
easel

LANGUAGE REFERENCE
MANUAL

Manager | Danielle Crosswell | dac2182
Language Guru | Tyrus Cukavac | thc2125

System Architect | Yuan-Chao Chou | yc3211
Tester | Xiaofei Chen | xc2364

	 2	

Table of Contents
1. Introduction .. 3

1.1. A Note on Notation and Conventions ... 3
2. Keywords, Comments, and Whitespace .. 3

2.1. Keywords .. 3
2.2. Comments and Whitespace .. 3

3. Identifiers and Data types ... 4
3.1. Names ... 4
3.2. Primitive data types .. 4

3.2.1 Primitive Variables ... 4
3.2.2. Primitive literals .. 4

3.2.2.1. Integer Literals ... 4
3.2.2.2. Floating Point Literals .. 5
3.2.2.3. Boolean Literals ... 5
3.2.2.4. Pix Literals ... 5
3.2.2.5. Unary operators on numeric values .. 5

3.3. Non-primitive data types .. 6
3.3.2. Non-primitive literals .. 6

3.3.2.1. Array and N-Ple Literals .. 6
3.3.2.2. Function Literals .. 6

4. Expressions ... 6
4.1. Base Expressions .. 6
4.2. Postfix Expressions: array indices, function evaluation, and unary operators 7
4.3. Mathematical Expressions .. 7
4.4. Equivalence and Comparison ... 8
4.5. Logical Expressions .. 9
4.6. Assignment ... 9

5. Declarations .. 9
5.1 Variable, Array, and N-Ple declaration ... 9
5.1.1 Simple Variable Declarations ... 9

5.1.2 Array Declarations ... 9
5.1.3. N-Ple Declaration .. 10

5.2. Scope .. 10
6. Statements .. 10

6.1. Condition and Loop Statements ... 10
6.1.1 if statements .. 11
6.1.2 if else statements .. 11
6.1.3. Loop Statements .. 11

6.1.3.1. for statements ... 11
6.1.3.2. while statements ... 11
6.1.3.3. do while statements .. 12

7. Functions .. 12
7.1. Function Declarations and Definitions ... 12

7.1.1 Function Declaration without Definition ... 12
7.2. Function Literals / Anonymous functions .. 13
7.3. Invoking functions .. 13
7.4. Built-in Functions ... 13

	 3	

1.	Introduction	
The primary purpose of easel is to create art using mathematics. Our language provides a
means for programmers to visualize mathematical data and functions. The programmer is
able to create visual representations using colors represented as pixels to have more
aesthetically pleasing and easily understandable visualizations. The goal of easel is to
create a simple interface for mathematical data and functions to be represented with the
use of primitive data types and standard library functions.

easel is capable of performing both basic and advanced mathematical expressions, such
as trigonometric and logarithmic functions using built-in functions and simple operators.
Because the creation of images is the central feature of our language, primitive data types
include “canvas” and “pix” in addition to the array data type to ease the drawing of
images.

In easel, functions are the core of the language. They can be passed as parameters,
returned as values, and declared anonymously.

1.1.	A	Note	on	Notation	and	Conventions	
Because of several syntactical parallels with C, much of the notation is similar to The C
Reference Manual by Dennis M. Ritchie, particularly with regards to naming conventions
and structures used in C’s grammar.

2.	Keywords,	Comments,	and	Whitespace	

2.1.	Keywords	
The following are keywords reserved by the language and are not permitted as Names.

bool
false
float
int
null
pix

string
true
else
function
if
return

void
do
for
while
draw
drawout

graph
view
red
green
blue

2.2.	Comments	and	Whitespace	
Comments within a program are ignored and delineated by
/*[text]*/
Hence, all comments must have an opening “/*” and a closing “*/” which is then skipped
by the parser.

There must be at least one space between tokens in order to separate them unless a
separator (“,”, “.”, or “;”) is between them. A given token is therefore not allowed to have

	 4	

whitespace within it, lest it be interpreted as a different token. Otherwise, whitespace is
ignored.

3.	Identifiers	and	Data	types

3.1.	Names
name -> [a-zA-Z_][0-9a-zA-Z_]*

Names are used to identify variables of data types as well as functions. They are allowed
to be a sequence of alphanumeric characters and underscores, excepting those that match
with reserved keywords, which will be interpreted as keywords in accordance with the
grammar rules to follow. A name must begin with a letter or underscore, and upper and
lower-case letters are not considered equivalent

3.2.	Primitive	data	types

3.2.1	Primitive	Variables
Primitive variables can be of the following 4 data types:
int 32-bit (or default machine architecture size) 2’s complement number values
float 32-bit
bool 1-bit true or false values. Can be represented using “true” or “false” keywords or

simply “1” or “0” are acceptable
pix 24-bit integer values. A pix stores a color value from 0-16777216.

