
Extend
Project Proposal

Jared Samet, Kevin Ye, Nigel Schuster, Ishaan Kolluri

jss2272, ky2294, ns3158, isk2108

Table of Contents

Inspiration

Description

Use Cases

Components & Syntax

Data Types

Functions

Comments

Example Usage

Inspiration

Tools such as Microsoft Excel, Google Spreadsheets, and Lotus 1-2-3 have

throughout the past two decades served as a way for both individuals and teams

to properly aggregate and compute on large amounts of data. However, we are in

an age where these tools are being used to perform calculations on troves of data

that only gets more complicated with time. After speaking with individuals well

versed in spreadsheet technology, discussing their pain points, and reflecting on

our own experiences, we found that ​a primary need ​ was the ability to encapsulate

a long sequence of calculations within the cells of a worksheet as reusable and

applicable on multiple datasets. Discussing ways to solve this need ultimately gave

birth to Extend.

1

While typical spreadsheet applications have ​restrictions ​ that limit their use as

general-purpose programming environments, they have three features in addition

to their GUIs that make it easy for relatively unsophisticated programmers to

perform complex computations and input manipulations:

● declarative syntax ​ - The user doesn’t have to specify calculation

order; the software automatically figures this out on its own by

examining the dependencies among the cells.

● immutable values ​ - Typical formulas are ​side effect free ​, which makes

it easier to understand the calculation logic.

● automatic formula adjustments ​ - A user will often have certain inputs

arranged in a tabular form. Once they have constructed a formula

that produces the correct output for a single row, the spreadsheet

software generally makes automatic adjustments to the formula that

should produce the correct output ​specific ​ to neighboring input rows.

At the same time, the inability to encapsulate complex calculations as functions,

and compose and reuse these functions, imposes severe limitations on the uses of

spreadsheets. In addition, a spreadsheet cannot be compiled and used as a

standalone program; to perform a calculation, a user needs to actually open the

application and ​manually ​ enter the appropriate inputs into the appropriate

locations, or use an entirely separate scripting language to effectively do the same

thing.

Extend is our attempt to create a programming language that incorporates the

easy development advantages of spreadsheets while allowing users to create

standalone ​ applications that allow for true function composability and reusability.

Description
Extend is a declarative programming language, where the developer can

designate a set of calculations as a ​reusable function ​. ​Variables are fixed-size

two-dimensional ranges of cells; each individual cell contains a formula, which may

2

be shared with neighboring cells. ​The dependencies between cells are used to

calculate the order of calculation, which does not need to be specified by the

developer. ​Extend allows cells to refer to other cells both by ​absolute and relative

positions ​, as in spreadsheets, but borrows the slice syntax from Python to describe

ranges in compact but flexible ways. ​Functions on ranges of cells will be applied

hierarchically when there are dependencies. ​The arguments to a function consist

of zero or more cell ranges, and the return value is a single range; all of these

ranges can be of variable length. ​ ​Functions can use other functions as part of their

dependent calculations; each of these can create its own variables within its own

local scope to perform calculations. The typing is simple, as the language has a

very specific set of use cases. Extend compiles to LLVM.

Use Cases

Case 1: ​ You have a set of complicated calculations associated with computing the

discounted cash flow of a company. You’d like to apply the same set of calculations

to another company, but you cannot easily do this. With Extend, you’d be able to

declare a “discounted cash flow” ​function ​ that takes a projection of cash flows

associated with the company, and then apply this function repeatedly to as many

other companies as desired. With a compiled Extend program, you can reuse this

function as new information comes in.

Case 2: ​ Within a company, there are ​domain-specific ​ calculations that many

people may have to do. Extend offers the ability for people to internally share

programs that solve the company’s common technical challenges, and improves

productivity by making it possible to write libraries with the same development

model that they are already familiar with from spreadsheets.

Case 3: ​ Extend makes it significantly easier to schedule and automate

computations on constantly changing input data. A human is ​required ​ to use a

spreadsheet to manually update inputs in order to calculate the updated results.

3

Therefore, calculations that need to be periodically performed on a dynamic set of

inputs can be easily automated with a compiled executable in Extend.

Components & Syntax

Extend, being a focused language, leverages a small range of primitives. It bridges

the gap between in-depth knowledge and simple syntax. Thus, it borrows elements

from ​Java, Python and Excel ​.

Data Types

Extend has two classes of data: cells, which contain either a single number or a

single formula that evaluates to a number, and ranges, which are a

two-dimensional set of cells arranged in rows and columns. A variable always

refers to a range. Since cells are immutable, ​all ​ values are passed by ​reference ​.

