
replay

Language Reference Manual

Eric Bolton - edb2129

Contents

1 Introduction 2

2 Lexical conventions 2
2.1 Tokens . 2
2.2 Separators . 3

3 Expressions 3
3.1 Operations . 3
3.2 Literals and identifiers . 5
3.3 Non-primitive types . 5
3.4 Attributes . 7

4 Declarations 8
4.1 Functions . 8
4.2 Variables . 9
4.3 strat enumerator . 9

5 Statements 9
5.1 Variable or strat declaration . 9
5.2 Play, Mutate, and Crossover . 10
5.3 Assignment . 10
5.4 Return . 10
5.5 If, else . 10
5.6 For, in . 11
5.7 List . 11

6 Scope 11

7 References 11

1

1 Introduction

replay is an imperative programming language designed to make strategies in repeated games
easier to represent and analyze. It draws inspiration from three papers in game theory, Abreu
and Rubinstein (1988), Miller (1987), and Rubinstein (1986), which first formalized the use of
automata theory for the analysis of games, an idea that was first suggested by Aumann (1981). As
such, replay provides a framework for defining strategies as finite automata (Moore machines). In
addition, it enables game payoffs to be specified functionally, simplifying the process of defining
complex games. Finally, it provides tools central to the genetic algorithm introduced by Holland
(1975), which has proven instrumental in the analysis of strategies in repeated games.

2 Lexical conventions

2.1 Tokens

There are five different kinds of tokens in replay : identifiers, keywords, literals, operators, and
punctuation.

2.1.1 Variables

Variables begin with a letter, followed by any number of letters, digits, or underscores ’ ’.
The underscore ’ ’ by itself denotes a wildcard in the context of moves (see 3. Expressions).

2.1.2 Keywords

The following identifiers are reserved for use as keywords:
int if
bool else
float for
string in
void return
Game true
Strategy false
Player strat

rand
2.1.3 Literals

There are literals for each type, as follows:
• int: A sequence of digits.

• bool: A ’true’ or a ’false’

• float: Two possibilities:

– An integer part, a decimal point ’.’, a fraction part, and an exponent. The integer and
fraction parts consist of a sequence of digits. The exponent consists of an e, followed
by an optional sign - or +, and a sequence of digits. The integer and fraction parts are
both optional, but at least one of the two must be present. Likewise, the decimal point
and the exponent are both optional, but at least one must be present.

2

– A ’rand’ keyword, which gets interpreted as a random floating point number between 0
and 1 at compile time.

• string: Any number of characters, delimited by quotes ’" "’.

2.1.4 Operators

There are 18 operators, as follows:
+ == &&
- != ||
* > !
/ <
= >=
-> <=
%
#
˜

2.1.5 Punctuation

The following characters are used as punctuation:
()
[]
{ }
: ;
. ,
|

2.2 Separators

Comments and whitespace are ignored by the scanner, except to serve as separators.

• Comments are delimited by /* and */.

• ’ ’ (space), ’\t’ (tab), ’\r’ (carriage return), and ’\n’ (newline) are treated as whitespace.

3 Expressions

3.1 Operations

An expression can be an operation, which consists of parentheses, expressions, unary operators,
and binary operators.

3.1.1 Unary operators

Unary operators group right-to-left and have higher precedence than binary operators. They behave
as follows:

• -expression: Unary negation. The result is the negative of the expression, without changing
its type. It is applicable only to expressions of type int or float.

• !expression: Logical negation. The result is true if the expression is false. Conversely, it is
false if the expression is true. It is applicable only to expressions of type bool.

3

3.1.2 Binary operators

Binary operators group left-to-right. Here they are, sorted from highest to lowest by precedence:
* /
+ -
> >= < <=
== !=
&&
||

They behave as follows:
Arithmetic operators

• expression*expression: Multiplication. The result is float if one of the two operands is
float. The result is int if both operands are int. If one operand is float and the other is
int, the int gets converted to float. Multiplication is applicable only to expressions of type
int or float.