Integers may be used anywhere floats can be used and conversion is automatic. That said,
a float value cannot necessarily be used anywhere an int value is expected.

3.2.2.	Primitive	literals		 	
primitive-literal -> pix-literal
primitive-literal -> boolean-literal
primitive-literal -> float-literal
primitive-literal -> integer-literal

Primitive literals of the types listed above can take the following forms.

3.2.2.1.	Integer	Literals		 	
integer-literal -> integer-literal-hex
integer-constant -> integer-literal-dec
integer-literal-dec -> number-dec
integer-literal-hex -> number-hex

number-hex -> #[0-9a-f]+
number-dec -> [0-9]+

Thus, Integers can take the form of decimal notation or hex notation, which is noted by
the “#” symbol followed by a number.

	 5	

3.2.2.2.	Floating	Point	Literals		
float-literal -> integer-literal . integer-literal float-literal-exponent
float-literal -> . integer-literal
float-literal -> . integer-literal float-literal-exponent
float-literal -> integer-literal float-literal-exponent
float-literal -> integer-literal

float-literal-exponent -> e integer-literal
float-literal-exponent -> e + integer-literal
float-literal-exponent -> e - integer-literal

Floating point constants in decimal form consist of an integer value followed by an
optional decimal point and other integer value (representing the fraction) as well as an
optional exponent. If the first integer value does not exist, then there must be a decimal
point followed by an integer value. An exponent may follow either the first integer value,
or the decimal and second integer value, or both. No hex values are permitted in this
representation.

3.2.2.3.	Boolean	Literals
boolean-literal -> true
boolean-literal -> false

Boolean literals are simply true or false and correspond to integer values of 1 or 0.
Boolean values in general will be “upgraded” to integer or float status if placed into
contexts of mathematical expressions.

3.2.2.4.	Pix	Literals
pix-literal -> { integer-literal , integer-literal , integer-literal }

Integers between 0 and 16777216 (i.e. any unsigned 24-bit integer in either decimal or
hex form) can be cast as pix literals. However, pixel literals are perhaps more easily
expressed using “list notation” of three 8-bit integer values. For example: {255,0,0} or
{#ff,#00,255}. Each item in the list represents a different color (Red, Green, and Blue).

3.2.2.5.	Unary	operators	on	numeric	values
Integer and floating point values are able to be given specific signs, positive or negative,
by preceding them with a unary operator + or -

+ numeric-expression
- numeric-expression

Additionally, pix and boolean values (including those arrived at from expressions) can
utilize the unary operator “!” to flip their values (in the case of pixels, all of the bits are
flipped).
unary-expression -> ! unary-expression

Note that the “not” operator when performed on an integer != 0 will return false and vice-
versa.

	 6	

3.3.	Non-primitive	data	types
Variables storing a reference to a piece of data (rather than the data itself) and built using
the above-mentioned primitive data types are created using the following types:

array a data structure to store a sequence of adjacent values of a given data type.

 Arrays can be nested, that is n-matrices are possible.
function a reference to a function instance.
n-ple a data structure storing various values that are added together to memory as they

 are defined.

3.3.2.	Non-primitive	literals
The compound types named above can also be found as literals within statements.

3.3.2.1.	Array	and	N-Ple	Literals
Both arrays and n-ple’s can be initialized using an n-ple list:

n-ple-literal -> {parameter-list}

An n-ple literal is essentially a list of values that make up the parameters of a function.
This can include all mathematical expressions, variable names, function names, and
anonymous functions as well.

3.3.2.2.	Function	Literals
Functions are considered first-class objects (although not expressions) in easel and are
therefore able to be referred to as literals in their own right:

function-literal -> function type (function-parameter-list) return-region

This is the same form as anonymous functions (see section 7.2). Function-literals can be
used in many contexts, including as parameters to other functions or simply as statements
to be executed immediately (both are discussed in the “Statements” section and the
“Functions” sections respectively).

4.	Expressions
Expressions can take many forms but at their essence they return mathematical values.

4.1.	Base	Expressions
base-expression -> primitive-literal
base-expression -> name

Base expression gives the value of primitive literals or variables of primitive data types.