This further simplifies the use of the language and reduces errors when comparing

values. Equality between two cell ranges is established by value. If a cell that is

read does not hold a value, it returns “empty”. “Empty” does not throw an error;

instead, it ​propagates ​ throughout further usage of the value. At compile time, the

compiler will assert that the dimensions of the cell ranges passed into a function

and returned from a function match the declared dimensions. Overall, the design

greatly flattens the learning curve for a new user.

Cell Range: ​ ​foo[1, 2] ​ for a single cell or ​foo[2:[4],3] ​, where ​[4] ​ is a relative

reference and resolves to (referring cell's row)+4.

Number: ​ ​someValue = 2 ​ or ​someValue = 4.3

Functions

Functions lie at Extend's core; however, they are not ​first class objects ​. Functions

take the following form: a function starts by optionally declaring the dimensions of

its return range. If no range is specified, then the return value is a 1x1 range

consisting of a single cell. The function name and its arguments follow. The

4

declaration style of the return value is the same for function arguments. Since it

can be verbose in writing certain operations, Extend will feature a comprehensive

number of built-in and standard library functions. An important built-in

functionality is I/O; the user can either do a ​raw read ​ where each character in a

given file occupies a cell in a column or specifies ​delimiters ​ to read in a matrix.

Writing to a file is handled in the same fashion. As Extend features a declarative

programming style, functions for a specific cell will be evaluated once the value of

the cell is read, not when the formula is inserted into the cell. The main ​entry point

of any program is a main function of the form “ ​main([_, _] args) ​”, where each

column represents one argument.

A function is composed of four parts. The first is a declaration, which specifies the

dimensions of the return value and of any arguments. The next three, which are

inside the body of the function, are: ​(1) ​ a set of variable declarations, which specify

the dimensions of any local variables; ​(2) ​ a set of formula assignments, which

determine the contents of individual cells; and ​(3)​ a return statement, which

specifies the range to be returned by the function. The order of the statements

inside the body of the function is arbitrary; the compiler will determine which cells

will be evaluated and in what order.

A variable declaration of the form ​[m, n] foo; ​indicates that the variable foo is a

range consisting of m rows and n columns.

Formula assignments take the form: ​foo[row_slice, c olumn_slice] =

expression; ​ and indicate that ​expression ​ applies to ​every cell ​ in the subrange of

foo specified by ​[row_slice, column_slice] ​.

As in Python and Go, a slice has the form ​start:end ​ in which start is inclusive and

end is exclusive; in other words, the length of a slice is (end - start). Both start and

end are optional and default to zero and the dimension length, respectively. In

addition, they can be negative, with the same interpretation as in Python. If a

single integer ​i ​ is specified, without a colon, it is equivalent to ​i:i+1 ​.

5

Expressions allow for arithmetic and boolean operations, function calls, conditional

branching, and ​extraction of contents of other variables ​.

Supported arithmetic and boolean operators include the common ​+, -, *, /,

%, !, &&, ||, ^^ ​ and generally have the same interpretations as in C, C++ and

Java. Conditional branching is provided by the ​condition ? value-if-true :

value-if-false ​ ternary operator, where the ​: value-if-false ​ clause is optional

and defaults to ​empty ​ if absent. More complicated ​conditional branching ​ is

provided by the ​switch ​ keyword, which works similarly to its use in Go; ​switch

can either be used to compare the value of an expression to a list of cases, or can

be used to choose the expression corresponding to the first condition that

evaluates to a truthy value.

Variable content extraction is provided with the syntax ​ bar[row_slice,

column_slice] ​, but there is additional flexibility; either the ​start ​ or the ​end ​ of a

slice can be specified either in absolute terms or relative to the index of the

assignment cell. ​Relative indexing ​ is specified by enclosing an index in square

brackets. If a row slice or a column slice is entirely omitted in an extraction

expression, it defaults to the relative value ​[0] ​ if that dimension has length greater

than 1, and the absolute value ​0 ​ for a dimension of length 1.

Examples:

singleCellReturn() {

 return 3;

}

/* This function is identical to having written:

[1,1] singleCellReturn() {

 [1,1] foo[0,0] = 3;

 return foo;

} */

[5,m] rangeReturn([1,m] input) {

 [5,m] foo[0,:] = input; // First output row equal to input

6

 foo[1:,:] = foo[[-1],] + 1; // Next four are input+1, input+2, etc.

 return foo;

}

/* Equivalently:

[5,m] rangeReturn([1,m] input) {

 [5,m] foo[0,0:m] = input;

 foo[1:5,0:m] = foo[[-1],[0]] + 1;

 return foo;

} */

It’s important to reaffirm that Extend is a ​declarative ​ language. The compiler will

first look to the range specified by the ​return ​ keyword to determine which

calculations will be performed, and in what order. The body of a function can be

thought of as a single expression, while different parts of the expression can be

fragmented ​ into simpler expressions.