• expression/expression: Division. Result and operand types behave the same way as with
multiplication.

• expression+expression: Addition. Types behave the same way.

• expression-expression: Subtraction. Types behave the same way.

Relational operators

• expression>expression: Greater than.

• expression<expression: Less than.

• expression>=expression: Greater than or equal to.

• expression<=expression: Less than or equal to.

The result of these operators is true if the relation is true, and false if it is false. If one operand
is float and the other is int, the int gets converted to float. Relational operators are applicable
only to expressions of type int or float.

Equality operators

• expression==expression: Equal to.

• expression!=expression: Not equal to.

These behave the same as the relational operators, except that they are applicable to more types:
any pair of operands that are of the same type. Additionally, if one operand is float and the other
is int, the int gets converted to float.

4

Boolean operators

• expression||expression: Or. The result is true if either operand is true, and false otherwise.
It is applicable only to operands of type bool.

• expression&&expression: And. The result is true if both operands are true, and false
otherwise. Like ||, it is applicable only to operands of type bool.

3.1.3 Parentheses

(expression): The result is simply that of the expression enclosed in parentheses.

Note: special operators

% # ˜: Play, cross, and mutate: Because these operators behave differently from the operators
cited above, they are treated as statements. (See Section 5.2).

3.2 Literals and identifiers

3.2.1 Literals

An expression can be any of the literals specified in Section 2.1.3. The result is the type of the
literal.

3.2.2 Identifiers

An expression can be an identifier, which in turn can be any of the following:

• variable: A variable, as specified in section 2.1.1.

• variable(actualsopt): The result of calling the function variable with parameters specified by
the list of comma-separated values actualsopt.

• identifier[expression]: The value at index expression of the array identifier. expression must
be an int, while expression must be an array. (See Section 3.3 Non-primitive types)

• variable.identifier : The attribute identifier of variable. (See Section 3.4 Attributes)

3.3 Non-primitive types

An expression can also be a Strategy, a Game, a Player, or an array, the non-primitive types of
replay.

3.3.1 Strategies

An expression can be:

• Strategy[params]: A Strategy. params is a list of expressions separated by |’s. In this case,
it must consist of the number of states (an int), the number of moves the strategy is based
on (an int), and a list of states (see below). The numbers are needed to gauge memory
requirements. This expression has type Strategy.

• {states}: A list of state’s, enclosed by braces and separated by semicolons. This is the last
expression required by the Strategy[params] constructor.

5

States

A state is specified as follows:

variable:expression,transitions

variable is the name of the state, and is set to be an int. expression corresponds to the move the
state outputs, which must be of type int. transitions is a list of transitions, separated by bars.

Transitions

A transition is specified as follows:

(moves)->variable

moves is a comma-separated list of either int’s or wildcards ’ ’. variable corresponds to the name
of the state, and must be an int.
To summarize, here is an example Strategy expression:

1 Strategy[10 | 2 | {
2 cooperate: C, (_,D) -> defect
3 | (_,C) -> cooperate;
4 defect: D, (_,_) -> defect; }]

This specifies a strategy with 10 states, and 2 possible moves. States don’t need to have every
possible transition specified; a state will by default map back to itself. Furthermore, not all states
need to be specified: states will by default output whatever move is denoted by 0, and map back
to themselves.

3.3.2 Games

An expression can be:
• Game[params]: A Game. In this case, params must consist of the number of moves (an int)

in the game and a list of outcomes (see below). This expression has type Game.

• {outcomes}: A list of outcome’s, enclosed by braces and separated by bars |.

Outcomes

An outcome is specified as follows:

(moves)->(payoffs)

payoffs is a comma-separated list of expression’s, which must be of type int.
To summarize, here is an example Game expression:

1 Game[2 | { (C,C) -> (-1,-1)
2 | (C,D) -> (-5,0)
3 | (D,C) -> (0,-5)
4 | (D,D) -> (-3,-3); }]

6

A game’s payoffs can also be specified functionally:

1 Game[2 | { (x,y) -> (x * y - 1, x * y + 1)}]

3.3.3 Players

An expression can also be a Player, specified as follows:
Player[params]

In this case, the first element of params must be a Strategy, corresponding to the Player’s strategy.
Then, the user can optionally specify additional parameters of type float. These correspond, in
order, to:

• The Player’s delta: how much value the player attributes to payoffs acquired in future rounds.