Additionally, any parenthesized expressions are evaluated first.
base-expression -> (base-expression)

	 7	

4.2.	Postfix	Expressions:	array	indices,	function	evaluation,	and	unary	operators
Once the base expression has been evaluated, any postfix operators are applied (including
all of the unary operators). Of key importance for easel’s functionality is the array
subscript operator (“[]”):
postfix-expression -> postfix-expression [base-expression]

A key distinction between easel and other programming languages is that arrays are
indexed using a Cartesian model, with an n-size array having a max index of ⌈n/2⌉ and a
minimum index -⌊n/2⌋. For convenience, arrays and matrices also have a “.” operator
postfix-expression -> postfix-expression .

This allows one to access an array’s size (or total number of elements) and maximum and
minimum index:
postfix-expression.size
postfix-expression.max
postfix-expression.min

n-ples have access to the “size” value, but are otherwise accessed using array notation
starting from index 0.

Pixel values may also use the “dot” operator:
pixel_variable . color_key
where “color_key” is any value of the type “red”, “green”, or “blue”. It returns an 8-bit
integer value corresponding to the intensity of the color.

pix x= #008844
int z = x.red /* z=0 */
int y = x.blue /* y=68 or #44 in hex */

Moreover, named functions are called using parentheses and an optional parameter list:
postfix-expression -> postfix-expression (parameter-list)
postfix-expression -> postfix-expression ()

Functions and their parameters are covered in more depth in the Function section.

Other unary postfix-expressions include:
postfix-expression -> postfix-expression ++
postfix-expression -> postfix-expression --
postfix-expression -> postfix-expression //
postfix-expression -> postfix-expression **
postfix-expression -> postfix-expression ^^
Each of which is shorthand for a binary operation being performed on a variable with
itself.

4.3.	Mathematical	Expressions	 	
Mathematical expressions are evaluated in the standard order of operations: parentheses
(seen earlier), exponents, multiplication, division, addition, and subtraction. These
operators are left-to-right associative as in standard mathematics.

	 8	

The exponential expression is taken to the power of the given unary-expression:
exponential-expression -> exponential-expression ^ unary-expression
exponential-expression -> unary-expression

Once any exponents have been taken into account, multiplication and/or division can
occur:
multiplication-expression -> multiplication-expression * exponential-expression
multiplication-expression -> multiplication-expression / exponential-expression
multiplication-expression -> exponential-expression

These operations are then followed by addition and subtraction:
addition-expression -> addition-expression + multiplication-expression
addition-expression -> addition-expression - multiplication-expression
addition-expression -> multiplication-expression

Where do these rules leave matrices? A key feature of easel is to provide matrix
multiplication. A matrix can be multiplied by a scalar; more importantly, matrices can be
multiplied by other matrices assuming that they are 1st matrix column and 2nd matrix
row compatible. Additionally, two same-sized matrices can be added to or subtracted
from one another.

As for n-ples, provided a user is using the name of an n-ple rather than accessing a
particular value, multiplication and division are inapplicable, but addition and subtraction
allow for an expression to be concatenated to the end of the n-ple.

nple n = {1,2,3}
n = n+ 4; /* n={1,2,3,4} */

4.4.	Equivalence	and	Comparison
Expressions are compared before being tested for equality and are evaluated left-to-right:
relational-expression -> relational-expression < addition-expression
relational-expression -> relational-expression > addition-expression
relational-expression -> relational-expression <= addition-expression
relational-expression -> relational-expression >= addition-expression
relational-expression -> addition-expression

equality-expression -> equality-expression == relational-expression
equality-expression -> equality-expression != relational-expression
equality-expression -> relational-expression

In the case of arrays (or matrices) the size of the array or outer array of a matrix are
compared to determine results. Functions, whether anonymous or named, cannot be
compared and will return an error (this is also invalid syntax as functions are not
considered expressions in easel).

	 9	

4.5.	Logical	Expressions
Boolean values can be evaluated using the logical operators AND (“&&”) and OR (“||”):
logical-AND-expression -> logical-AND-expression && equality-expression
logical-OR-expression -> logical-OR-expression || logical-AND-
expression

“&&” is given precedence. In the case of numbers as previously described, all values not
equal to 0 are considered “TRUE” Boolean values and all values equal to 0 are
considered “FALSE”.

