Harmonica Language Proposal

language for parallel computing
Guihao Liang(gl2520), Jincheng Li(jl4569), Xue Wang(xw2409), Zizhang Hu(CVN, zh2208)

Introduction:

Motivation: With the dominance of multi-processor architectures and distributed applications,
languages with built-in concurrency support are becoming increasingly popular. Harmonica is a
language that borrows from features of Go and python to provide easy-to-use primitives for
programming parallel programs.

Goal: compile to LLVM three address code.

Grammar: similar to C with some different keywords

Features:
- Support of concurrency (threading, channels).
- First-class functions
- Compound types (struct)
- Standard library for networking, scientific computing, and seamless/grubhub.

Concurrency:
We support concurrency by the parallel keyword which takes lists, and yields async
channels.

Potential Usage:

As an imperative language with functional programming support and built-in concurrency
support, Harmonica is perfect for server programming, data processing and scientific
computation.

primitive types:

name description example
int integer 1,2,3
float64 Double precision 64-bit floating | 0.0

point number
bool Boolean value True, False
string String literals “proposal”

list Linked list




Operator:

name description Applicable data types
+ String Concatenation string
+-*/ Mathematical operators int,float
% Mathematical operators int
and, or, not Logical operators bool
<, <= >=>== comparison operators int,float,string
= assignment int,float,string,bool
function definition:
type f(type argl, type arg2) { body }
Keyword:
Basic keyword:
name description syntax
const Constant variable const var a;
import Import package import Random
from from from Random import Gamma
Member Access Gamma.mgf()
return Return from function.
Parallel Parallelly execute.

Compound type:

name description syntax
List Collection of mutable ptr [1, 2]
tuple Collection of Immutable ptr (1, 2)

control flow:




name

description

syntax

if...else if...elif

Conditional branch

IfO{}; else{}; if()}; elif({};

for

Loop

for(){}

while

Loop

while(){)

Comment single line: #
Block: “” ... “”

built-in functions:

Function Input Data Type Output Data Type Description
filter list list filter(*func, [])
map list list map(*func, [])
reduce list list reduce(*func, [])
print printable* string print(something)

*printable: any primary type, any list of printables, any composition of printables

Sample code:

1.

int GCD (int a, int b) {

if (a == b) {
return a;
} else {
if (a > b) {
GCD(a - b,b);
} else {
GCD(b - a,a);

parallel (GCD, [(5,25),(60,72),(1,9),(43,47),(88,48)1,

5);




2.
from Gamma import gamma, mgf

from ElementaryMathematics import sqrt,

float[] random nums = gamma (10, k=1.0, t
float[] second moments = map(mgf, args=2
float[] averages = map(mgf, args=1l,

float E sharpe mean (averages/map (sqgrt,

3.

print (“Hello, world.”);

4,
parallel ([f1l,f2,£3,£f4,£5],[a,b,c,d,e],b)
parallel (f, [a,b,c,d,e],5);

parallel (£, [a,b,c,d,e]); (default value:
threads))
chan ¢ = parallel (f, [a, b, c], 3);
for (;;) |
select {
<-chanl:
<-chan?2:
}
}
while ((int i1 = c.any())>= 0) List 1lst =
for (; c.ready(); ) List 1lst = c.get ().t

Print (1st)

mean

heta=2.0);

, random nums) ;

random nums) ;

second moments)) ;

.
14

min (len(list), #available

c.fetch (i) ;
oList ();



