105

106
107
108

109

110

111

112

113

114

115
116
117

118

int_of string s) in FLOAT(bits) }

"bool” { BOOL }
7string” { STRING }
“void” { VOID }
"memory” { MEMORY }
"true” { TRUE }
"false” { FALSE }
7 var” { VAR }
7let” { LET }
7const” { CONST }
7 fun” { FUN }

"parallel” { PARALLEL }

"break” { BREAK }

”continue” { CONTINUE }

“invocations” { INVOCATIONS }

7thread count” { THREADCOUNT }

7atomic” { ATOMIC }

"namespace” { NAMESPACE }

“import” { IMPORT }

' { string literal (Buffer.create 128) lexbuf }
decimal digit+ as lxm { INTLITERAL(Num.num of string lxm)

}

70c¢” | 70C” { octal int_ literal lexbuf }

70x” | 70X” { hex int_ literal lexbuf }

”70b” | "0B” { binary int literal lexbuf }

(70n” | "ON”) (decimal digit+ as b) ("n” | "N”) {
n_int_literal (int_of string b) lexbuf }

'.| [‘0’_'9'}_’_ ('e| ('+‘|‘_')? ['O’_'g’]_"_)? as s {
FLOATLITERAL(Polyfill .num_of_string s)

[vol_vgv]+ (1ot [vov_vgv]* (vev (v_|_v|v_v)? [vov_vgv]+)?
| (e ("+'["=")7 ['0'"="9"]4)7) as s { try FLOATLITERAL(
Polyfill .num_of string base 10 s) with _ —> raise (

Errors.BadNumericLiteral(s, (Lexing.lexeme start_ p
lexbuf, Lexing.lexeme end p lexbuf))) }

['a'_‘zl ’A'_'Zl][‘a'_lzl |A|_'Z‘ '0’_'9' |7|}* as s { ID
(s) }
eof { EOF }

_as ¢ { raise (Errors.UnknownCharacter(String.make 1 c,

(Lexing.lexeme start p lexbuf, Lexing.lexeme end p

lexbuf))) }

and octal int literal = parse

octal digit+ as s { try INTLITERAL(Polyfill.
num_of string_base 8 s) with _ —> raise (Errors.

183

119

120
121
122

123

124

125
126
127
128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

BadNumericLiteral (s, (Lexing.lexeme start p lexbuf
Lexing.lexeme end p lexbuf))) }
| _ as ¢ { raise (Errors.BadNumericLiteral(String.make 1 c,

(Lexing.lexeme_start_p lexbuf, Lexing.lexeme end_p
lexbuf))) }

and hex int literal = parse
| hex digit+ as s { try INTLITERAL(Polyfill.
num_of string base 16 s) with _ —> raise (Errors.

BadNumericLiteral (s, (Lexing.lexeme_start_p lexbuf,
Lexing.lexeme end p lexbuf))) }

| as ¢ { raise (Errors.BadNumericLiteral(String.make 1 c,
(Lexing.lexeme_start_p lexbuf, Lexing.lexeme end_p
lexbuf))) }

and binary int literal = parse
| binary_digit+ as s { try INTLITERAL(Polyfill.
num_of string_ base 2 s) with _ —> raise (Errors.

BadNumericLiteral (s, (Lexing.lexeme_start_p lexbuf,
Lexing.lexeme end p lexbuf))) }

| as ¢ { raise (Errors.BadNumericLiteral(String.make 1 ¢,
(Lexing.lexeme_start_p lexbuf, Lexing.lexeme end_p
lexbuf))) }

and n_int literal base = parse

| n_digit+ as s { INTLITERAL(Polyfill.
num_of_ string_ base base s) }

| as ¢ { raise (Errors.BadNumericLiteral(String.make 1 c,
(Lexing.lexeme_start_p lexbuf, Lexing.lexeme end_ p
lexbuf))) }

and string literal string buffer = parse

| newline as ¢ { Lexing.new_line lexbuf; Buffer.add_ char
string buffer c¢; string literal string buffer lexbuf }

| """ { let v = STRINGLITERAL(Buffer.contents
string buffer) in v }

| "\\\”” as s { Buffer.add_string string_buffer s;
string_literal string_ buffer lexbuf }

| _ as ¢ { Buffer.add_ char string_ buffer c¢; string literal
string buffer lexbuf }

184

143
144

145

146

147
148
149
150
151
152

153

AW N e

o

19

and multi comment level = parse

| newline { Lexing.new_ line lexbuf; multi comment level
lexbuf }

| 7%/” { if level = 0 then token lexbuf else multi_comment
(level —1) lexbuf }

| 7/+«” { multi_comment (level+1) lexbuf }

| _ { multi_comment level lexbuf }

and single comment = parse
| newline { Lexing.new_ line lexbuf; token lexbuf }
| _ { single_comment lexbuf }

../source/scanner.mll
7{
(# LePiX — LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”"AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

185

NN

[} Tt N

N V] [V [V (V] (V]
S o ¢

(# Parser for the LePiX language: compatible with both
ocamlyacc and

menhir

as we have developed against both for testing

)

purposes. x)

%o}

%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token

Y%right
%right
%right
%left
%left
%left
%left
%left
%left
%right

SEMI LPAREN RPAREN LBRACE RBRACE COMMA
LSQUARE RSQUARE COLON

DOT

PARALLEL INVOCATIONS ATOMIC THREADCOUNT
PLUSPLUS MINUSMINUS

PLUS MINUS TIMES DIVIDE ASSIGN

MODULO

PLUSASSIGN MINUSASSIGN TIMESASSIGN DIVIDEASSIGN
MODULOASSIGN

NOT AND OR EQ NEQ LT LEQ GT GEQ

TRUE FALSE

VAR LET

FUN TO BY

RETURN CONTINUE BREAK IF ELSE FOR WHILE
AMP CONST

<int> INT

<int> FLOAT

BOOL VOID STRING MEMORY

AUTO

NAMESPACE

IMPORT

<string> ID

<string> STRINGLITERAL

<Num.num> INTLITERAL

<Num.num> FLOATLITERAL

EOF

ASSIGN
PLUSASSIGN MINUSASSIGN
TIMESASSIGN DIVIDEASSIGN MODULOASSIGN
OR
AND
EQ NEQ
LT GT LEQ GEQ
PLUS MINUS
TIMES DIVIDE MODULO
NOT NEG

186

ot %left LSQUARE

65 Nleft LPAREN

66 %Dleft MINUSMINUS
67 %left PLUSPLUS

6o %start program
70 %type<Ast.program> program
o %%

73 qualified id builder:
| ID { [$1] }

75| qualified id_builder DOT ID { $3 :: $1 }
77 qualified id:

7s | qualified id_builder { List.rev $1 }

so builtin_ type:

st | AUTO { Ast.Auto }

s2 | VOID { Ast.Void }

ss | BOOL { Ast.Bool }

sa | INT { Ast.Int($1) }

s5 | FLOAT { Ast.Float($1) }
| STRING { Ast.String }

s7 | MEMORY { Ast.Memory }

s array_spec:
o0 | LSQUARE RSQUARE { 1 }
o1 | LSQUARE array spec RSQUARE { 1 + $2 }

93 int literal list:
o4 | INTLITERAL { [(Num.int of num $1) | }
o5 | INTLITERAL int_ literal list { (Num.int of num $1) :: $2

}
96

97 sized array spec:

o= | LSQUARE int literal list RSQUARE { (1, $2) }

oo | LSQUARE sized array_spec RSQUARE { let (d, el) = $2 in
(1 +d, el) }

100

11 type_category: { (false, false) }

w2 | AMP { (false, true) }

103 | CONST AMP { (true, true) }

04 | CONST { (true, false) }

105

106 sub_type_ name:

187

107

108

109

110
111
112

113

114
115
116
117

118

119
120
121
122
123
124

125

126
127
128
129
130

131

133

136

| type_category builtin_type { Ast.BuiltinType(
$2, §1) }
| type_category builtin_type array_spec { Ast.Array(Ast.
BuiltinType ($2, Ast.no_qualifiers), $3, $1) }
| type_category builtin_type sized array_ spec { let (d, el
) = $3 in
if d < (List.length el) then
raise (Parsing . Parse_error)
else
Ast.SizedArray (Ast.BuiltinType ($2, Ast.no_qualifiers),
d, el, $1)
}

sub_type name list builder: { [] }
| sub_type_name { [$1] }
| sub_type name_list_builder COMMA sub_type name { $3 :: $1

sub_type name list:
| sub_type_name_list_builder { List.rev $1 }

type name:
| sub_type_name { $1 }
| type_category LPAREN sub_type name_ list RPAREN

sub_type_name { Ast.Function($5, $3, $1) }

expression comma list: {
| expression {
| expression COMMA expression comma_list {