4.6.	Assignment
An assignment for base expressions occurs in the following manner:
assignment-expression -> unary-expression = logical-OR-expression

A variable can be set to the value of any of the mathematical expressions. Additionally,
arrays and n-ples can be assigned values using n-ple literals:
assignment-expression -> unary-expression = n-ple-literal

Because n-ple literals take parameter-list values, they can also include nested n-ple
literals. So an n-matrix can be defined using n-dimensional n-ple literals as well.

5.	Declarations	

5.1	Variable,	Array,	and	N-Ple	declaration	

5.1.1	Simple	Variable	Declarations 	
type name;

int var; /* declares variable of type int called var */

Primitive variables are declared simply by providing the variable’s type followed by its
name. Declaring a variable will not automatically allocate space for the variable-this only
occurs for simple variables during the definition of the variable.

Definition can happen within a separate statement, or at the same time as declaration.

int var = 5;
is valid syntax and will allocate space and assign a value for the variable.

5.1.2	Array	Declarations
Arrays are declared using a type followed by the name and bracket notation:
compound declaration[expression]
compound declaration -> type name

int array_example[3+5]
float matrix_example[8][3.2+8]

	 10	

Values within brackets are numerical expressions but are cast as integers, rounded down
if floating-point, by the compiler. An array must know its size at declaration in order for
the declaration to be valid.

As with simple variables, space is not allocated for the array until at least one value of the
array has been defined. In most cases, setting an array equal to an empty nple will suffice,
as in:
array={}
matrix={}
is acceptable. All values found within the array or matrix will be initialized to 0.

5.1.3.	N-Ple	Declaration
nple n; /* declares a new n-ple n */

The n-ple is then defined using an n-ple literal, which may or may not be the empty set:
n = {}

5.2.	Scope
Scope is best explained with a brief description of program structure. A given program
consists of the global space, wherein any statement can be executed, or a function can be
defined.

The scope of a variable in easel is defined to be within the function in which it is
declared. Regions within control or loop statements have access to all other variables
declared within the same function.

The global space is a relative no-man’s-land of variables that can only be used by
functions to whom they are passed as arguments. They are otherwise inaccessible to
internally defined or called functions.

6.	Statements
A basic statement is of the form:
declaration ;
expression ;
anonymous-function ;

A general statement can be a declaration (which may include an expression), an
expression by itself, or, should an anonymous function (see section 7.3) be made as a
statement, it will be executed immediately.

In addition to the general statements above, easel features both control statements and
loop statements for iterative processes.

6.1.	Condition	and	Loop	Statements	 		 	
statement -> condition-statement;
statement -> loop-statement;

	 11	

The following types of control statements make use of a list of other statements called a
region:
region -> { statement-list }

Regions are defined as having their own scope, and any variables declared within the
region will be deleted upon completion of the execution of the statement list. They will,
however, have access to any variables declared within their calling function.

Because regions are themselves lists of statements, nesting either the control or loop
statements defined below is perfectly acceptable.

Note that both condition and loop statements must end in a semi-colon.

6.1.1	if	statements
if (expression) region ;

If statements provide a condition which evaluates to true or false. If true, a sequence of
statements in a region (bracketed on the left and right sides) will execute. If the
expression is false, the region is skipped and the next statement will proceed to execute.

6.1.2	if	else	statements
if (expression) region else region ;

If-else statements offer an additional path following evaluation of the expression: if an
expression evaluates to true, the first region is executed and the second is ignored. If the
expression evaluates to false, the second region is executed and the first is ignored.
Following either of these two events, the next statement following the if-else statement
will proceed to execute.

6.1.3.	Loop	Statements
The following statements execute repeatedly until a given condition evaluates to false.

6.1.3.1.	for	statements
for (expression ; expression ; expression) region

For statements begin with an expression (meant to declare and initialize an iterator
variable), run a particular region of statements, evaluate another expression (meant to be
a form of iterator) and then check to see if a given condition is true (usually if the iterator
has reached a certain threshold).

6.1.3.2.	while	statements	
while (expression) region

While statements first check to see if a given expression evaluates to true and if so,
executes the region. The expression is then evaluated at the conclusion of every iteration
and if it continues to be true, the region continues to be executed. When the expression
evaluates to false, the region is skipped and the following statement is executed.

	 12	

6.1.3.3.	do	while	statements
loop-statement -> do region while (expression)

Do-while statements immediately execute a given region. The expression is then
evaluated at the conclusion of every iteration and if it holds true, the region continues to
be executed. When the expression evaluates to false, the region is skipped and the
following statement is executed.

