Team:

Shankara Pailoor (sp3485)
Panchampreet Kaur (pk2506)
Graham Barab (gmb2154)

The Cimple Programming Language

We hope to build a statically typed language based off C with features that enable the
programmer to write expressive server side programs with the same ease as he or she would
with a language like python or ruby. These features include inheritance, interface types,
anonymous functions and closures.

We have chosen C as the basis of our language due to its status as a "low-level" language. The
ideas expressible in the language have close relationships with the resulting CPU instructions
the compiler generates. This proximity of the language to the computer hardware in this sense
promotes fast execution speed. Therefore, our language would benefit programs that require
fast execution speed, such as any software that processes or renders signals in real time, such
as digital audio production workstations and plugins, video editing and rendering, real-time (or
otherwise) 3D graphics, video games, etc.

Additionally, we are introducing some higher level language features, including object-oriented
principles such as structs with inheritance and methods, anonymous functions with closures,
and interfaces. This extends the ways a programmer may organize code, and increase the
speed with which more abstract concepts can be represented in code. Types of programs that
can benefit from this include those that rely on asynchronous communication. An example
would be client software interacting with a server, and vice verse.

Identifiers:
Identifiers consist of letters and digits [a-zA-Z][0-9¥] along with underscores. There are a
set of reserved identifiers described below.

Scope and Delimiters:
We keep to the C style using {} to specify scope

Keywords:
We add the following: function, interface, extends, s uper, implements, make
and clean.

Constants:
We keep the same integer, character and float constants as C.

Comments:
We support /* */ block comments and // line comments

Primitive Types:
We keep the same primitive types as C but also include string.

Operators:
We use the same binary and unary operators as C but also support ‘+’ for string types
which indicates concatenation and ‘==" which indicates the values are the same.

Objects and Structs:

We don’t have a new container type for a Class but instead keep the same struct objects
from C. We don’t support anonymous struct definitions within the struct body. Accessing
members of a struct has the same syntax for pointers and non-pointers.

Private vs. Public

We don’t have a concept of public or private variables or methods.

Methods:

Methods are functions which either retrieve state or modify state of a struct. There are
two implicit methods which are associated with every class 1) the constructor, 2) destructor. For
instance suppose we had a struct Person object defined below.
struct Person {

string name;

Then to allocate and assign this struct to a variable, one would write

Struct Person p; /* Stack variable - default constructor takes
no parameters */

Struct Person p (“Joe”); /* Stack variable - constructor with
string parameter */

struct Person *p = make Person(); /* Heap variable */
Our language uses the make keyword to allocate space for the struct on the heap and then

invokes the default constructor Person(). The default constructor can be overridden, by defining
one within the body of the struct. As an example,

struct Person {
string name;
Person (string name)

{
/* Constructor */

name = namey;

~Person ()

{

/* Destructor */

Other methods are defined outside as follows

string (Person *p) getName ()

{

return p.name;

Like the constructor there are default destructors which are invoked with the clean keyword if
the instance is stored on the heap (i.e. was instantiated with the “make” keyword), or is called
implicitly when the object goes out of scope.

struct Person *p = make Person (“myname”) ;
printf (“$s\n”, p.getName());
clean p;

A stretch goal of this project might be to include a garbage collecting runtime.
Inheritance:

Inheritance is denoted by specifying the keyword extends along with the name of the parent
struct after the struct name. We only support single inheritance. For example

struct Person {
string name;
Person (string theName)

{

name = theName;

struct Student extends Person{
string uni
Student (string name, string theUni)
{
super (name) ;
uni = theUni;

The super keyword allows one to access a parent struct’s methods and can only be used
within the struct definition. In the above example we are invoking the constructor of the parent
class by calling super (name) ; . If we wanted to access a method then we could write
super.getName () ;

Overriding and Accessing Base Class Methods From Derived Classes

Methods can override a parent struct’'s method simply by defining a new function with the same
signature. For example, suppose Person had a method getld(). Then we could override the
method in Student by defining:

String (Student *s) getId()
{

Return Person(s).getId() + s.uni();

One thing to note in the above example is we are calling Person (s) which casts the struct
Student to a struct Person and invokes the getld() since super can only be used within the
struct definition. If Person were not a parent to Student then this would cause the compiler to
throw an error.

