
 1 / 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eGrapher: A Programming Language for Art 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Long Long: ll3078@columbia.edu 
Xinli Jia: xj2191@columbia.edu 

Jiefu Ying: jy2799@columbia.edu 
Linnan Wang: lw2645@columbia.edu 
Darren Chen: dsc2155@columbia.edu 

 
September 28, 2016 



 2 / 8 

Contents 
 
 
 
 
1 Introduction and Motivation                    3 
 
2 Language Design and Syntax                    3 
 

2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4 
2.2 Built-in Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4 
2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5 
2.4 Data type Built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5 
2.5 Control Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7 
2.6 Function Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   7 
 

 
3 Sample Code                      8 
 
  



 3 / 8 

1   Introduction and Motivation 
 

eGrapher offers an innovative way of drawing art with pinpoint accuracy. The language gives the user a 
wide set of tools to accurately illustrate detailed drawings compared to simple and rigid pre-installed tools 
such as paint on Windows. The goal of eGrapher is to make drawing on digital systems easier as well as 
allow for users to draw more complicated paintings through mathematical functions. The project will allow 
us to also better understand the intersection of mathematics and art. Users will be able to use simple syntax 
and math expression to draw graphs, diagrams, and more complicated objects through simple objects.  
 
In addition, eGrapher could serve as a useful introductory language for elementary school kids combining 
programming, mathematics, and art into one package. Students will be able to learn how to use simple 
functions and loops to draw an actual picture. For example, one exercise could ask students to draw a heart 
through polar coordinates. 

 
2   Language Design and Syntax 
 

The typing style, flow control, and function statements in eGrapher takes is reminiscent of C++, while the 
overall design takes several interesting ideas from Matlab.  It intends to throw away complex object 
oriented features and provide stronger build-in data type and functions to help users finish their plotting 
efficiently. The eGrapher compiler compiles code into LLVM and links to C library for further executions. 
 
The eGrapher system open a main window to show the picture which users drawn using eGrapher code, 
while it also supports standard output stream connected to the terminal or console. In the main window, 
there is a big backboard. Users code to generate curves and paste them on the board then comes a graph. In 
order to figure out the correct place to “paste”, there should be an only axis system on the board. Formula 
may have strong mutual relations to each other, so eGrapher offers group structure to manage formula. 
Board, axis, group and formula are four basic concepts form the whole plotting system of eGrapher. 
Take the following picture as an example, grids and axis are fixed on the white board. Two groups of 
formula, particularly two houses are plotted.  

 

 
x = -7 {-5< y<-0.5} 



 4 / 8 

 
Since the design goal of eGrapher is to draw paintings through mathematical functions, focusing on 
implantation of four basic data type (board, axis, group, formula) and their build-in functions can greatly 
improve and guarantee plotting and coding experience. 

 
 
2.1   Comments 
 

Syntax Comment Style 
#    code Single line  
/* 

code 
 */ 

Multiple lines 

 

Table 1: Comment Styles 
 

2.2   Built-in Data Types 
 

• eGrapher  is statically strongly typed language 
• eGrapher comes with four basic types: int, float, bool and string. Each of these basic types can be used as 

raw values with no prior declaration of variables or can be assigned as the values of variables.  
• eGrapher also provides two built-in data types: dot and formula, which provide the basis for drawing 

element. 
• The built-in collections are list, group and board 
• In addition to these data types, eGrapher also includes the value null, which represents the absence of value 

for any data type. 
 

Data Type Explanation 
int 32-bit integer 
float 32-bit floating-point number  
bool Boolean value 
string  Sequence of characters closed with double quotes 
formula To define function 
dot A dot on graph on (x, y) axis position 
list Sequence of numeric, Boolean, or other types 
group Combination of one or more formula and dot 
axis Set axis limits and aspect ratios 
board All the element on displayed. Contain groups and axis. 

 

Table 2: Built-in Data Types 
 



 5 / 8 

2.3   Operators 
 

Category Data type  Operator  Explanation 
Arithmetic  int, float +, -, *, /, %, ^ Arithmetic computation operations in the 

same way as mainstream languages such 
as C/C++ and Matlab. 
^ symbol means power. 

Comparison  int, float, string ==, ! =, <, >, <=, >= Comparison operations supporting 
numbers and strings. While string 
equality compares the characters 
contained in the string. 

Concatenation string + Concatenate two strings. 
Assignment int, float =, +=, −=, ∗=, /= Assign value to variables, mostly after 

certain calculation. 
 

Table 3: Operators 
2.4   Data Type Built-in Functions 
 

Category Syntax   Explanation 
Output functions int.print (int i) Print out given integer i, similar to stdout. 
 float.print (float f) Print out given floating number f. 
 string.print (string s) Print out given string s. 
 display_group() Show a particular group of formula on screen in 

main window. 
 export_board(string 

filename, string type) 
Export the present board to an image file. 
Filename and type can be specified. 