(]}

(51] }

$1 :: $3 }

op_expression:

| expression TIMES expression { Ast.BinaryOp($1, Ast.Mult,
$3) }

| expression DIVIDE expression { Ast.BinaryOp($1, Ast.Div,
$3) }

| expression PLUS expression { Ast.BinaryOp($1, Ast.Add, $3
)}

| expression MINUS expression { Ast.BinaryOp($1, Ast.Sub,
$3) }

| expression MODULO expression { Ast.BinaryOp($1, Ast.
Modulo, $3) }

| expression TIMESASSIGN expression { Ast.BinaryOp($1, Ast.
MultAssign, $3) }

| expression DIVIDEASSIGN expression { Ast.BinaryOp($1, Ast
.DivAssign, $3) }

188

139

140

146

149
150

151

152

153

155
156
157

158

159
160

161

162
163
164

165

166

167

expression PLUSASSIGN expression { Ast.BinaryOp($1, Ast.
AddAssign, $3) }

expression MINUSASSIGN expression { Ast.BinaryOp($1, Ast.
SubAssign, $3) }

expression MODULOASSIGN expression { Ast.BinaryOp($1, Ast
.ModuloAssign, $3) }

expression LT expression { Ast.BinaryOp($1, Ast.Less, $3)

}
expression GT expression { Ast.BinaryOp($1, Ast.Greater,
$3) }
expression LEQ expression { Ast.BinaryOp($1, Ast.Leq, $3)
}
expression GEQ expression { Ast.BinaryOp($1, Ast.Geq, $3)

}
expression NEQ expression { Ast.BinaryOp($1, Ast.Neq, $3)

}
expression EQ expression { Ast.BinaryOp($1, Ast.Equal, $3
)}
expression AND expression { Ast.BinaryOp($1, Ast.And, $3)
}

expression OR expression { Ast.BinaryOp($1, Ast.Or, $3) }

expression ASSIGN expression { Ast.Assignment($1, $3) }

MINUS expression %prec NEG { Ast.PrefixUnaryOp (Ast.Neg,
52))

NOT expression { Ast.PrefixUnaryOp(Ast.Not, $2) }

PLUSPLUS expression { Ast.PrefixUnaryOp (Ast.Prelncrement ,
52 }

MINUSMINUS expression { Ast.PrefixUnaryOp (Ast.
PreDecrement, $2) }

value expression:
| INTLITERAL { let v = match $1 with

| Num.Int (i) — Ast.IntLit((Int64.of int i), Base.
default_integral bit_width)
| Num. Big_ int(bi) —>
begin try
Ast.IntLit (Int64.of int(Big_int.int_of_ big_int bi)
) 32)
with
_ —> Ast.IntLit(Big int.int64 of big int bi, 64)
end
| n — Ast.FloatLit(Num.float of num n, Base.
default_floating bit_width)
in

Ast. Literal (v)

189

179

180

182
183
184
185

186

187

188

189
190
191
192

193

194
195
196
197
198
199
200
201
202
203

204

| FLOATLITERAL { Ast.Literal (Ast.FloatLit(Num. float of num
($1), Base.default_ floating_ bit_width)) }

| STRINGLITERAL { Ast.Literal (Ast.StringLit($1)) }

| TRUE { Ast.Literal (Ast.BoolLit(true)) }

| FALSE { Ast.Literal (Ast.BoolLit(false)) }

| LSQUARE expression_comma_list RSQUARE { Ast.
ArraylInitializer($2) }

| LBRACE expression_comma_list RBRACE { Ast.
ObjectInitializer ($2) }

postfix expression:

| expression LSQUARE expression_ comma_list RSQUARE { Ast.
Index($1, $3) }

| expression LPAREN expression comma _list RPAREN { Ast. Call
($1, 83) }

expression:

| qualified id { Ast.QualifiedId ($1) }

| value_expression { $1 }

| value_ expression DOT qualified id { Ast.Member($1, $3) }

| op_expression { $1 }

| postfix expression { $1 }

| postfix_expression DOT qualified _id { Ast.Member($1, $3)
}

| LPAREN expression RPAREN { $2 }

| LPAREN expression RPAREN DOT qualified id { Ast.Member($2

type_spec:
| COLON type name { $2 }

maybe_type_spec: { Ast.BuiltinType (Ast.Auto, Ast.
no_qualifiers) }
| COLON type_name { $2 }

binding:

| ID type spec { ($1, $2) }

binding list: { [] }

| binding { [$1] }

| binding COMMA binding list { $1 :: $3 }

var binding:
| ID type spec { ($1, $2) }

190

205
206
207

208

209

210

N}
~ =]

®

W W W N NN

S I U R R

NONORN N NN NN NN NN
[od]

W W W W W W W

240
241

242

| ID { ($1, Ast.BuiltinType(Ast.Auto, Ast.no_qualifiers)) }

variable definition:

| VAR var_binding ASSIGN expression { Ast.VarBinding($2, $4
)}

| LET var_binding ASSIGN expression { Ast.VarBinding(Ast.
add_const($2), $4) }

| VAR var_binding { Ast.VarBinding($2, Ast.Noop) }

| LET var_ binding { Ast.VarBinding(Ast.add_ const($2), Ast.
Noop)

statement list_ builder: { [] }
| statement list_builder statement { $2 :: $1 }

statement list
| statement list_ builder { List.rev $1 }

parallel binding:
| INVOCATIONS ASSIGN expression { Ast.Invocations($3) }
| THREADCOUNT ASSIGN expression { Ast.ThreadCount($3) }

parallel binding list_ builder: { [] }
| parallel binding { [$1] }
| parallel binding list_ builder COMMA parallel binding { $3

parallel binding list:
| parallel binding list_ builder { List.rev $1 }

sub_general statement:
| expression { Ast.ExpressionStatement($1) }
| variable definition { Ast.VariableStatement ($1) }

general statement:
| sub_general statement SEMI { Ast.General($1) }

control initializer builder:

| sub_general statement { ([$1], 1) }

| control initializer builder SEMI sub_general statement {
let (1, ¢) =8%1 in ($3 :: 1, 1 + ¢) }

control initializer:

| control initializer builder { let (il, ¢) = $1 in if ¢
< 2 then ([], List.hd il) else (List.rev (List.tl il),
List.hd il) }

191

256

J

V)

258
259
260
261
262

263

265

sub_general statement list builder: { [] }

| sub_general statement { [$1] }

| sub_general statement_list_builder COMMA
sub_general statement { $3 :: $1 }

sub_general statement list:
| sub_general statement list builder { List.rev $1 }

statement :

| general statement { $1 }

| IF LPAREN control_ initializer RPAREN LBRACE
statement list RBRACE { Ast.IfBlock($3,8%6) }

| IF LPAREN control_initializer RPAREN LBRACE
statement list RBRACE ELSE LBRACE statement list RBRACE
{ Ast.IfElseBlock($3,%6,810) }

| WHILE LPAREN control_initializer RPAREN LBRACE
statement list RBRACE { Ast.WhileBlock($3, $6) }

| FOR LPAREN sub_general statement_list SEMI expression
SEMI expression comma list RPAREN LBRACE statement list
RBRACE { Ast.ForBlock($3, $5, $7, $10) }

| FOR LPAREN expression TO expression BY expression RPAREN
ILBRACE statement list RBRACE { Ast.ForByToBlock($3, $5,
$7, $10) }

| RETURN expression SEMI { Ast.Return($2) }

| RETURN SEMI { Ast.Return(Ast.Noop) }

| BREAK SEMI { Ast.Break(1l) }

| BREAK INTLITERAL SEMI { Ast.Break(Num.int of num $2) }

| CONTINUE SEMI { Ast.Continue }

| PARALLEL IPAREN parallel binding_list RPAREN LBRACE
statement list RBRACE { Ast.ParallelBlock($3, $6) }

| PARALLEL LBRACE statement list RBRACE { Ast.
ParallelBlock ([Ast.ThreadCount (Ast. Literal (Ast.IntLit (
Int64.of int(—1), Base.default integral bit_width)));
Ast.Invocations (Ast.Literal (Ast.IntLit (Int64.o0of int(—1),
Base.default _integral bit_width)))], $3) }

| ATOMIC LBRACE statement list RBRACE { Ast.AtomicBlock($3)

}

function definition:
| FUN ID LPAREN binding_list RPAREN maybe_type_spec LBRACE
statement list RBRACE { ([$2], $4, $6, $8) }

import definition:

| IMPORT qualified id { $2 }

192

280

I U C R

16

18

19

definition list : { [] }

| definition list import_ definition { Ast.Import(Ast.
LibraryImport ($2)) :: $1 }

| definition_list function_ definition { Ast.Basic(Ast.
FunctionDefinition($2)) :: $1 }

| definition list variable definition SEMI { Ast.Basic(Ast.
VariableDefinition ($2)) :: $1 }

| definition_list NAMESPACE qualified _id LBRACE
definition list RBRACE { Ast.Namespace($3, List.rev §$5)

$1 }

program :
| definition list EOF { Ast.Program(List.rev $1) }

../source/parser.mly
(# LePiX Language Compiler Implementation

Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”"AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

