
GOBLIN
Kevin Xiao Manager
Bayard Neville Language Guru
Christina Floristean System Architect
Gabriel Uribe Tester

Turn-based adventure games

Problem

● General-purpose languages have steep learning curves and are not
focused on game development

● Game engines like Unity require beginners to learn both the environment
and new languages

● Not friendly for new coders

What is Goblin?

● Language for simple turn-based games without extensive knowledge of
software development

● Follows an abridged object oriented model

● Runs with an underlying game loop

Program Structure

● Gamers think of
adventure games in
terms of entities in a
world that perform
functions

● Adapted this model for
our program structure

world[x,y]{
 …
}
entities{
 …
}
functions{
 ...
}

Entities

● Classes that represent
game characters

● Build block is a
constructor

● Does block is a method
called every turn of
game loop

● Special Player entity
that user controls

entities{
 <character>:player{
 <fields>
 build{
 <variable declarations>

<statements>
 }
 does{

<variable declarations>
 <statements>
 }
 }
}

World

● Function that defines and
sets up game board

● Instantiates entities by
placing at coordinates on
the board

world[x,y]{
 <variable declarations>
 <statements>
}

Built-in Functions
● place(): instantiate entity on

game board

● peek(): returns entity pointer at
coordinate

● move(): moves entity to a
different coordinate

● remove(): frees entity

● getKey(): returns user input
from terminal, written in C

● exit: keyword for quitting on win

place(String e, num r, num c);
peek(num r, num c);

move(Entity e, num r, num c);
remove(Entity e);

row(Entity e);
col(Entity e);

getKey();
exit;

Abstract Syntax Tree

program

world entities functions

Game Loop

● Abstracted from the Goblin programmer

● main() function that is appended to functions
in the AST

● Iterates through World and calls the “does”
method for every entity

● Renders World in terminal

Translator Architecture

Testing

● Learned that test driven development is important

● Initial complications with testing due to insertion of game loop

● Fixed towards the end

Future

● Inheritance for entities

● Multiple worlds

● Worlds of different shapes

goblin

DemogoblinGreen Goblin

Lessons Learned

● Create a MVP first

● Then iterate agilely on version 1.0

● Be punctual

● And of course, start early

DEMO

