
LéPix
Ceci n’est pas le Photoshop

(ಥ_ಥ) (•◡•)(ಠ_ಠ)>⌐■-■ (⌐■_■)

Introduction

● Imperative programming language
● Swift-esque syntax
● Compiles to LLVM
● Floating point values and arrays to enable image manipulation

Implementation

Scanner + Parser Ast

Semantic Analyzer

Augmented
AST Code generation

Standard Library

LLVM IR

Text

Syntax

● Syntax is reminiscent of the Swift programming language

Function declaration fun gcd(a : int , b : int) : int { … }

Variable declaration var a : int = 42;

Array declaration var arr : int[[2,2]] = [1,2,3,4];

Control Flow C-style for , while and if-else

Array Access arr[[1,2]]

Semantics

● Semantics are checked with a depth first traversal of the AST
● All identifiers are checked for validity
● Expressions, statements and declarations are type checked
● Static scoping and strong typing rules are used
● Implicit float to int casting on assignment

Codegen

● Codegen is performed on a semantically checked, augmented AST
● Symbol table holds pointers to global and local variables (including arrays)
● Functions definitions are held in a function table
● 2-D matrices are allocated as 1-D arrays and indexed accordingly
● Standard library is automatically included at compile time
● Stdlib:

○ Math : Modulo, Square Root, Prime Sieve, GCD etc.

○ I/O : Printing to console for different types (Int, Bool, Float), Printing an RGB image in PPM

format

Testing: Building Regression Test Suite

● Began with simple examples based on how we wanted our language to
look/behave (e.g. hello world)

● Based first set of tests on MicroC
● Revised test suite whenever language syntax/behavior changed
● Expanded test suite whenever new functionality was added to language (e.g.

1D array and 2D array)
● Coverage: tested for both expected behavior and potential user error when

applicable

Testing: Continuous Integration with Travis

Testing: When Everything Works (⌐■_■)(•◡•)

Testing: When Everything Breaks (ಠ_ಠ)>⌐■-■(ಥ_ಥ)

Example LePix programs

Prime
Sieve

RGB
Neg
Filter

Images

(⌐■_■)
fun demo(): void {}