193

10

16

oot
o

56

(* Drives the typical lexing and parsing algorithm
while adding pertinent source, line and character
information. x)

type context = {
mutable source name : string;
mutable source_code : string;
mutable original source code : string;
mutable token count : int;
mutable token : Parser.token x Base.token source;
}

let lex sourcename lexbuf =
let rec acc lexbuf tokennumber tokens =
let next token = Scanner.token lexbuf
and startp = Lexing.lexeme start p lexbuf
and endp = Lexing.lexeme end p lexbuf
in
let line = startp.Lexing.pos Ilnum
and relpos = (1 + startp.Lexing.pos_cnum — startp.
Lexing.pos_bol)
and endrelpos = (1 + endp.Lexing.pos _cnum — endp.Lexing
.pos_bol)
and abspos = startp.Lexing.pos_ cnum
and endabspos = endp.Lexing.pos cnum
in
let create token token =
let t = (token, { Base.token source name =
sourcename ; Base.token number = tokennumber;
Base.token line number line; Base.
token line start = startp.Lexing.pos bol;
Base.token_column_range = (relpos, endrelpos); Base
.token_ character range = (abspos, endabspos) }
) in
t
in
match next token with
| Parser .EOF as token —> (create_token token)

tokens

| token —> (create token token) :: (acc lexbuf (1 +
tokennumber) tokens)

in

acc lexbuf 0 []

194

66
67
68
69

70

let parse context token list =
(* Keep a reference to the original token list
And use that to dereference rather than whatever crap we

get from

the channel x)

let tokenlist = ref(token_ list) in

let tokenizer _ = match !tokenlist with

(x Break each token down into pieces, info and allx)

(token, info) :: rest —>

context.source name <— info.Base.token source name;
context.token count <— 1 4+ context.token count;
context.token <— (token, info);

(* Shift the list down by one by referencing

the beginning of the rest of the list x)

tokenlist := rest;
(* return token we care about x*)
token

(¥ The parser stops calling the tokenizer when
it hits EOF: if it reaches the empty list , WE SCREWED UP

*)
[] = raise (Errors.MissingEoF)

in
(* Pass in an empty channel built off a cheap string

and then ignore the fuck out of it in our 'tokenizer

internal function x)

let program = Parser.program tokenizer (Lexing.
from_string ””) in
program

let analyze program =
(* TODO: other important checks and semantic analysis

here

that will create a proper checked program typesx)
let sem = Semant.check program in

sem

../source/driver.ml

(# LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person

obtaining a copy of this

software and associated documentation files (the ”Software”

), to deal in the Software

without restriction , including without limitation the

rights to use, copy, modify,

195

W oW W W W NNN N NN
=W N = O O N O G

w
o

36

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(¥ Semantic checking for the Lepix compiler that will
produce a new

SemanticProgram type with things like locals group into a
single type

and type promotions / conversions organized for operators.

*)
module StringMap = Map.Make(String)

let extract binding = function
| Ast.VarBinding(b,) —> b

let extract s binding = function
| Semast.SVarBinding(b,) —> b

let extract s binding name = function
| (n,) —>n

let extract s binding type = function
| (_, tn) = tn

let create_s_attributes () = {
Semast.attr parallelism = false;

196

}

Semast.attr arrays = 0;
Semast.attr strings = false;

let create_s_environment () = {

}

Semast.env_usings = [];
Semast.env_symbols = StringMap .empty;
Semast.env definitions = StringMap .empty;
Semast.env_imports = [];

Semast .env_loops = [];

let enter block envl locals parameters =

let acc_symbols m 1 =

let (n, tn) = (extract_s_binding name 1,
extract_s_binding_ type 1) in

StringMap.add n tn m
in
let symbols = List.fold left acc_symbols StringMap.empty
parameters in
let symbols = List.fold left acc symbols symbols locals
in

let env = {
Semast.env_usings = [];
Semast.env_symbols = symbols;
Semast.env definitions = StringMap.empty;
Semast.env_imports = [];

Semast.env_loops = [];
} in

env :: envl

let enter parameter block envl parameters =

let acc _symbols m 1 =
let (n, tn) = (extract_s_binding_ name 1,
extract_s_binding_ type 1) in
StringMap.add n tn m
in
let m k vl v2 = match (vl, v2) with
| Some(x), Some(_) —> Some(x)
| Some(x) as s, None —> s
| None, (Some(y) as s) —> s
| _ —> None
in
let symbols = List.fold left acc symbols StringMap.empty
parameters in

197

93
94
95

96

99
100
101
102
103
104
105
106
107
108
109
110

111

118
119

120

let env = List.hd envl in

let env = { env with
Semast .env_symbols = (StringMap.merge m symbols env.
Semast . env_symbols);

} in

env :: envl

let lookup id name mapl =
let rec find = function
| [] — None
| h :: tl —> try Some (StringMap.find name h)
with | _ —> find tl
in
find mapl

let env lookup id name envl =
let mapl = (List.map (fun env —> env.Semast.env_symbols
) envl) in
lookup id name mapl

let accumulate_string type_bindings syms (n, qt) =
let rec list _cmp vl v2 = match vl, v2 with
| hl::t1l, hr::tlr — hl = hr && list_cmp tl11 tlr
| {1, [I = true
| . [] — false
| [], _ — false
in
try
let check f 1 =
let qt_ argst = Semast.args type name qt in
let pred t =
let argst = Semast.args type name t in
(List.length argst) = (List.length qt_argst)
&& (list_cmp argst qt_argst)

in
begin try
let = List.find pred 1 in
raise (Errors.FunctionAlreadyExists (7an id with name
“n "7 and type 7 ° (Representation.
string_of_s_type_name qt) ~ 7 is already present”))
with
Not_found —> Semast.SOverloads(qt :: 1)
end
in

let v = StringMap.find n syms in

198

136

139

140
141
142

143

144
145
146
147

148

149

150

let vt = match v with
| Semast.SOverloads(tl) —> check f tl
| Semast.SFunction(_, ,) as t —> check_f [t]
| _ — raise(Not_found)

in

StringMap.add n vt syms

with Not found —>
StringMap.add n gt syms

let import builtin module symbols = function
| Semast.Lib —> begin
let ¢_bindings = |
("1lib.print”, Semast.SFunction(Semast.void t, [
Semast.int32_t], Semast.no_ qualifiers));
(”1lib .print”, Semast.SFunction(Semast.void t, [
Semast . string _t], Semast.no_qualifiers));
(”1lib.print”, Semast.SFunction(Semast.void t, [
Semast . float64 _t], Semast.no_ qualifiers));
(”1lib .print n”, Semast.SFunction(Semast.void t, |
Semast.int32_t], Semast.no_ qualifiers));
(71ib .print _n”, Semast.SFunction(Semast.void t, |
Semast . string _t], Semast.no_qualifiers));
("1lib .print _n”, Semast.SFunction(Semast.void t, |
Semast . float64 _t], Semast.no_qualifiers));
1
in
print endline ”Here!”;
let symbols = List.fold left
accumulate_string type_bindings symbols c¢_bindings in

(symbols)
end
let rec type name of ast type name = function

| Ast.BuiltinType(bt, tq) —> Semast.SBuiltinType(bt, tq
)

| Ast.Array(tn, d, tq) —> Semast.SArray((
type_name_of ast_ type_name tn), d, tq)

| Ast.SizedArray(tn, d, dims, tq) —> Semast.SSizedArray (
(type_name_ of ast type name tn), d, dims, tq)

| Ast.Function(tn, pl, tq) —> Semast.SFunction((
type_name_of ast_ type_name tn), (List.map
type_name_of ast_ type_name pl), tq)

let type name of ast literal attrs envl astlit =
let t = match astlit with

199

156

159
160
161

162

163

164

165

166

168

169
170

171

| Ast.BoolLit(_) —> Ast.BuiltinType(Ast.Bool, Ast.
no_qualifiers)
| Ast.IntLit(_, b) —> Ast.BuiltinType(Ast.Int(b), Ast.
no_qualifiers)
| Ast.FloatLit(_, b) —> Ast.BuiltinType(Ast.Float(b),
Ast.no_qualifiers)
| Ast.StringLit(_) —> Ast.BuiltinType(Ast.String, Ast.
no_qualifiers)
in
type name of ast type name t

let check binary op common_ type lt bop rt = match (lt, rt)

with

| (Semast.SBuiltinType(Ast.Int(n), ltq), Semast.
SBuiltinType (Ast.Int (m), rtq)) —> Semast.SBuiltinType (
Ast.Int (max n m), Semast.no_ qualifiers)

| (Semast.SBuiltinType (Ast.Float(n), ltq), Semast.
SBuiltinType (Ast.Int (m), rtq)) —> Semast.SBuiltinType (
Ast.Float (max n m), Semast.no_qualifiers)

| (Semast.SBuiltinType(Ast.Int(n), ltq), Semast.
SBuiltinType (Ast. Float (m), rtq)) —> Semast.SBuiltinType (
Ast.Float (max n m), Semast.no_qualifiers)

| (Semast.SBuiltinType (Ast.Float(n), ltq), Semast.
SBuiltinType (Ast. Float (m), rtq)) —> Semast.SBuiltinType (
Ast.Float (max n m), Semast.no_qualifiers)

| (Semast.SBuiltinType (Ast.Bool, ltq), Semast.
SBuiltinType (Ast.Bool, rtq)) —> Semast.SBuiltinType (Ast.
Bool, Semast.no_qualifiers)

| _ —> raise(Errors.InvalidBinaryOperation (” cannot
perform a binary operation on two non—numeric types”))

let check unary op uop sr = match sr with
| Semast.SBuiltinType (Ast.Int(n), ltq) —> Semast.
SBuiltinType (Ast.Int (n), Semast.no_ qualifiers)
| Semast.SBuiltinType (Ast.Float(n), ltq) —> Semast.
SBuiltinType (Ast. Float (n), Semast.no qualifiers)
| _ —> raise(Errors.InvalidUnaryOperation (”cannot perform
a unary operation on this type”))

let overload_resolution args = function
| Semast.SFunction(__, tnl,) —> let argslen = (List.
length args) in
let overloadlen = (List.length tnl) in
argslen = overloadlen &&
if (argslen > 0) then (List.exists (fun a —> List.