• The Player’s output noise: the probability that a move by the Player will be incorrectly
reported.

• The Player’s input noise: the probability that the Player will receive an incorrect report of
played moves.

This expression has type Player.
A Player tracks the state it is in, its accumulated payoff, and how many times it has played. Each
time it ”plays” in a Game, it adds the payoff it received, multiplied by its delta raised to the power
of how many times it has played.
To summarize, here is an example Player expression:

1 Player[grim | 0.5 | 0.01 | 0.01]

3.3.4 Arrays

Finally, an expression can be arrays, specified as follows:
• type[params]: A type array. When params has only one value of type int, this construction

always specifies an array.

• [expression1:expression2]: An integer array of size expression2 - expression1, whose values
range from expression1 to expression2. Both expression’s are required to be int’s.

3.4 Attributes

replay’s non-primitive types have built-in attributes:

• string:

– len: The length of the string.

• Arrays:

– len: The length of the array.

• Strategy:

7

– size: The number of states in the Strategy. (int)
– moves: The number of moves the Strategy can play. (int)
– term: The number of terminal states in the Strategy. (int)
– inacc(): Counts the number of inaccessible states in the Strategy. (int)
– change(actualsopt): Changes the state at a specified address to a new one actualsopt

must be a list consisting of one int, and a list of one state. (void)

• Game:

– players: The number of players in the game. (int)
– moves: The number of moves each player can play. (int)
– payoff(actualsopt): Returns the payoff of a specified player when a specified profile is

played. actualsopt must be a list of one int and one int array, the int specifying the
player, and the array specifying the moves in the profile. (int)

– change(actualsopt): Changes the payoffs resulting from a specified profile to a new
specified set of payoffs. actualsopt must be a list of two int[] arrays, the first one
specifying the profile, the second one specifying the payoffs. (void)

• Player:

– strategy: The strategy of the Player. (Strategy)
– state: The state of the Player’s Strategy the Player is in. (int)
– rounds: The number of rounds the Player has played. (int)
– output: The output noise level of the Player. (float)
– input: The input noise level of the Player. (float)
– delta: The delta of the Player. (float)
– payoff: The accumulated payoff of the Player. (float)
– reset(): Resets the accumulated payoff and the number of moves to 0. (void)

Each non-primitive type, with the exception of string, has a string() function as an attribute,
which provides a string representation for the type.
Users cannot specify new attributes, nor can they change their value.

4 Declarations

There are three types of declarations: function declarations, variable declarations, and the strat
enumerator.

4.1 Functions

A function declaration is specified as follows:

type variable (formalsopt){statements}

type and variable specify the type and name of the function. formalsopt specify the arguments
the function takes, just as actualsopt specify the arguments passed in a function call. Finally,
statements is a list of any number of statement’s, corresponding to the body of the function. (See
Section 5. Statements) A function’s last statement must be return statement, whose return type
must correspond to the type of the function.

8

4.1.1 Built-in functions

Certain function names are reserved. They serve the following two purposes:
Printing

• print(actualsopt): Takes one argument, converts it to a string using its type’s string()
attribute, then prints it out. (void)

• println(actualsopt): Does the same, then prints a newline character. (void)

Type-casting

• tofloat(actualsopt): Takes an argument of type int, and returns a float corresponding to
that int. (float)

• toint(actualsopt): Takes an argument of type float, and returns an int corresponding to
the floor of that float. (int)

4.2 Variables

A variable declaration can take two forms:

• type variable = expression: This declares a variable of type type, and initializes it with the
value expression. The types of the expression and the variable must match.

• type variable: This declares a variable of type type, and initializes it to a default value.

