GOBLIN

Manager: Kevin Xiao, kkx2101
Language Guru: Bayard Neville, ban2117
System Architect: Gabiriel Uribe, gu2124
Tester: Christina Floristean, cf2469
INTRODUCTION

Goblin is a language designed to allow anyone to make their own turn-based adventure game
without extensive knowledge of software development. It will follow a simplified object oriented model
that hews as closely as possible to the familiar way that things act in real life.

All programs result in a turn based game on a rectangular ASCII map. There may be multiple
rectangular maps accessed from the initial one via doors, portals, or hatches. The games all follow the
same basic loop structure:

Player moves

Print the map

Non-player characters move

Print the map

DESCRIPTION

Goblin is designed with the purpose of creating turn based video games - a video game where
the player takes turns versus the computer. The compiled game is designed to run on a command line
interface. The program will initiate a redraw of the map after each turn, in this way we can simulate
movement. Players will be able to interact with the game using programmer defined commands.
Programmers are able to define their game in terms of objects, their behaviors, user commands, and a
set of world maps. Maps are square grids of ASCII characters that objects navigate, which means it is
possible to supply your own ASCII maps although algorithmic map generation is suggested for more
complex maps. Each object shown on a user's screen (the map) is an ASCII character with a specific
value, for example a goblin could be represented by 'G'. There are no named instances of entities.
Entities of the same type are only distinguished by their xy coords and field values. Every turn the game
automatically runs the behavior of each entity that has one, so there is no need to directly reference

them, except by relative position.



OPERATORS

Symbol Action

+ 5,51 Math operators (Add, Subtract, Multiply, Divide)

and, or, not Logical operators

I=, ==, <, >, <=, >= Boolean comparisons (Not equal to, Equal to, Less than, Greater

than, Less than or equal to, Greater than or equal to)

=, +=, = Assignment (Assign, Assign and increment, Assign and decrement)
COMMENTS

Symbol Action

I Single-Line Comment

/* comment */

Multi-Line Comment

BUILT-IN TYPES

Type Description Initialization
Integer Numbers variables. intName = 5;
String Text variables. stringName = “Name”;
Boolean True / False. boolName = True;
Character Character variables. charName = ‘c’;
Float Decimal number variables. floatName = 5.5;
Array Array variables. arrayName = [5];
Entity Any object or character in a game. entities {
Automatically has a unique single ASCII entityName(charSymbol) has {
character representation, xy coords, and solid = // Fields
true. May also have other fields and a health = 5;
sequence of behaviors. May inherit fields from } does {
another entity using “is”. Fields must have a behaviorName;
default value that determines type. }
}




Behavior A set of actions that can be assigned to an behaviors {
Entity which performs them every round of the behaviorName {
game. /* Set of conditions and
movements specific to
each behavior */
}
}
Functions Dynamic operations to allow for code reuse functions {
inside of behaviors. functionName (parameters) {
/I Action to perform
}
}
World 2D matrix of entities with associated worlds {
semi-global variables to save world specific worldName {
state /* Placement functions and
world state variables */
}
}
CONTROL FLOW
Type Description Structure
for loop Iterate consecutively for set for () {
amount of turns. }
while loop Iterate while a boolean variable while () {
is true. }
if / elseif / else Conditional statements. if () {
}
elseif () {
}
else {
}




KEYWORDS

Word Description

player Special singleton entity that persists between worlds

is entity2 is entity1 in entity definition means entity2 inherits from entity1
has entity1 has { f = 1; } means entity1 has field f with default value 1
does entity1 has {} does { foo; } means entity1 does foo every turn

when Used for choosing player behavior based on user input

EXAMPLE PROGRAM

player(@) has {
health = 10.0;
attack = 1.5;
money = 0;
swordtype = 7;
} does {

player_move_left when “I”;
player_move_right when “r’;

“w o,

player_move_up when “u”;
player_move_down when “d”;

player_attack when “a”;

}
entities {
monster(m) has {
health = 1.0;
attack = 1.0;
}

goblin(g) is monster has {

health = 3.0; // overrides health = 1.0 from monster
/I inherits attack = 1.0 from monster
money = 1; // adds new money field

} does {
handle_death;
chase_player;

}



ghost(~) has {

solid = false; // solid = true is default unless specified to be false
} does {

wander;

}

rock(O) has {
durability = 10.0;
stone = 3; // Player could receive this when breaking stone

}

tree(T) {
}

grass(.) {
solid = false;

}

spike(?) has {
symbol = T’
solid = false;
attack = 1.0;

} does {
dangerous_floor;

}

lava(#) has {
solid = false;
attack = 13.5;

} does {
dangerous_floor;

}
}

behaviors {
chase_player {

if distance(me, player) < 10 {
move_towards_player(1);

}

if adjacent(me, player) {
attack(me, player);

}

}
handle_death {



if me.health <=0 {
player.money += me.money;
}
}
}
functions { // for general purpose function reuse
attack(monster attacker, player defender) {
defender.health -= attacker.attack;

}
distance(entity a, entity b) { // this would probably be in the std library
distance = 0;
if(a.x > b.x) {
distance += a.x - b.x;
}else {
distance +=b.x - a.x;
if(a.y > b.y) {
distance +=a.y - b.y;
}else {
distance +=b.y - a.y;
}
return distance;
}
}
worlds {
house {
goblins_defeated = 0 // Variable to keep world-specific state
new_world(5, 10); // built-in function to make blank world
place(goblin, 1, 2); // built-in function to place entities
place(player, 4, 9);
}
}