200

180

181

183

184

186
187
188

189

190

191
192
193
194

195

196

197

198

199
200

201

202
203
204
205
206

207

208

209

210

mem a tnl) args)

else true
| _ —> raise(Errors.TypeMismatch(” cannot resolve an
overload that includes a non—function in its type
listing”))

let check function overloads args overloadlist =
begin try

let ft = List.find (overload_resolution args)
overloadlist

in

(ft, Semast.return_type name ft)
with —>

let argslist = 7(7 ° (String.concat ”,” (List.map
Representation.string_of _s_type_ name args)) = 7)” in
raise (Errors.BadFunctionCall(” could not resolve the
specific overload for this set of 7 ° (Representation.

string_of s _type name (Semast.SOverloads(overloadlist)
)) © 7 using ” argslist))
end

let rec type name of ast expression attrs envl astexpr =
let t = match astexpr with
| Ast.Literal(lit) —> type_name_of_ast_literal attrs
envl lit
| Ast.QualifiedId (qid)—> let qualname = Semast.
string of qualified id qid in
begin match (env_lookup_id qualname envl) with
| None —> raise (Errors.IdentifierNotFound (”
identifier '” ° qualname "~ 7' not found”))
| Some(stn) —> stn
end
| Ast.Call(e, args) —> let ft =
type_name_ of ast expression attrs envl e in
(¥ TODO: check arguments to make sure it matches x)
begin match ft with
| Semast.SFunction(rt, pl, tq) —
rt
| Semast.SOverloads(fl) —
let sargs = List.map (
type_name_of_ ast_expression attrs envl) args in
let (ft, r) = check_function_overloads sargs fl
in
T
| _ —> raise(Errors.TypeMismatch(” expected a

201

function type, but received something else.”))
end

| Ast.Noop —> Semast.void_t

| Ast.BinaryOp(l, bop, r) —>

let sl = type name of ast expression attrs envl 1
and sr = type name of ast expression attrs envl r
in

check binary op common_ type sl bop sr
| Ast.PrefixUnaryOp (uop, r) —>
let sr = type name of ast expression attrs envl r in
check unary op uop sr
| Ast.Assignment (lhs, rhs) —> let lhst =
type _name_ of ast expression attrs envl lhs in
lhst
| Ast.Member(_,) —> raise(Errors.Unsupported (”member
access is not supported”))
| _ —> raise(Errors.Unsupported(” expression conversion
currently unsupported”))

in

(x TODO: some type checks to make sure weird things like
void& aren't put in place... *)

t

let process ast_ import prefix symbols defs imports =

function
| Ast.LibraryImport(qid) —>
let qualname = Semast.string of qualified id qid in

let (v, impsymbols) = match List. filter (fun (n,) —>
n = qualname) Semast.builtin_library_names with
| (_, bltin) :: [] —> let b = Semast.SBuiltin(bltin)
in
let (bltinsymbols) = import_builtin_module
symbols bltin in
(b, bltinsymbols)
| _ —> (Semast.SDynamic(qualname), symbols)

in
(prefix, impsymbols, defs, v :: imports)
let generate global env = function

| Ast.Program(ast_definitions) —>
let rec acc (prefix, symbols, defs, imports) def =
match def with
| Ast.Import(imp) —> process_ast_import prefix
symbols defs imports imp

202

246

247

248

249

259

260

261

266

267
268

269

270

b
~

NN N
PN IEEN BN BN |

V)
ot

| Ast.Basic(Ast.FunctionDefinition ((qid, args, rt, _)
) =
let argst = List.map Ast.binding_ type args in
let qualname = prefix ~ Semast.
string of qualified id qid in
let qt = Ast.Function(rt, argst, Ast.no_qualifiers)

in

let sqt = (type_name_of_ ast_type name qt) in

print endline ”here”;

let nsymbols = accumulate string type bindings
symbols (qualname, sqt)

and ndefs = accumulate string type bindings defs (
qualname , sqt)

in

(prefix, nsymbols, ndefs, imports)
| Ast.Basic(Ast. VariableDefinition(v)) —
let (name, qt) = extract_binding v in
let qualname = prefix ~ name in
if StringMap.mem prefix symbols then raise (Errors.
VariableAlreadyExists (qualname)) else
let nsymbols = (StringMap.add qualname (
type_name_of ast_ type name qt) symbols)
and ndefs = (StringMap.add qualname (
type_name_of ast_ type_name qt) defs)
in
(prefix, nsymbols, ndefs, imports)
| Ast.Namespace(n, dl) —

let qualname = prefix ~ Semast.
string of qualified id n in

let (_, innersymbols, innerdefs, innerimports) =
List.fold _left acc (qualname ~ ”7.”, symbols, defs,

imports) dl in
(prefix, innersymbols, innerdefs, innerimports)

in
let (_, symbols, defs, imports) = List.fold_left acc (77,

StringMap .empty, StringMap.empty, []) ast_definitions
in

let attrs = create_s_attributes () in
let env = {
Semast.env_usings = [];
Semast.env_symbols = symbols;
Semast.env definitions = defs;
Semast.env imports = imports;
Semast .env_loops = [];

203

304
305
306
307
308
309
310
311

312
313

314

in
(attrs, env)

let check qualified identifier attrs envl sl t =
(attrs, envl, Semast.SQualifiedId(sl, t))

let check function call attrs envl target args =
let (t, rt) = match Semast.type_name_of s_expression
target with
| Semast.SFunction(tn, tnl, tq) as f —> f, tn
| Semast.SOverloads(fl) —
let args t = (List.map Semast.
type_name_of_s_expression args) in
check function overloads args t fl
| _ —> raise(Errors.BadFunctionCall(”cannot invoke an
expression which does not result in a function type of
some sort”))
in
(attrs, envl, Semast.SCall((Semast.
coerce_type_name_of_s_expression t target), args, rt))

let generate s binding prefix attrs envl = function
| (name, tn) —> (attrs, envl, (Semast.
string of qualified id (prefix @ [name]),
type_name_of ast_type_name tn))

let gather ast locals attrs envl sl pl =

let acc locals = function
| Ast.General (Ast.VariableStatement (v)) —>
let (_, _, sb) = generate_s_binding [] attrs envl (
extract_binding v) in
sb :: locals
| _ —> locals
in

let 1 = List.rev(List.fold_left acc [] sl) in
if (List.length 1) > 0 then begin

let envl = (enter_block envl 1 pl) in
(true, attrs, envl, 1)
end else
let envl = (enter_parameter_block envl pl) in

(false , attrs, envl, 1)
let generate s literal attrs envl = function

| Ast.BoolLit(b) —> (attrs, envl, Semast.SBoolLit(b))
| Ast.IntLit(i, b) —> (attrs, envl, Semast.SIntLit(i, b))

204

333
334
335

336

339

340

| Ast.FloatLit(f, b) —> (attrs, envl, Semast.SFloatLit(f,

b))

| Ast.StringLit(s) —> (attrs, envl, Semast.SStringLit(s))

let rec generate s expression attrs envl astexpr =
let acc_s_expression (attrs, envl, sel) e =

let (attrs, envl, se) = generate s_expression attrs
envl e in
(attrs, envl, se :: sel)
in
let (attrs, envl, se) = match astexpr with
| Ast.Literal(lit) —>
let (attrs, envl, slit) = generate_s_literal attrs

envl lit in

(attrs, envl, Semast.SLiteral(slit))
| Ast.QualifiedId(sl) —

let t = type name of ast expression attrs envl
astexpr in

check qualified identifier attrs envl sl t
| Ast.Call(e, el) —

let (attrs, envl, target) = (generate_s_expression
attrs envl e) in

let (attrs, envl, args) = (List.fold left
acc_s_expression (attrs, envl, []) el) in

let args = List.rev args in

check function call attrs envl target args
| Ast.BinaryOp(lhs, bop, rhs) —>

let (attrs, envl, slhs) = (generate_ s _ expression
attrs envl lhs) in

let (attrs, envl, srhs) = (generate_ s _expression
attrs envl rhs) in

let rhst = (Semast.type_ name_of_s_expression srhs)
in

let lhst = (Semast.type_name_of_s_expression slhs)
in

(attrs, envl, Semast.SBinaryOp(slhs, bop, srhs, (
check_ binary op_common_type lhst bop rhst)))
| Ast.PrefixUnaryOp(uop, rhs) —>

let (attrs, envl, srhs) = (generate_ s _expression
attrs envl rhs) in
let rhst = (Semast.type_ name_of_s_expression srhs)

in
(attrs, envl, Semast.SPrefixUnaryOp(uop, srhs, (
check _unary_op uop rhst)))
| Ast.Assignment(lhs, rhs) —>