Interfaces:
An interface is defined as follows
Example:

interface pet {
Void feed();
Void walk () ;

struct dog implements pet {
eat() { /* Dog-specific method */}

feed() { /* Pet interface */}
walk() { /* Pet interface */}

Anonymous Functions

In our initial design we decided anonymous functions should have a different syntax in order to
support closures.

Syntax for defining an anonymous function:

func(<returnType>)(...arguments) {
/ldefine function

An example:

func (int) (int 1) {
// Do something with 1

return i;

Syntax for naming a function parameter which is an anonymous function:
func (void) (int) *function name

To be explicit, function name is an alias for the anonymous function which takes an int
parameter and returns a void.

Example:

void some function(int x, func(int) (int) *fn)
{

int result = fn(x):;

printf (“$d\n”, result);

int main (int argc, string* argv)
{
for (int 1 = 0; 1 < 5; ++1i) {
some function (i, func(int) (int Jj) |
return Jj + 1;

});

Example Program - Processing an Audio Signal

struct Signal {
float* samples

int size;

Signal (int signallLength, func(void) (float*, int) *defineSignal) {
size = signallLength;
samples = make float[size];
defineSignal (samples, size);
}
~Signal () {
clean samples;

interface SignalProcessor
struct Signal* processSignal (struct Signal*);
struct FilterKernel extends Signal implements SignalProcessor ({
FilterKernel (int signallLength, func(void) (float *, int) *defineSignal) {
Super.make (signallength, defineSignal);
struct Signal* processSignal (struct Signal* sig) {

/* Create a new signal which is the convolution of this signal with "sig" */

struct output = make Signal(size + sig.size,
func (void) (float* x, int N) {

for (int 1 = 0; i < size + sig.size; ++1i) {
for (int j = 0; j < size; ++73) {
if (3 > 1)
x[1] = 0;
else
x[1] = samples[j] * sig.samples[i - j11;

P
return output;

const float pi = 3.14159265359;

int main(int, string*) {
float duration = 1.0;
int sampleRate = 44100;

int signalSize = sampleRate * duration;
float startFreq = 20.0; // 20hz
float endFreqg = 20000.0; // 20kHz

/* Create an sine sweep - a sine wave

whose frequency sweeps through the
audible spectrum of 20Hz - 20kHz
over 1 second */

struct Signal* sinesweep = make Signal (signalSize,
func (void) (float* x, int sigSize) {
/* This is the beginning of an anonymous function */
int 1 = 0;
while (i < sigSize) {
float fregModulator = exp((i / sigSize)

* log(endFreq / startFreq)) - 1;
x[i] = sin(((duration * (2 * pi * startFreq)
/ (log(endFreq / startFreq))) * fregModulator));

++1i;

}):

/* Create a low pass filter convolution kernel */
struct Signal* lowPassFilter = make FilterKernel (signalSize,
func (void) (float *x, int sigSize) {
int 1 = 0;
float cornerFreq = 0.25;

while (i < sigSize) {

if (1 == sigSize / 2) {
x[i] = sin(2 * pi * cornerFreq)
* (0.42 - (0.5 * cos(2 * pi * i / sigSize)
+ (0.08 * cos(4 * pi * i / sigSize))));
} else {
x[1] = (sin(2 * pi * cornerFreq * (i - sigSize / 2.0))

/ (i - sigSize / 2.0))
* (0.42 - 0.5
* cos(2 * pi * i / sigSize)
+ 0.08 * cos(4 * pi * 1 / M));

}):

/* Now use the lowpass filter to remove frequencies > 11,025Hz from

the sine sweep (should begin to go silent ~halfway through the sweep). */

struct Signal* filteredSweep = lowPassFilter->processSignal (sineSweep);
/* Do something with the filtered signal, then delete it */

clean filteredSweep;

clean lowPassFilter;

clean sinesweep;

return 0;

References

e Smith, Steven W. The Scientist and Engineer's Guide to Digital Signal Processing. San
Diego, CA: California Technical Pub., 1997. Print.
o Code example uses formula for a windowed-sinc low pass filter on page 290.

e Stan, Guy-Bart, Jean-Jacques Embrechts, and Dominique Archambeau. "Comparison of
different impulse response measurement techniques." Journal of the Audio Engineering
Society 50.4 (2002): 249-262.

o Code example uses formula for logarithmic sine sweep presented in this paper.

