Somdeep Dey
Rohit Gurunath
Jianfeng Qian
Oliver Willens

Overview

Introduction & Background
Planning & Schedule
Development Environment
Syntax

Architecture

Testing

Demonstration

Introduction

What is the Idea behind Espresso?

e A Object-Oriented programming language inspired by Java, stripped down and
augmented.

s L @

Java espresso

Groals

e Intuition.
Easy to just start coding for experienced programmers. A great platform to learn for beginners.

e Transparency.

The LLVM IR code allows the user to understand the nuts and bolts of their program.

e Flexibility.

Espresso allows for broad purpose use, rather than single-domain application. The language is portable and robust.

Development Environment

Project Timeline

@ Proposal O <“Hello World!” ®
O Language Ref. Manual ® Comprehensive Pipeline

Git History

Oct 09 Oct 16

Oct 23

Oct 30

129 Commits

Nov 06 Mov 13

Mov 20

Mow 27

Dec 04

Dec T

Dec 18

Guidelines

Time Management
Start the project early

Cooperation
Teamwork and integration

Communication
Avoid doing the same work

W Software Tools
Efficiency improvement

Syntax

Comments

Operators

//This dis an Espresso Comment
/*
So 1is this

*/

= XV V. A A = Il Il ~~ *
— Q2 1l 1

//add
//sub
//mult
//div
//assign
//eq
//neq
//1t
//leq
//gt
//geq
//and
//or
//not

Arrays

int[10] arr;
Arr = {1,2,3,4,5,6,7,8,9,10};
Float[1l] precise_arr;

precise_arr[0] = 0.0002;

Loops

int 1

for (i=1;i<10;1i++){
print_int(i);

}

int x = 0;

while(i<10){
print_int(x);
X++3

}

Branching

while (i < 2){
print_int(item);
break;

for (int i=0; i<4;i++){
if (arr[i] > 0)
print_int(datal[i]);
}

int first_positive(int[] arr){
for(int i=0;i<4;i++){
if(arr[i] > 0}
return arr[i];
return -1;

Classes

Class BankCount{

int saving;

String name;

BankCount(class BankCount
self, String n, int a){

self.name = n;

self.Saving = a;

}

bool withdraw(class BankCount self,
int a){
if (a < 0){
return false;

}

else if(self.saving > a){
self.saving -= a;

return true;

}

Lambda

class work

{

int a;
void main()

{

return aj;

}

}

int b

int c;

int d;

int[10] arr;

this.a = 100;

class animal an;

lambda : char 1func(char a) {

print_char (an.getChar(lfunc));

class animal

{

char b;
bool x;

char getChar(lambda 1func) {
return #lfunc('a');

}

int perform()

{

int 1;
i = 5;
i=1;
return

ix2;

Architecture

& &

-—--—-T

LLVM

Testing

Our MO: Test-Driven Development

Unit Testing Integration Testing Automation
Small test programs were We created a large and

written throughout the comprehensive test suite, JERSERLL oSl
development process, built to test features we

designed to test the most didn’t think of during the

recently added feature. development process, and

to make sure the newest
feature doesn’t negatively
affect any of the previous
ones.