205

346

347

348

349

359

NS BN BN |
3

let (attrs, envl, slhs) = (generate_s_expression
attrs envl lhs) in

let (attrs, envl, srhs) = (generate_s_expression
attrs envl rhs) in
let lhst = (Semast.type_ name_of_s_expression slhs)

in
(attrs, envl, Semast.SAssignment(slhs, srhs, lhst)
)
| Ast.Noop —> (attrs, envl, Semast.SNoop)
| _ —> raise(Errors.Unsupported(” expression generation
for this type is current unsupported”))
in
let t = Semast.type name of s expression se in
let attrs = match t with
| Semast.SArray(_,d,)
| Semast.SSizedArray(_,d, ,) —> {

Semast.attr strings = attrs.Semast.attr strings;
Semast . attr arrays = max d attrs.Semast.attr arrays
Semast.attr parallelism = attrs.Semast.

attr parallelism;
}
| Semast.SBuiltinType(Ast.String,) — {
Semast.attr strings = true;
Semast.attr arrays = attrs.Semast.attr arrays;
Semast.attr parallelism = attrs.Semast.
attr parallelism;
}
| _ —> attrs
in
(attrs, envl, se)

let generate s variable definition prefix attrs envl =

function
| Ast.VarBinding(b, e) —>
let (attrs, envl, sb) = generate_s_binding prefix attrs

envl b in
let (attrs, envl, se)
envl e in
(attrs , envl, Semast.SVarBinding(sb, se))

generate s expression attrs

let generate s general statement attrs envl = function
| Ast.ExpressionStatement(e) —>
let (attrs, envl, se) = generate_ s_expression attrs

envl e in

206

389

390

391

392

393

394

395

396

397
398
399

100
401

402

103
404
105
406

107

108

109

410

411

112

413

(attrs, envl, Semast.SExpressionStatement(se))
| Ast.VariableStatement(v) —>
let (attrs, envl, sv) = generate_s_variable_definition
[] attrs envl v in
(attrs, envl, Semast.SVariableStatement(sv))

let generate s statement attrs envl = function
| Ast.General(g) —>
let (attrs, envl, sgs) = generate_s_general statement

attrs envl g in

(attrs, envl, Semast.SGeneral(sgs))
| Ast.Return(e) —>

let (attrs, envl, se) = generate_s_expression attrs
envl e in

(attrs, envl, Semast.SReturn(se))
| _ —> raise(Errors.Unsupported (”statement type not
supported”))

let check returns name ssl rt =
(* Todo: recursively inspect all inner blocks for return
types as well x*)

let acc rl = function

| Semast.SReturn(se) —> (Semast.
type_name_of_s_expression se) :: rl

| _ —>rl
in
let returns = List.fold_ left acc [] ssl in
let returnlength = List.length returns in
if name = ”"main” then begin

let sret0 = Semast.SReturn(Semast.SLiteral (Semast .
SIntLit (Int64.zero, 32))) in
let mainpred = function
| Semast.SBuiltinType (Ast.Auto,) —>
0
| Semast.SBuiltinType(Ast.Int(32), (_, r)) —
if r then raise(Errors.InvalidMainSignature(” Cannot
return a reference from main”));
0
| —
raise (Errors.InvalidMainSignature (”You can only
return an int from main”))
in
let ssl = if returnlength < 1 then begin ssl @ [sret0]
end else ssl
in

207

414
415

416

430
431
432
133
434
435

436

437
438
439
440

141

443
444
445

446

let ssl = match rt with
| Semast.SBuiltinType(Ast.Int(32), (_, r)) —>
if r then raise(Errors.InvalidMainSignature (” Cannot
return a reference to and integer”));

let = List.iter mainpred returns in
ssl
| = — let _ = List.iter mainpred returns in
ssl
in
(ssl, Semast.int32 t)
end

else begin
let generalpred rt r = match rt with
| Semast.SBuiltinType (Ast.Auto,) —> r
| _ — let r = Semast.unqualify r in
let urt = Semast.unqualify rt in
if r <> urt then raise(Errors.
InvalidFunctionSignature ("return types do not match
across all returns”, name))
else rt
in
let rt = List.fold left generalpred rt returns in
let (ssl, rt) = match rt with
| Semast.SBuiltinType(Ast.Auto,) —>
if returnlength < 1 then
(ssl @ [Semast.SReturn(Semast.SNoop)], Semast.
void_t)
else
(ssl, rt)
| Semast.SBuiltinType (Ast.Void,) —>
if returnlength < 1 then
(ssl @ [Semast.SReturn(Semast.SNoop)], Semast.
void_t)
else
(ssl, rt)
| _ —
if returnlength < 1 then
raise (Errors.InvalidFunctionSignature (" function
was expected to return a value: returned no value”, name

)

else
(ssl, rt)
in
(ssl, rt)
end

208

153 let generate s function definition prefix attrs envl

astfdef =

154 let acc_ast_statements (attrs, envl, ssl) s =

155 let (attrs, envl, ss) = (generate_s_statement attrs
envl s) in

156 (attrs, envl, ss :: ssl)

457 in

458 let acc_ast_parameters (attrs, envl, pl) p =

159 let (attrs, envl, sp) = generate_s_binding [] attrs
envl p in

160 (attrs, envl, sp :: pl)

461 in

462 let (qid, astparameters, astrt, body) = astfdef in

163 let fqid = prefix @ qid in

164 let fqn = Semast.string of qualified id fqid in

165 let (attrs, envl, parameters) = List.fold left
acc_ast_parameters (attrs, envl, []) astparameters in

466 let rt = type name of ast type name astrt in

167 let (has_locals, attrs, envl, bl) = gather_ ast_locals
attrs envl body parameters in

168 let (attrs, envl, ssl) = List.fold left
acc_ast_statements (attrs, envl, []) body in

469 let ssl = List.rev ssl in

470 let (ssl, rt) = check_returns fqn ssl rt in

171 let sfuncdef = if has locals then

172 {

173 Semast . func_name = fqid;

474 Semast . func_parameters = Semast.SParameters(parameters)

175 Semast.func return_ type = rt;

176 Semast . func_body = [Semast.SBlock (Semast.SLocals(bl),
ssl)];

177 }

478 else

179 {

180 Semast . func name = fqid;

181 Semast . func_parameters = Semast.SParameters(parameters)

482 Semast . func_ return_type = rt;

483 Semast . func_body = ssl;

184 }

185 in

186 (attrs, envl, Semast.SFunctionDefinition(sfuncdef))

487

209

188

489

190

191

192
493

494

195

496
497
198

199

500

501

502
503
504

505

506
507
508

509

510
511

512

513
514
515
516
517
518

519

let generate s basic_ definition prefix attrs envl =
function
| Ast.FunctionDefinition (fdef) —
let (attrs, envl, sfdef) =
generate s function definition prefix attrs envl fdef in
(attrs, envl, Semast.SBasic(sfdef))
| Ast.VariableDefinition (vdef) —>
let (attrs, envl, svdef) =
generate s variable definition prefix attrs envl vdef in
(attrs, envl, Semast.SBasic(Semast.SVariableDefinition (
svdef)))

let define libraries attrs env =
let fi = Semast.SFunction(Semast.void t, [Semast.int32 t
], Semast.no_qualifiers) in

let ff = Semast.SFunction (Semast.void t, [Semast.
float64 t], Semast.no_ qualifiers) in
let fs = Semast.SFunction(Semast.void t, [Semast.string t

], Semast.no_qualifiers) in
let fo = Semast.SOverloads ([fi;ff;fs]) in
let 1lib_printn_defint = {

Semast . func_name = [”1ib”; ”print n”];

Semast . func__parameters = Semast.SParameters ([(717,
Semast.int32_t)]);

Semast . func_return_type = Semast.void_t;

Semast . func_body = |
Semast . SGeneral (Semast . SExpressionStatement (
Semast . SCall (Semast. SQualifiedId ([”1ib”; 7print”],
fo), [Semast.SQualifiedId (["1”], Semast.int32 t)],
Semast . void_t)

)5

Semast . SGeneral (Semast . SExpressionStatement (

Semast . SCall (Semast. SQualifiedId ([”1ib”; 7 print”],
fo), [Semast.SLiteral (Semast.SStringLit(”\n”))], Semast.
void_t)

