
LÉPIX
A very small General Purpose Language

THE BIG IDEA

 THE BEST LANGUAGE EVER
 STRUCTS
 CONSTRUCTORS, DESTRUCTORS, DETERMINISTIC

DESTRUCTION WOO

 PARALLELISM
MASSIVE AMOUNTS OF IT!
 ALL THE CONCURRENCY

 FUNCTIONS
 SO MANY! BUILT IN IMAGE PROCESSING

 SUPER MULTIDIMENSIONAL ARRAYS

A tiiiny problem…

 Had to work on the project alone
 Heavy time constraint
 Aaaahhh

2 weeks, Lots to Do

 No Semantic Analyzer, Lexer/Parser not parsing the
language, Segmentation Faults galore, no medicine
for nine months, no time

 … Here we go!

The Better Idea

 Relax, and take several Chill Pills
 And still panic

 Focus on implementing a small subset of what was
needed, but well

No Structs

 Not for lack of trying!
 Memory safety = gone

 No constructor/destructor, no automatic memory
cleanup (manual new/delete, essentially)

No Parallelism

 Not for lack of Trying
 Had hand-compiled demo code for parallelism
 Worked with arrays and other things
 Couldn’t jerry-rig it into the compiler in time

 A bit sad
 One of the shiniest features

Even no Arrays :(

 At this point, a bit heartbroken
 The syntax, at least, was good
 Slicing

 The number of arguments in […] = number of shed
dimensions

 Gives C-Like dimension access (z, y, x …)
 Tossed around by-value

Functions!

 Thankfully, have the most basic functions
 Parameters by value
Mostly because that is all there is!
 Plans for everything by value with optional reference (&)

qualifier
 Plans for reference analysis

 Overloading selects which function to call properly!
 Compile-time arity and argument-type based
 Very strict, no covariance, codegen mangles names

Most lost features still there

 lepixc -s inputfile
 Invokes the compiler and shows the SemanticAST
 The semantic AST parses arrays, fixed-sized arrays,

parallel blocks, functions

 But lost time struggling with semantic AST for weeks
 Codegen suffered greatly, even if everything else was

well-done

Implementation

 Problem: Records were initially extremely painful to
work with
 New state that changes one field? Re-vomit all fields

and write them all out

 Time Saver: “with” record syntax
 { record_name with field1 = single_change; }
 allows for complex records with easy updates

Implementation II – Having Fun

 Might as well get decent at immutability
 Each function call is entirely self-contained with only

dependencies on its arguments
 Barely any usage of ref

Implementation III – Even More Fun

 Travis CI builds and runs the test suite for every push
 Useful for knowing when / how things went wrong!
 A lot of tests failed a lot of the time

Standard OCaml Library?

 Pervasives (the builtins) are sparse
 Batteries, JaneStreet Core helps with this
 Some file functions, string manipulation functions not

present in version of Ocaml that comes with VM
 Travis-CI testing required lower level compiler

 Using provided libraries means using OPAM and
ocamlbuild
 Killed the windows build

Things to add in the future

 Structs
 Needed for proper static language handling
 Enables IIFEs and captures

 Parallelism
 Formal implementation and not the handwritten hack

that works in only 1 case and breaks everywhere else

 Real multidimensional arrays
 We used “getelementptr” LLVM instruction for printf

calls, is also used with structs/arrays and slicing arrays

Learned Things I

 OCaml is nice
 Overloading would have been useful
 Abstract Data Types useful for new things, not employed

usefully for regular things
 string_of_int, string_of_float, String.make 1 ch …
 Primary motivation for Overloading implementation

 “Build list then reverse” idiom is a bit annoying
 Happens everywhere, but alternatives to handling are strange

 Compiler and Ocaml environment do not work well for
Not-Linux
 At least Torvalds is happy?

Learned Things II

 LLVM Binding is somewhat immature
 Can set custom attributes, but cannot retrieve them

(made handlers for native functions difficult)

 Reaching out for help would have been good
 Understanding the breakdown in communication for

teammates would have been better than being upset
 Bailing not the most desirable option

Demo

 Time to break the compiler!

	LéPiX
	THE BIG IDEA
	A tiiiny problem…
	2 weeks, Lots to Do
	The Better Idea
	No Structs
	No Parallelism
	Even no Arrays :(
	Functions!
	Most lost features still there
	Implementation
	Implementation II – Having Fun
	Implementation III – Even More Fun
	Standard OCaml Library?
	Things to add in the future
	Learned Things I
	Learned Things II
	Demo