7.	Functions
Functions form the foundation of easel’s functionality. A few important things to note:

1. Elements are passed by reference not by value. This is meant to encourage the use
of functions within easel as opposed to purely sequential programming, as a
function will not otherwise have access to any outside variables.

2. Functions may return a void data type, but void is not a valid data type for any
other value.

3. Functions may be passed as arguments to other functions, either as a function
literal / anonymous function or simply as a named entity.

4. Functions may be called recursively, and can call any other functions defined in
the global scope.

5. Functions may be overloaded. Multiple functions may have the same name
provided that the function declaration (i.e. return type, parameters) is different.

6. If two functions within the global scope have the same name and declaration, the
compiler will throw an error.

7.1.	Function	Declarations	and	Definitions
When declared as part of the normal statement flow of a program, functions must be
defined at declaration.
function -> function-declaration return-region

Where a function declaration consists of:
function type name (function-parameter-list)

And a function-parameter-list is defined as:
function-parameter-list -> function-parameter-list, declaration
function-parameter-list -> declaration

Function parameters are essentially composed of a list of declarations, including
declarations of other functions.

The return-region, which is the main element of a function, follows the form:
{ statement-list return expression ; }

A “return region” is a bracketed list of statements followed by a return expression.

7.1.1	Function	Declaration	without	Definition
A function can only be declared without definition when the function itself is being
passed as an argument to another function. This declaration follows from below:
function type name (function-parameter-list)

	 13	

function void my_function (int x, int y, function int operate(int w, int z));

The “operate” function is thus declared as a parameter. Any function passed as the
operate parameter must have a matching return type and argument list or the program will
be rejected by the compiler.

7.2.	Function	Literals	/	Anonymous	functions
Functions may also take the form of function literals. They follow the format:
function type (function-parameter-list) return-region

function pix (pix x) {return !x}

These functions differ from the standard form in that they are not named.

7.3.	Invoking	functions
Functions can be called anywhere during statement flow. A function is called by using its
name and passing it parameters.
postfix-expression (parameter-list)

function int add (int x, int y){return x+y}
pix x = add(3,2) /* x=5 */

To pass another function to a function and execute, a function signature must be provided
as a parameter:
type name (parameter-list)

function int im_a_parameter(int u, int v)={return u+v}
my_function(5, 2, int im_a_parameter(int, int)); /* value=7 */

Both the return type as well as the parameters must be provided in order to correctly
identify the function being passed. If one of these values is missing or the function has
not been defined, then the compiler will throw an error message.

If an anonymous function literal is written as a statement (with the requisite semicolon) it
is an anonymous function and will be invoked immediately as part of normal execution.
In this instance, the anonymous function must have an expression rather than declaration
in its argument-list. (It uses the “parameter-list” reduction from the example above rather
than the “function-parameter-list” used in section 7.2).

int x=18;
function pix(x) {return x-2}; /* Returns a pixel with value 16 */

7.4.	Built-in	Functions
Whereas many other languages have some mechanism of printing strings, easel’s built-in
method of output is drawing a canvas to the monitor.

	 14	

The signature of the function responsible for the drawing is:
draw(pix name[][], int x, int y);

The argument is a 2-dimensional pixel matrix as well as an x and y value that determines
where the top left corner of the canvas window is placed. An easel program is ultimately
about creating this matrix of pixels using various functions or coding prowess to create a
visual representation on screen.

In the same vein, a filename may be provided to easel as a command line argument via
stdin on unix platforms that will allow a user to use the “drawout” function as well as or
instead of the draw function.
drawout(pix name[][]);

For an easel file drawout.es consisting of:
pix canvas[100][100] = {}
drawout(canvas);

Calling the compiled program drawout via the terminal and feeding it the desired
filename would create a jpeg file consisting of a 100 x 100 white canvas of pixels.
$ echo “whitecanvas”.jpeg | ./drawout

This will output the drawing as a jpg file for future use elsewhere.

Out of the box, easel also offers a number of mathematical functions. These include:
float tan(float x)
float sin(float x)
float cos(float x)
float log(float base, float value)
which allow the user to calculate more complicated geometric functions than the standard
arithmetic operators.

Finally, easel has a random number generator, which generates a floating point value
between 0 and 1 inclusive. This value can be multiplied, added, or subtracted to in order
to provide a random value within a desired range.
float rand()