));

Semast . SReturn (Semast . SNoop) ;

I;

and lib_printn_deffloat = {
Semast . func_name = [”1ib”; "print_n”];
Semast . func_parameters = Semast.SParameters ([(717,
Semast . float64 _t)]) ;

210

o

wt
NN NN
w N

o

o

o
NN N

538
539

540

541
542
543
544
545
546

547

548

549

550

552

Semast . func return type = Semast.void t;
Semast . func_body = |
Semast . SGeneral (Semast . SExpressionStatement (

Semast . SCall (Semast. SQualifiedId ([”1ib”; ”print”],
fo), [Semast.SQualifiedId ([7i”], Semast.float64 t)],
Semast . void_t)

)
Semast . SGeneral (Semast . SExpressionStatement (

Semast . SCall (Semast. SQualifiedId ([”1ib”; ”print”],
fo), [Semast.SLiteral (Semast.SStringLit(”\n”))], Semast.
void_t)

)

Semast . SReturn (Semast . SNoop) ;
I
}

and lib_printn_defstr = {

Semast . func_name = [”1ib”; ”print_n”];

Semast . func_parameters = Semast.SParameters ([(71”7,
Semast . string t)]);

Semast.func return_ type = Semast.void t;

Semast . func_body = |
Semast . SGeneral (Semast . SExpressionStatement (

Semast . SCall (Semast. SQualifiedId ([”1ib”; 7 print”],
fo), [Semast.SQualifiedId ([?1”], Semast.string t)],
Semast . void_t)

));
Semast . SGeneral (Semast . SExpressionStatement (

Semast . SCall (Semast. SQualifiedId ([”1ib”; 7 print”],
fo), [Semast.SLiteral (Semast.SStringLit(”\n”))], Semast.
void_t)

));
Semast . SReturn (Semast . SNoop) ;
I
)
in
let libdefs = |
Semast . SBasic (Semast. SFunctionDefinition (
lib_printn_defstr));
Semast . SBasic (Semast. SFunctionDefinition (
lib_printn_defint));
Semast . SBasic (Semast. SFunctionDefinition (
lib_printn_ deffloat));
] in
let acc defs = function
| Semast.SBasic(Semast.SFunctionDefinition (fdef)) —>

211

579
580
581

582

583

584

586

let n = (Semast.string of qualified id fdef.Semast.
func_name)

and qt = (Semast.type_name_of_s_function_definition
fdef)

in

if (StringMap.mem n defs) then defs else
accumulate string type_ bindings defs (n, qt)
| Semast.SBasic(Semast.SVariableDefinition (Semast .
SVarBinding ((n, tn),))) —

(StringMap.add n tn defs)

in

let ndefs = List.fold left acc env.Semast.env definitions
libdefs in

({ env with Semast.env_ definitions = ndefs; }, libdefs)

let direct code inject attrs globalenv imp sdl =

let s = match imp with
| Ast.LibraryImport(qid) —> Semast.
string of qualified id qid

in

match s with
| 71ib” —> let (globalenv, library defs) =
define libraries attrs globalenv in

(globalenv , library_ defs @ sdl)

| _ — (globalenv, sdl)

let generate semantic attrs globalenv = function

| Ast.Program(dl) —>
let envl = [globalenv] in
let rec acc_ast_definitions (prefix, attrs, envl, sdl) =
function

| Ast.Import(imp) —
let globalenv = List.hd (List.rev envl) in
let (globalenv, sdl) = direct_code_inject attrs
globalenv imp sdl in
let tail = List.tl (List.rev envl) in
(prefix , attrs, (globalenv :: tail), sdl)
| Ast.Namespace(n, dl) —> let qualname = prefix @ n in
let (_, attrs, envl, nssdl) = List.fold left
acc_ast_definitions (qualname, attrs, envl, sdl) dl in
(prefix, attrs, envl, nssdl)
| Ast.Basic(b) —

let (attrs, envl, sb) = (generate_s_basic_definition
prefix attrs envl b) in
(prefix, attrs, envl, sb :: sdl)

212

587

589
590
591
592
593
594
595
596

597

599

600

601
602
603
604
605

606

607
608
609
610
611
612
613

614

623

in

let (_, attrs, envl, sdefs) = List.fold_left
acc_ast_definitions ([], attrs, envl, []) dl in
let globalenv = List.hd (List.rev envl) in
Semast . SProgram (attrs, globalenv, List.rev sdefs)

let modify symbols = function
| Semast.SProgram(attrs, env, sdls) —>
let rec acc (symbols, defs) def =
match def with
| Semast.SBasic(Semast.SFunctionDefinition (f)) —
let qualname = Semast.string of qualified id f.
Semast . func _name in
let sqt = (Semast.
type_name_of_s_function_definition f) in

let nsymbols = accumulate string type bindings
symbols (qualname, sqt)

and ndefs = accumulate string type bindings defs (
qualname , sqt)

in

(nsymbols, ndefs)
| Semast.SBasic(Semast.SVariableDefinition(v)) —>

(symbols, defs)
in
let (symbols, defs) = List.fold_left acc (StringMap.empty

, StringMap .empty) sdls in
let m k 1 r = match (1, r) with
| Some(l), Some(_) —> Some(1)

| None, (Some(r) as s) —> s
| (Some(l) as s), None —> s
|

~ —> None
in
let env = { env with
Semast .env_symbols = StringMap.merge m symbols env.
Semast.env_symbols;
Semast.env definitions = defs;
)
in

Semast . SProgram (attrs, env, sdls)

let check astprogram =
(x Pass 1: Gather globals inside of all the namespaces
so they can be referenced even before they're defined (
just so long as
they 're in the same lateral global scope, not necessarily

213

624
625

626

627
628
629
630
631
632

633

634
635
636

637

~

16

in vertical order) x)

let (attrs, env) = generate global env astprogram in

(* Pass 2: Generate the actual Semantic Tree based on
what

is inside the AST program...)

print endline ”Pass 27;

let sprog = generate_ semantic attrs env astprogram in

(x Pass 3: Update any symbols that were resolved during

bottom—up type derivation ... x*)

print _endline ”Pass 37;

let Semast.SProgram(attrs, env, _) = modify_ symbols sprog
in

(¥ Pass 4: Finalize everything with new information x)
print endline ”Pass 47;
let sprog = generate semantic attrs env astprogram in
sprog
../source/semant.ml
(# LePiX Language Compiler Implementation
Copyright (c¢) 2016— ThePhD

Permission is hereby granted, free of charge, to any person
obtaining a copy of this

software and associated documentation files (the ”Software”
), to deal in the Software

without restriction , including without limitation the
rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to

permit persons to whom the Software is furnished to do so,
subject to the following

conditions:

The above copyright notice and this permission notice shall
be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
, WHEIHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

214

w N

NN NN
2oy

CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.)

(¥ Code generation: translate takes a semantically checked
AST and produces

LLVM IR:

http://llvmm.org/docs/tutorial /index.html

http://1lvm .moe/ocaml/ x)

(# Linked code after the ¢ bindings from the makefile
compiled the 1l for the c¢ bindings x*)

module StringMap = Map.Make(String)

type li_universe = {

lu attrs : Semast.s attributes;

lu env : Semast.s environment;

lu _module : Llvm.llmodule;

lu context : Llvm.llcontext ;

lu_ builder : Llvm.llbuilder;

lu variables : Llvm.llvalue StringMap.t;

lu functions : Llvm.llvalue StringMap.t;

lu _named values : Llvm.llvalue StringMap.t;

lu_named params : Llvm.llvalue StringMap.t;

lu_handlers : (li_universe —> (Semast.s_expression list

) = (li_universe % Llvin.llvalue list)) StringMap.t;

}

let create_ li_universe = function | Semast.SProgram(attrs,
env, _) —>
let context = Llvm.global context () in
let builder = Llvm.builder context in

let m = Llvin.create _module context ”lepix” in

{
lu attrs = attrs;
lu env = env;
lu_module = m;
lu context = context;
Iu_ builder = builder;
lu_variables = StringMap.empty;
lu_functions = StringMap.empty;
lu_named values = StringMap .empty;
lu _named params = StringMap.empty;
lu handlers = StringMap.empty;