Compilation

The compiler will build and topologically sort a dependency graph (rooted at the

return value) between the variables and cells of an Extend function. The machine

language instructions to calculate the values for each cell will be executed in the

resulting sort order. If multiple branches of the graph are independent, they could

be executed in parallel.

Example Usage

DNA Sequence Alignment using Dynamic Programming Algorithm

/* Computes the optimal alignment of two character sequences based
 on the specified reward for correct matches and penalties for
 mismatches / gaps in alignment */
[_,2] computeSequenceAlignment(

[m,1] seq1, [n,1] seq2,
matchReward, mismatchPenalty, gapPenalty) {

[1,n] seq2T = transpose(seq2); // part of stdlib

7

[m+1,n+1] score;
[m, n] scoreFromMatch, scoreFromLeft, scoreFromTop;
[m, n] step, path;

score[0, 0] = 0;
score[1:,0] = score[[-1],] + gapPenalty;
score[0,1:] = score[,[-1]] + gapPenalty;
score[1:,1:] = nmax(scoreFromMatch[[-1],[-1]],

nmax(scoreFromLeft[[-1],[-1]], scoreFromTop[[-1],[-1]]));

scoreFromMatch = score + (seq1 == seq2T) ?
matchReward : mismatchPenalty;

scoreFromLeft = score[[1],] + gapPenalty;
scoreFromTop = score[,[1]] + gapPenalty;

step = (scoreFromMatch >= scoreFromLeft) ?

((scoreFromMatch >= scoreFromTop) ? 'D' : 'T') :
 (scoreFromLeft >= scoreFromTop) : 'L' : 'T'));

path[-1,-1] = 1;
path[-1,:-1] = (step[,[1]] == 'L' && !isEmpty(path[,[1]]) ?

1 + path[,[1]] : empty;
path[:-1,-1] = (step[[1],] == 'T' && !isEmpty(path[[1],]) ?

1 + path[[1],] : empty;
path[:-1,:-1] = switch { // Golang style

case step[[1],[1]] == 'D' && !isEmpty(path[[1],[1]]):
1 + path[[1],[1]];

case step[,[1]] == 'L' && !isEmpty(path[,[1]]):
1 + path[,[1]];

case step[[1],] == 'T' && !isEmpty(path[[1],]):
1 + path[[1],];

};

pathLen = path[0,0];
[m, 1] seq1Positions = pathLen - rmax(path[,:]);
[1, n] seq2PositionsT = pathLen - rmax(path[:,]);
[n, 1] seq2Positions = transpose(seq2PositionsT);
[pathLen, 1] resIdx = colRange(0, pathLength); // stdlib
[pathLen, 1] seq1Loc = match(resIdx, seq1Positions); // stdlib
[pathLen, 1] seq2Loc = match(resIdx, seq2Positions); // stdlib

[pathLength, 2] results;

8

results[:,0] = seq1[seq1Loc];
results[:,1] = seq2[seq2Loc];

return results;

}

/* Another example - part of standard library. Returns a column
 range with the numbers start...stop-1 */
[_, 1] colRange(start, stop) {

[stop-start,1] res;
res[0] = start;
res[1:] = res[[-1]] + 1;
return res;

}

/* GCD */
gcd(m, n) {

return (m % n == 0) ? n : gcd(n, m % n);
}

/* Binary Search
 Hard to test this one without a working compiler!
 Because everything is passed by reference, the
 slicing should take O(1), not O(n). */

binSearch([m,1] list, val) {

mid = floor((m-1)/2);
return switch {
case list[mid] == val:

mid;
case list[mid] > val:

mid > 0 ? binSearch(list[:mid], val); // otherwise empty
case list[mid] < val:

m > 1 ? mid + 1 + binSearch(list[mid+1:], val);
}

}

/* Matrix multiplication */

dot([m,1] v1, [m,1] v2) {

[m,1] products = v1 * v2;
return sum(products); // stdlib

}

9

[m, p] mmult([m, n] m1, [n, p] m2) {

return dot(transpose(m1[,:]),m2[:,]);
}

10

