
Cimple

Graham
Barab

Shankara
Pailoor

Pancham
preet
Kaur

Motivation

Struggles of a C programmer

❏ No Code-Reuse, except standard library;
With Inheritance, Cimple to the rescue.

❏ Resource Management - all the malloc, calloc, realloc, free
take away from the real problem;
Cimple’s approach bi-dimensional - make or clean.

❏ Coding style – limited scope for compactness, readability, memory-
efficient code;
Cimple gives Anonymous functions, unnamed hence need no storage.

Comparison

Features C Cimple

Speed
Programming Style

Library Support
Pointers

Inheritance
Anonymous functions

Interfaces
Garbage Collection

✔
Imperative

✔
✔

Manual &
Cumbersome

✔
Imperative, OO

✔
✔
✔
✔

Manual but
Convenient

Inheritance

❏Inheritance in Cimple modeled after Java

❏ Inheriting struct ‘extends’ another struct

Interfaces

❏Allow more flexible inheritance than rigid parent-child hierarchy

❏Define a contract for behavior of ‘implementing’ structs, using Method Sets

Cimple Syntax Compiled C syntax

Methods

Describes behavior of structs

Example:

Anonymous Functions

❏ Introduced as a measure to make long programs better readable

❏Syntax :

Declaration :- func (return-type)(arg_1, arg_2, …) { statements }

Call :-

r-type outer-function(arg_1, func(return-type)(arg_1, arg_2, …) *func_pointer, ...){

// statements

func_pointer(arg_1);

// rest of the function body

}

Anonymous Functions

Anonymous Functions

int main(int argc, string **argv) {

struct Person *graham;

Struct grahamsName = “Graham Barab”;

graham = make Person(func(string) { return
grahamsName;});

printf(“Person’s name is %s”, graham.name);

return 0;

}

Heap Memory Management

❏ Handled using two keywords - make and clean

❏ make invokes the constructor, clean invokes the
destructor

Architecture