215

90
91
92
93
94

95

96

let rec llvm_type of s type name lu st =

let 32 t = Llvm. float _type lu.lu context

and f64 ¢t = Llvm.double type lu.lu context

(* for 'char' type to printf — even if they resolve to

same type, we differentiate x)

and char t = Llvm.i8 type Iu.lu context

and 116 _t = Llvmm.i16_type Iu.lu context

and i32 t = Llvm.i32 type lu.lu context

and i64 t = Llvm.i64 type lu.lu context

(* LLVM treats booleans as 1—bit integers, not distinct
types with their own true / false)

and bool t = Llvm.il type Iu.lu context
and void t = Llvm.void_ type lu.lu context
in

let p char t = Llvm.pointer type char t
in

match st with

(x TODO: handle reference—ness (e.g., make it behave like
a pointer here) x)

| Semast.SBuiltinType(Ast.Bool, tq) —> bool_t

| Semast.SBuiltinType(Ast.Int(n), tq) —> begin match n

with
| 64 — i164_t
| 32 — i32_t
| 16 — 116_t
| _ —> Llvm.integer type lu.lu_context n
end
| Semast.SBuiltinType(Ast.Float(n), tq) —> begin match
n with
| 64 — f64_t
| 32 — f32_t

| 16 — (* LLVM actually has support for this, but
shitty OCaml bindings x)
(¥ TODO: Proper Error x)
raise (Failure ”Cannot have a Half Float because
OCaml binding for LLVM is garbage”)
| _ —> (% TODO: Proper Error =)
raise(Failure ”Unallowed Float Width”)
end
| Semast.SBuiltinType(Ast.String, tq) —> p_char_t
| Semast.SBuiltinType(Ast.Void, tq) —> void_t
| Semast.SArray(t, d, tq) —> Llvm.array_ type (
llvin_type_of s _type name lu t) d
| Semast.SSizedArray(t, d, szs, tq) —> Llvm.array type (

216

99

100
101
102

103

104
105
106
107
108
109
110

111

136

llvin_type_of s _type _name lu t) d
| Semast.SFunction(rt, argst, tq) —>
let Irt = llvm_type of s type name lu rt

and largst = Array.map (llvin_type_of_s_type_name lu)

(Array.of list argst)
in
Llvm . function type Irt largst
| _ —> (% TODO: Proper Error x)

raise (Errors. Unsupported (” This type is not convertible

to an LLVM type”))

let should reference pointer = function
| Semast.SBuiltinType (Ast.String,) —> true
| Semast.SArray(_, ,) —> true
| Semast.SSizedArray(_, _, _, _) —> true
| Semast.SFunction(_, _,) —> true
| _ —> false

let find_argument_ handler lu target =
let hn = Llvmm.value name target in
try Some(StringMap.find hn lu.lu_handlers)
with ~ —> None

let llvm lookup function lu name t =
let mname = Semast.mangle name [name] t in
match Llvm.lookup function mname lu.lu module with
| Some(v) —> v
| None —> raise(Errors.FunctionLookupFailure(name,
mname))

let llvm lookup variable lu name t =
match Llvm.lookup global name lu.lu module with
| Some(v) —> v
| None —> raise(Errors.VariableLookupFailure(name,
name))

let dump s qualified id lu qid t =
let fqn = Semast.string of qualified id qid in
let lookup n =

try
let v = StringMap.find n lu.lu _named values in
Some (v)

with | Not_found —>
try

let v = StringMap.find n lu.lu named params in

217

137 Some (v)

138 with | Not_found —> try

139 let v = StringMap.find n lu.lu_variables in
140 Some(v)

141 with | Not_found —> None

142 in

143 let lookup func n =

144 try

145 let v = StringMap.find n lu.lu named values in
146 Some (v)

147 with | Not_found —>

148 try

149 let v = StringMap.find n lu.lu named params in
150 Some (v)

151 with | Not_found —> try

152 let v = StringMap.find n lu.lu functions in
153 Some (V)

154 with | Not_found —> None

155 in

156 let overload lookup qid ft =

157 let mangled = Semast.mangle name qid ft in

158 begin match lookup func mangled with

159 | Some(v) as s —> s

160 | None —> begin match lookup_func fqn with

161 | Some(v) as s —> s

162 | None —> None

163 end

164 end

165 in

166 let overload acc op ft =

167 match op with

168 | Some(v) as s —> s

169 | None —> overload_ lookup qid ft

170 in

171 let idval = match t with

172 | Semast.SFunction(rt, tnl, tq) as ft —

173 begin match overload lookup qid ft with

| Some(v) —> v

175 | None —> raise (Errors.UnknownFunction(fqn))
176 end

1

1

7

177 | Semast.SOverloads(fl)—>

178 begin match List.fold left overload acc None fl with
179 | Some(v) — v

180 | None —> raise (Errors.UnknownFunction(fqn))

181 end

218

182
183
184
185
186
187
188
189
190
191
192

193

194

195

196

197

198

199
200
201
202

203

204
205
206
207
208
209
210
211

212
213
214

215

216
217

218

| _ —> match lookup fqn with
| Some(v) —> v
| None —> raise (Errors.UnknownVariable fqn)

in
(lu, idval)

let dump s literal lu lit =
let f64 t = Llvm.double type lu.lu context
and bool t = Llvm.il type lu.lu_ context
in

let v = match lit with

| Semast.SBoolLit(value) —> Llvm.const_int bool t (if
value then 1 else 0) (x bool t is still an integer , must
convert x)

| Semast.SIntLit (value, b) —> Llvm.const_ of int64 (Llvm
.integer_type lu.lu_context b) value true (% bool for
signedness)

| Semast.SStringLit(value) —>

let str = Llvm.build global stringptr value ”str lit”
lu.lu_builder in

str
| Semast.SFloatLit(value, b) —> Llvm.const float f64 ¢t
value
in
(lu, v)

let dump temporary value lu ev v =
let v = match (Llvm.classify type (Llvm.type of v))
with
| Llvm.TypeKind.Pointer —>
if (should_reference_pointer ev) then

v
else
Llvin. build load v 7tmp” lu.lu_ builder
| _ —> v
in
v

let dump_ s _expression_ temporary gen f lu e =
let (lu, v) = (f lu e) in

let v = dump_temporary_ value lu (Semast.
type_name_of_s_expression e) v in
(lu, v)

let dump_ arguments gen f lu el =

219

NONONRNRNNNNNN N NN NN

238
239
240
241
242
243

244

245

246

247
248
249
250
251

252

w

s

NN N NN
C SRS <]

~

258

259

let acc_expr (lu, vl) e =
let (lu, v) = dump_s_expression_temporary_gen f lu e in
(lu, v :: vl)
in
let (lu, args) = List.fold_left acc_expr (lu, []) el in
(lu, args)

let rec dump s expression lu e =

match e with

| Semast.SLiteral(lit) —> dump_ s literal lu 1lit

| Semast.SQualifiedId (qid, t) —>
let (lu, v) = dump_s_qualified id lu qid t in
(lu, v)

| Semast.SCall(e, el, t) —
let (lu, target) dump s expression lu e in

let oparghandler = find argument handler lu target in
let (lu, args) = match oparghandler with
| None —>
let (lu, args) = (dump_arguments_gen (

dump_s_expression) lu el) in
(lu, List.rev args)
| Some(h) —>
let (lu, args) = (h lu el) in
(lu, args)
in
let arr args = Array.of list args in
let v = match t with
| Semast.SBuiltinType (Ast.Void,) —> Llvm.build_call
target arr_args 7”7 lu.lu_builder
| _ —> Llvm.build_call target arr_args "tmp.call” lu.
lu_builder

in
(lu, v)
| Semast.SBinaryOp(l, bop, r, t) —>
let (lu, lv) = dump_s_expression lu 1 in
let (lu, rv) = dump_s_expression lu r in

let opf = match bop with

| Ast.Add — Llvm.build add

| Ast.Sub —> Llvm.build sub

| Ast.Mult —> Llvm.build _mul

| Ast.Div —> Llvm.build sdiv

| _ —> raise(Errors.Unsupported(” This binary
operation type is not supported for code generation”))
in
let v = opf lv rv 7tmp.bop” lu.lu_ builder in

220

260 (lu, V)
261 | _ —> raise(Errors.Unsupported(” This expression is not
supported for code generation”))

263 let dump s expression temporary lu e =

264 let (lu, v) = (dump_s_expression lu e) in

265 let v = dump_temporary_ value lu (Semast.
type_name_of_s_expression e) v in

266 (lu, v)

267

265 let dump s locals lu locals =

269 let acc lu (n, tn) =

270 let 1ty = llvm_type of s type name lu tn in

271 let v = Llvm. build alloca lty n lu.lu_ builder in

2 { lu with lu_named values = StringMap.add (n) v lu.
lu_named_values }

273 in

274 let Semast.SLocals(bl) = locals in

5 let ITu = List.fold left acc lu bl in

276 lu

s let dump s parameters lu llfunc parameters =

279 let paramarr = Llvm.params llfunc in

280 let paraml = Array.to list paramarr in

281 let Semast.SParameters(bl) = parameters in

282 let nameparam i p =

283 let (n, _) = (List.nth bl i) in

284 (Llvin.set_value_name n p)

285 in

286 let = Array.iteri nameparam paramarr in

287 let acc lu (n, tn) =

288 let v = List.find (fun p — ((Llvm.value name p) =
n)) paraml in

289 { lu with lu_named params = StringMap.add n v lu.
lu_named_params }

290 in

291 let lu = List.fold left acc lu bl in

292 lu

293

204 let dump_store lu lhs lhst rhs rhst =

295 let = Llvm.build store rhs lhs lu.lu_ builder in
296 lhs

208 let dump assignment lu lhse rhse lhst =
299 let rhst = Semast.type name of s expression rhse in

221

300 let (lu, rhs) = dump_s_expression_temporary lu rhse in
301 let (lu, lhs) = dump_s_expression lu lhse in

302 let v = dump_store lu lhs lhst rhs rhst in

303 (lu, v)

304

305 let dump s variable definition lu = function

306 | Semast.SVarBinding ((n, tn), rhse) —> let lhse = Semast.