 

Table 4: Basic data type build-in functions 
 

Category Syntax   Explanation 
Formula management set_expression(string e) Set numerical expression for each formula. In 

default case, a new-built formula takes “” as its 
expression and empty formula will be ignored 
when plotting.  

 set_limits({xlim}{ylim}) Both x limits and y limts can be set here. 
Although argument and dependent variable roles 
can switch, we suppose the first brace describe x 
limit, the second one indicates y limits. 

 set_color(r,g,b) Take three integers as rgb value of the line color. 
 set_linesyle(style, width) Both style and witdth are integers. Width simply 

implies line width, while adjusting style can 
produce dotted line, * line, things like that. A 
detailed map of styles and index numbers will be 
released later. 

 

Table 5: Formula type build-in functions 



 6 / 8 

 
Category Syntax   Explanation 
Dot Management  set_position(float x, float y) Set position for a dot. 
 set_color(r,g,b) Take three integers as RGB value of the dot 

color. 
 set_dotsyle(style, size) Both style and size are integers. Size simply 

implies mark size, while adjusting style can 
produce dotted, *, +, marks like that. A detailed 
map of style and index numbers will be released 
later. 

 

Table 6: Dot type build-in functions 
 

Category Syntax   Explanation 
Group Management add_element(f) Add elements to a certain group. Group is quite 

similar to list with two data types (formula and 
dot in it) in it. 

 delete_element(int index) Delete a certain element in group using its index. 
Index are maintained according to the attendance 
order.  

 set_uniform_color(r,g,b) Paint all the elements in the group with same 
color. The default value of uniform color vector 
is (-1,-1,-1), which means no requirements. 

 set_uniform_linesyle(style, 
width) 

Similar to uniform color, this time a uniform line 
style applies to each formula. 

 set_uniform_dotsyle(style, 
width) 

Similar to uniform line style, this time a uniform 
dot style applies to each dot. 

 size() return number of elements in group  
 list_formula() return all the formula in group as a list. 
 list_dot() return all the dots in group as a list. 
 set_diplay(bool) Plot the group or not. 

 

Table 7: Group type build-in functions 
 

Category Syntax   Explanation 
Axis management set_xlim(float x, float y) Set the display limits of  x-axis. 
 show_xlabel(bool) Whether show lables on x-axis. 
 show_xaxis(bool)_ Whther show x-axis. 
 set_ylim(float x, float y) Set the display limits of  y-axis. 
 show_ylabel(bool) Whether show lables on y-axis. 
 show_yaxis(bool)_ Whther show y-axis. 

 

Table 8: Axis type build-in functions 
 
Category Syntax   Explanation 
Board management show() Open the main window and show the picture. 
 List_group() Return a list of  groups. 
 set_backgroud_color(r,g,b) Set background color according to rgb value. 

 

Table 9: Board type build-in functions 
 



 7 / 8 

2.5   Control Flow 
 

Syntax Examples 
while condition { 
/* 

code 
 */} 

while (a > 1) { 
a -= 1 

} 

for init; cond; inc/dec  { 
/* 

code 
 */} 

for (i; i<10;i+=1) { 
int.print (i) 

} 

for variable in list { 
/* 

code 
 */} 

for i in L { 
int.print (i) 

} 

 

Table 10: Loops 
 

Syntax Examples 

if condition 
 statements 

if (a==b) { 
    a += b 
} 

if condition 
    statements 
else  
    statements 

if (a==b) { 
    a += b 
} 
else { 
    a -=b 
}   

if condition 
    statements 
else if condition 
    statements 
else  
    statements 

if (a==b) { 
    a += b 
} 
else if (a>b) { 
    a -=b 
} 
else { 
    a *=b 
}   

 

Table 11: Condition Statements 
 
2.6   Function Statement 
 
Syntax Example 
fun function_name (variable1, variable2 …) { 
 function statements 
} 

fun addition(int a, int b) { 
 return a+b 
} 

 



 8 / 8 

 
3 Sample Code 
 
 

formula f1, f2, f3, f4; 

f1.set_expression(“(t+tcost,t+sint)”); 

f1.set_limit(“0<=t<=10”); 

f1.set_color(117,103,174); 
f2.set_expression(“(t-tcost,t-sint)”); 

f2.set_limit(“0<=t<=10”); 

f2.set_color(255,163,104); 

f3.set_expression(“(x-10)^2+(y-10)^2=10^2”); 
f3.set_color(194,107,115); 

f4.set_expression(“y>x”); 

f4.set_limit(“0<x”, “0<y<20”); 

f4.set_color(88,143,192); 

   
dot d1; 

d1.set_position(17.071,17.071); 

d1.set_color(88,143,192); 

  

group g;  
g.add_element (f1);  

g.add_element (f2);  

g.add_element (f3); 

g.add_element (d3); 
Axis.xrange(0, 20); 

Board.plot(); 


