
Blox

September 28, 2016
Programming Languages and Translators

Stephen A. Edwards

Team Members
Name UNI Role

Paul Czopowik pc2550 Manager

Naeem Bhatti bnb2115 Language Guru

Tyrone Wilkinson trw2119 System Architect

Jonathan Voss jcv2130 Tester

Describe the language that you plan to implement
The Blox language is a language designed to create and connect Lego pieces. It will

allow a programmer to build structures out of Lego blocks based on predefined primitive “brick”
types that represent basic Lego building blocks. The programmer will be able to define new
blocks that are derived from these simple elements and provide instructions on how the blocks
are assembled together. Part of the language will also check if certain assemblies are possible.
For example, if a block is already joined to another block on one side, another block will not be
allowed to be attached to that same side. To facilitate this, the language will be object oriented
and will allow the programmer to create “is-a” and “has-a” relationships to objects (inheritance
and composition). Besides primitive data types such as int and bool, Blox will provide primitive
lego blocks which can then be assembled into more complex structures. For example: a set of
4x4 cubes stacked on top of one another can be made into a pillar. “Construction” of new blocks
can be accomplished from pre-existing blocks, which in turn would create a new piece. This is
different from joining pieces, which creates a new structure, but are still made of separate
bricks. The syntax and design of the language is based on Java. The goal of Blox is to be a
simple streamlined language with easy to implement functions for creating and building with the
basic brick.

Explain what sorts of programs are meant to be
written in your language
Programs written in Blox will create Lego models. For example, the programmer can instantiate
a set of bricks, then define functions on how these bricks are put together. New objects can then
be defined, such as a house. The program will output a positional data file, which describes
where each block belongs in space and which direction it is facing (XML or similar).The intent is
to be able to interface this file as input to another utility that can draw the model, producing a 2D
or 3D graphical model.

Explain the parts of your language and what they do
The most basic step in Blox is using the “create” keyword to instantiate a brick object. The “join”
keyword will allow two pieces to be connected by their complementing sides, or pegs-to-holes.
This will also specify how the pieces are attached: top to bottom (stack), offset (staircase), side
by side (adjoining), etc. An Edge/Join Validation feature of the language will detect whether the
proposed join is possible and reject it otherwise, providing a compile time or runtime error with a
description of the problem. The “detach” keyword will allow for the removal of a piece. For
example, although a wall may be defined, bricks can still be removed after its construction. This
will allow for a simpler method of constructing a wall with a hole, rather than accounting for this
during the building of the wall. Easy creation of new pieces will be allowed by copying

1

parameters from existing pieces (primitives and derived). “Construct” would be used to take
separate pieces and join them permanently. For example, if 4 1x1 bricks were assembled side
by side, “construct” could then be used to transform them into a single, inseparable 4x1 brick.

Attributes of a Brick
● Size or dimensions
● Position (x,y,z)
● Direction - which way the brick is facing (all bricks are assumed to be right side up)
● Connections - the other pieces that are connected and where they are connected
● Color

Syntax

Primitive Types:
● Int
● Bool
● Char
● Boolean
● Long
● Short

Other Data Types:
● Brick - the fundamental data type of the language
● Array

Operators:
+ - * / = % ++ -- == != > < >=
<= && || !

Keywords:
● Create - instantiates an object
● Construct - creates a new type of brick from preexisting ones
● Build - automates a construction process or a series of construction processes
● If, Else
● While, For, Do
● Switch, Case, Default
● Join, Detach

2

● Void
● Destroy
● Abstract
● Catch
● Try, Throw, Throws, Finally
● True, False
● Null
● Return
● Static
● Package
● Class, Interface, Abstract, Super, Extends, This
● Byte, Boolean, Int, Long, Short, Char

3

Sample Program:

Brick ​make_floorplan​()
{

Create​ ​Brick(0,0) floorplan;
Create​ ​Brick(2,1) wall_w;
Create​ ​Brick(3,1) wall_n;
Create​ Brick(2,1) wall_e;
Create​ Brick(4,1) wall_s;

2DJoin​(floorplan, wall_w, 0E, wall_n, 0W);
2DJoin​(floorplan, wall_n, 2S, wall_e, 0N);
2DJoin​(floorplan, wall_e, 1S, wall_s, 3N);

return floorplan;

}

void ​main​()
{

Brick floorplan = make_floorplan();

Brick frame = ​Build​.layer(floorplan, 2);
Display​(frame);

}

4