SQualifiedId ([n], tn) in
307 let lhst = tn in

308 let rhst = Semast.type name of s expression rhse in
309 let (lu, rhs) = dump_s_expression_temporary lu rhse in
310 let (lu, lhs) = dump_s_expression lu lhse in

311 let v = dump_store lu lhs lhst rhs rhst in

312 (lu, v)

314 let rec dump s general statement lu gs =
315 let acc lu bgs =

316 dump_s general statement lu bgs

317 in

318 match gs with

319 | Semast.SGeneralBlock(locals, gsl) —

320 let lu = dump s locals lu locals in

321 let lu = List.fold left acc lu gsl in

322 lu

323 | Semast.SExpressionStatement (e) —>

324 let (lu, _) = dump_s_expression lu e in

325 lu

326 | Semast.SVariableStatement (vdef) —>

327 let (lu,) = dump_s_variable definition lu vdef in
328 lu

330 let rec dump s statement lu s =
331 let acc lu s =

332 dump s statement lu s

333 in

334 match s with

335 | Semast.SBlock(locals, sl) —

336 let lu = dump s locals lu locals in
337 let Iu = List.fold left acc lu sl in
338 lu

339 | Semast.SGeneral(gs) —>

340 dump s general statement lu gs
341 | Semast.SReturn(e) —>

342 let lu = match e with

343 | Semast.SNoop —>

222

let = Llvm.build ret void lu.lu builder in

lu
| e = let (lu, v) = dump_s_expression_temporary lu e
in
let = Llvm.build ret v lu.lu_ builder in
lu
in
lu

| _ —> raise(Errors.Unsupported(” This statement type is
unsupported”))

let dump_s_variable definition global lu = function
| Semast.SVarBinding ((n, tn), e) —>
let (lu, rhs) = dump_s_expression lu e in

let v = Llvin.define global n rhs lu.lu module in
let lu = { lu with

lu variables = StringMap.add n v lu.lu variables
} in
(*
let 1ty = llvm type of s type name lu v in
let v = Llvim.declare global 1ty k lu.lu module in
{ lu with lu_variables = StringMap.add k v lu.
lu_variables }
let v = llvm_ lookup wvariable Iu n tn in
let = Llvim.set initializer v rhs in
let lu = { lu with lu_variables = StringMap.add n v lu.
lu_variables } in
*)
(lu, v)

let dump s function definition lu f =
let acc lu s =
dump s statement lu s
in
(x Generate the function with its signature x)
(* Which means we just look it up in the llvin module %)

let ft = Semast.type name of s function definition f in
let n = Semast.string of qualified id f.Semast.func name
in

let llfunc = llvm_lookup_ function lu n ft in

(* generate the body x)
let entryblock = Llvm.append block lu.lu context "entry”
I1func in
Llvm. position at end entryblock lu.lu builder;
let lu = dump_s_ parameters lu llfunc f.Semast.

223

func parameters in
383 let lu = List.fold left acc lu f.Semast.func body in
384 let lu = { lu with

385 lu_named params = StringMap .empty;

386 } in

387 lu

388

330 let dump s basic definition lu = function

390 | Semast.SVariableDefinition(v) — let (lu,) =
dump s variable definition global Iu v in

391 lu

392 | Semast.SFunctionDefinition (f) —>
dump s function definition lu f

304 let dump s definition lu = function

395 | Semast.SBasic(b) — dump s_basic_ definition lu b
396

307 let dump_array prelude lu =

308 (* Unfortunately , unsupported ... x)

399 lu

100

w1 let dump parallelism prelude lu =

102 (* Unfortunately , unsupported... x)
403 111
404

w5 let dump global string lu n v =

106 let rhs = Llvim.const stringz lu.lu context v in

107 let v = Llvin. define_global n rhs lu.lu_module in

408 (lu, v)

409

o let dump builtin_ lib lu =

11 let char t = Llvm.i8 type lu.lu context

12 and i32 t = Llvm.i32 type lu.lu context

113 (+ LLVM treats booleans as 1—bit integers, not distinct
types with their own true / false x)

114 in

15 let p char t = Llvm.pointer type char t

116 and llzero = Llvm.const int i32 t 0

117 in

18 let f_acc lu (n, lv) =

419 { lu with lu_functions = StringMap.add n lv lu.
lu_functions }

120 in

121 let print lib lu =

422 let printf t = Llvin.var_ arg function type i32_t [|

224

129

430

131

132

133

434

136

437
138

139

440
441
142

143

444

446
147
148

149

p_char t |] in

let printf func = Llvm.declare function " printf”

printf t lu.lu module in

let (_, int_format_str) = dump_global_ string lu ”__ifmt
77(7(11”

and (_, str_format_str) = dump_global string lu 7 __ sfmt
77%S77

and (_, float_format_str) = dump_global_ string lu ”
~ ffmt” "%L”

in
let handler name = 7 printf” in
let handler lu el =
let (lu, exprl) = (dump_arguments_gen (

dump_s_expression) lu el) in
if (List.length el) < 1 then (lu, exprl) else
let hdt = Semast.type_name_of s_expression (List.hd
el) in
let insertion = match hdt with
| Semast.SBuiltinType (Ast.String ,) —>
str format str
| Semast.SBuiltinType(Ast.Float(n),) —
float format str
| Semast.SBuiltinType (Ast.Int(n), _) —>
int format str
| _ —> raise(Errors.BadPrintfArgument)

in

let fptr = Llvin.build gep insertion [| llzero; llzero
|] 7tmp.fmt” lu.lu_builder in

(lu, fptr :: exprl)
in
let libprintfuncs = |

((Semast.mangle name [”1ib”; 7print”] (Semast.

SFunction (Semast.void _t, [Semast.string t], Semast.
no_qualifiers))), printf func);

((Semast.mangle name [”1ib”; "print”] (Semast.
SFunction (Semast.void t, [Semast.float64 t], Semast.
no_qualifiers))), printf_ func);

((Semast.mangle _name [”1ib”; "print”] (Semast.
SFunction (Semast.void t, [Semast.int32 t], Semast.
no_qualifiers))), printf func);
| in
let lu = List.fold left f acc lu libprintfuncs in
let lu = { lu with

lu_handlers = (StringMap.add handler_name (handler
) lu.lu_handlers)

225

150
451

452

189
190

491

} in

lu
in
let math lib lu =
lu
in
let lu = print_lib lu in
let Iu = math lib lu in
Iu
let dump builtin module lu = function

| Semast.Lib —> dump_builtin_lib lu

let dump_ module import lu = function
| Semast.SBuiltin(lib) —> dump_builtin _module lu lib
| Semast.SCode() —> lu
| Semast.SDynamic(_) —> lu

let dump declarations lu =
let rec declare k lu t = match t with
| Semast.SOverloads(fl) —
(List.fold_left (declare k) lu f1)
| Semast.SFunction(rt ,args,tq) as ft —> let lty =
llvim_type of s type name lu t in
let mk = Semast.mangle name [k] ft in
let v = Llvin.declare function mk Ity lu.lu module in
{ lu with lu_functions = StringMap.add mk v lu.
lu_functions }
| — — lu
in
let acc_def k t lu =
declare k lu ¢t
in
let toplevel = lu.lu env.Semast.env definitions in
let lu = StringMap.fold acc_def toplevel lu in
Iu

let dump prelude lu sprog =

let lu = dump_array prelude lu in

let Iu = dump parallelism prelude lu in

let ITu = List.fold left dump module import Iu lu.lu env.
Semast.env imports in

let lu = dump declarations lu in

lu

226

w2 let generate sprog =

493 let acc_def lu d =

494 let Tu = dump s definition lu d in

195 lu

196 in

197 let lu = create 1li universe sprog in

198 let lu = dump_prelude lu sprog in

499 let lu = match sprog with

500 | Semast.SProgram(_, _, defs) —> (List.fold left
acc_def lu defs)

501 in

502 lu.lu_ _module

../source/codegen.ml

227

	Introduction
	Language Proposal

	Tutorial
	Invoking the Compiler
	Writing some Code

	Language Reference Manual
	Plan
	Process
	Timeline
	Tools
	Project Log

	Design
	Interface
	Top Level Work-flow
	Error Handling

	Division of Labor

	Testing and Continuous Integration
	Test Code
	Test Automation
	Test Suite
	Online Automation
	Online Automation Tools

	Division of Labor

	Post-Mortem and Lessons Learned
	Talk to your Teammates, Early
	Manage Expectations, Know What You Want
	Start Confrontations

	Appendix
	Source Code Listing

