
Espresso

Somdeep Dey
Rohit Gurunath
Jianfeng Qian
Oliver Willens

Overview
● Introduction & Background
● Planning & Schedule
● Development Environment
● Syntax
● Architecture
● Testing
● Demonstration

Introduction
What is the Idea behind Espresso?

● A Object-Oriented programming language inspired by Java, stripped down and
augmented.

Goals
● Intuition.

Easy to just start coding for experienced programmers. A great platform to learn for beginners.

● Transparency.

The LLVM IR code allows the user to understand the nuts and bolts of their program.

● Flexibility.

Espresso allows for broad purpose use, rather than single-domain application. The language is portable and robust.

Development Environment

Version
Control Text Editing Operating

System Virtualization

Dec 12 - Dec 20 Oct 27 - Nov 20 Nov 21 - Dec 11 Sep 28 - Oct 26

Project Timeline

Proposal

Language Ref. Manual

“Hello World!”

Comprehensive Pipeline

✓

Git History
129 Commits

Guidelines

Syntax

//This is an Espresso Comment

/*

So is this

*/

Comments Operators Arrays

+ //add
- //sub
* //mult
/ //div
= //assign
== //eq
!- //neq
< //lt
<= //leq
> //gt
>= //geq
&& //and
|| //or
! //not

int[10] arr;

Arr = {1,2,3,4,5,6,7,8,9,10};

Float[1] precise_arr;

precise_arr[0] = 0.0002;

int i;
for (i=1;i<10;i++){

print_int(i);
}

int x = 0;
while(i<10){

print_int(x);
x++;

}

Loops Branching Classes

while (i < 2){
print_int(item);

 break;
}

for (int i=0; i<4;i++){
if (arr[i] > 0)

print_int(data[i]);
}

int first_positive(int[] arr){
for(int i=0;i<4;i++){

if(arr[i] > 0}
 return arr[i];

return -1;
{

Class BankCount{

int saving;
String name;
BankCount(class BankCount

self, String n, int a){
 self.name = n;
 self.Saving = a;
 }

 bool withdraw(class BankCount self,
int a){
 if (a < 0){
 return false;
 }
 else if(self.saving > a){
 self.saving -= a;
 return true;
 }

 }
}

class work
{
 int a;
 void main()
 {

 int b;
 int c;
 int d;
 int[10] arr;
 this.a = 100;
 class animal an;
 lambda : char lfunc(char a) {
return a; }
 print_char (an.getChar(lfunc));
 }
}

Lambda

class animal
{
 char b;
 bool x;

 char getChar(lambda lfunc) {
 return #lfunc('a');
 }

 int perform()
 {
 int i;
 i = 5;
 i = 1;
 return i*2;
 }
}

Architecture

.es File Scanner Semant

LLVM

Parser Codegen

AST SAST

Testing
Our MO: Test-Driven Development

Unit Testing Integration Testing

Small test programs were
written throughout the
development process,
designed to test the most
recently added feature.

We created a large and
comprehensive test suite,
built to test features we
didn’t think of during the
development process, and
to make sure the newest
feature doesn’t negatively
affect any of the previous
ones.

Automation

/testall.sh