4.2.1 Arrays

In the case of an array declaration, the type is followed by []:
• type[]variable = expression

• type[]variable

4.3 strat enumerator

Finally, a user can declare a set of moves using the strat enumerator:

strat {variables}

variables is a comma-separated list of n variable’s, which get declared with type int by this con-
struction. They are initialized with values 0 through n depending on their position in the list.

5 Statements

There are many types of statements. A program consists of a list of statements and function
declarations, in any order.

5.1 Variable or strat declaration

A statement can be either a variable or strat declaration, followed by a semicolon ’;’

9

5.2 Play, Mutate, and Crossover

A statement can be any of the operations on Players.

• identifiers%expression;: Play. identifiers is a comma-separated list of identifier ’s, which must
be Player’s. expression must be a Game. This operator pits the Players against each other
for a round of the Game, updating their payoffs and Strategy states.

• identifier˜expression;: Mutate. identifier must be a Player, and expression must be a float.
This operation acts on the bit representation of the Player’s strategy, changing each bit with
a probability specified by the float.

• identifier1#expression#identifier2;: Crossover. identifier1 and identifier2 must be Player’s,
and expression must be a float. This operation acts on the bit representations of the Player’s
strategies, crossing the two representations at the position indicated by the float.

Now for an illustration of the effect of the following crossover statement’s effect: p1 # 0.75 # p2;
Let P1 be the bit representation of p1’s strategy, and P2 be the bit representation of p2’s strategy.
Say before crossover, we have:
P1 = 11111111 and P2 = 00000000
After crossover, we would have:
P1 = 11111100 and P2 = 00000011. The bits following the position 3

4 , or 0.75 of the way into the
bit representation have been swapped.

5.3 Assignment

A statement can be an assignment statement.

identifier=expression;

The identifier must be an array entry or a variable; it cannot be an attribute or a function call.
The expression must be of the same type as the identifier. The value of the expression gets assigned
to the identifier.

5.4 Return

A statement can be a return statement.

return expressionopt;

If expressionopt is left empty, this returns a void. Otherwise, this returns an expression of type
expressionopt.

5.5 If, else

A statement can be an if-else statement.

• if (expression)statement: statement is executed if and only if expression evaluates to true.
expression must be a bool.

• if (expression)statement1 else statement2: If expression evaluates to false, statement2 is
executed.

10

5.6 For, in

A statement can be a for-loop.

for variable in expression statement

expression must be an array. For each iteration of the for-loop, statement is executed and variable
takes on the next value of the array, until the end of the array is reached.

5.7 List

Finally, a statement can be a brace-enclosed list of statements:

{statements}

6 Scope

A variable’s scope reaches any line following their declaration. If they are declared within braces
{}, they have local scope and cannot be reached outside of the braces.
If a variable is declared as part of a for-loop statement, its scope is limited to that for-loop’s
statement.
If an undeclared variable is used in a set of moves to define payoffs functionally within a list of
outcomes, its scope reaches only the payoffs that directly follow the arrow of the outcome it is used
in.
Finally, when a variable is used to name a state in a Strategy, its scope extends to all states in the
strategy, whether they precede or follow it.

7 References

Abreu, D. and Rubinstein, A. ”The Structure of Nash Equilibrium in Repeated Games with Finite
Automata.” Econometrica 56 (November, 1988):1259-81.
Aumann, R. T. ”Survey of Repeated Games.” In R. T. Aumann et al., eds., Essays in Game Theory
and Mathematical Economics in Honor of Oscar Morgenstern (Bibliographisches Institut, Zurich:
Mannheim), 1981:11-42.
Holland, T. H. Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan: The University
of Michigan Press, 1975.
Ritchie, Dennis M. C Reference Manual Bell Telephone Laboratories. 1978
Rubinstein, A. ”Finite Automata Play the Repeated Prisoner’s Dilemma.” JournalÂůof Eco- nomic
Theory 39 (June, 1986):83-96.
Miller, J. H. ”The Coevolution of Automata in the Repeated Prisoner’s Dilemma” SFI Working
Paper: 1989–003

11

