


WHO ARE WE
GURUS

The project is KILLER. In all likelihood, you will fail if you don't assemble the Avengers to be your team.
Make sure you put together a strong team which has time to commit to this project. The project is
structured such that one person (the most responsible or the least busy) always ends up doing over 50%
of the work. We've looked at other groups and previous teams and this is the case through out. | think
Edwards should take a look at this and somehow fix the project so that it's more farr.



MOTIVATIONS

e Scientists and geneticists are seeking to “engineer” DNA
and develop complex computational tools

e Only tools to process genetic data are libraries within
other languages (e.g. BioPython)

o Large overhead
o Low customizability

e DNA 1is rapidly being explored as an alternate form of

data storage
o “Capacity approaching DNA storage” - Yaniv Erlich (Columbia
University) et al.
o “Microsoft experiments with DNA storage: 1,000,000,000 TB in a gram”
- Peter Bright




FIRST...A LTTTLE BIT OF BIOLOGY

nucleotide
D ||\|A &hc ACC GCG ATC
Transcription s
TAC ACC GCG ATC
l complement | ATG TGG CGC TAG
RNA
| wia [AUG UGG CGC UAG
Translation
Protein

Amino Acid Seq. EﬂEF-HP-ARG-STOP

SIS

CO0GO000



DNA# IN A SLIDE

/[This is our program! DNA David = “atgc”;

DNA sample = readFASTA(*sample.txt”); DNA Watkins = “cgta”;

print(sample); DNA CoolGuy = David + Watkins;
[l aggc print(CoolGuy);

RNA sample2 = sample->;| /fatgcegta

inti=0;
for i = 0; i< sample.length; i++
then
print(sample[i]);

/luccg
Pep protein = sample2+>;



DATA TYPES

e Native types from C
o 1int, bool, char,
e Complex types
o Strings, Arrays
e DNA specific types
o DNA, RNA, Nuc, Pep, AA



SOME FRTENDLY INBUTLT OPERATIONS

e DNA specific operators

o DNA -> :transcribe

o RNA +> : translate
e String/DNA friendly operations

o Overloaded + operator for string types

o .length function to get size of complex types and arrays
e Generalized print function

o Can print any type!



KEY FEATURES

Statically typed

Statically scoped

Fluid data type conversion (e.g. DNA -> RNA -> peptides)
Natively supported string functions ( stringl + string2)
No global variables

All memory stored on stack



THIRD PARTY SOFTWARE




ABSTRACT SYNTAX TREE




l flename.dnas

DNA# ARCHTTECTURE

- Built-in C lib & Elegant ext_func_Ist
Our language has one built-in C-lib, and a
series of helper functions. It is very easy to
use C-library. There are only three steps to
add one C-function.

(1) Add your function in c_lib.c.

(2) Register the new function in
ext_func_lIst table.

(3) Make project, then magic happens.

c_lib.bc made LLVM module

% Print Exception

. cute with i
- Pseudo-Main

Since DNA# is a script style language, it
starts at the first line of *.dnas file. In

‘codegen.ml’, we build a pseudo-main Lk ext func Ast-f
function to collect all stmts outside other {name="test
defined functions and make it the main func in [
LLVM. {name=

{name=

{name=
{name="
{name=
{name=




TESTING SUTTE

e Unit Testing
o Identifiers (if, for, while)
Standard, primitive, and complex data types (dna, rna)
Control flow
Functions
Literals (Nuc, AA, Integer, Double, Bool, Character, String)

e Integration Testing
L

O O O O

e System testing



DEMO

e Find longest subsequence amongst two DNA sequences and

print protein that would be generated
o Mutations
o DNA alignment and sequencing



APPLICATIONS

e DNA encoding (Huffman encoding, DNA fountain, etc.)

e Yaniv Erlich/NY Genome Center

e Still using biopython and hacked together tools with
large overhead (personal experience)

e 1GEM and personal experience with that



FUTURE DIRECTIONS

e Optimizing the transcribe/translate using encoding
schemes (e.g. DNA Fountain, Huffman)

e Supporting variable nucleotides and file types

e Supporting addition of libraries (e.g. a file i/o library
for different file formats)

e Incorporating type associated global constants, such as
weight, to make computation easier



QUESTIONS




REFERENCES

Funk Programming Language

Dice Programming Language

OCaml Documentation



http://www1.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/reports/Funk.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/reports/Funk.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/reports/Dice-presentation.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/reports/Dice-presentation.pdf
http://www.ocaml.org/docs/
http://www.ocaml.org/docs/

