ShapeShifter

Programmatic geometric manipulations made simple

Stephanie Burgos, Ishan Guru, Rashida Kamal,
Eszter Offertaler, and Rajiv Thamburaj

Table of Contents

1. Introduction

2. Lexical Elements

2.1. Identifiers

2.2. Keywords

2.3. Separators

2.4. Comments

2.5. Operators
2.5.1. Arithmetic Operators
2.5.2. Relational and Logical Operators
2.5.3. Shape Operators
2.5.4. Unary Operators
2.5.5. Other Operators

3. Data Types

3.1. Primitive Data Types
3.1.1. Integer
3.1.2. Double
3.1.3. Boolean
3.1.4. String

3.2. Non-Primitive Data Types
3.2.1. Shape
3.2.2. Sphere
3.2.3. Cone
3.2.4. Cylinder
3.2.5. Cube
3.2.6. Tetra
3.2.7. Arrays
3.2.8. Void

4. Expressions
4.1. Assignment

5. Statements
5.1. Expression Statements
5.2. Declarations
5.3. Control Flow
5.4. Loops

NG NN

10

11
11
11
12
12
12

14
14
14
14
14
15
15
15
16
16
16
16
16
16

17

17
17

18
18
18
18
18

6. Functions
6.1. Built-in Functions
6.2. User Functions
6.2.1. Declarations
6.2.2. Definitions
6.2.3. Calls

7. Program Structure

8. Sample Program

19
19
22
22
23
23

23
24

1. Introduction

ShapeShifter is a programmatic geometric modelling language that seeks to allow a user the
ability to manipulate simple primitive shapes in order to create increasingly complex ones.
Rather than require the user to manage meshes and vertex connectivity information,
Shapeshifter abstracts these nitty-gritties away from the user, so that the user only has to call on
familiar mathematical shape names with a set of initializing properties to summon it into
existence. The user does not need to worry about the underlying mathematical or technical
representation of the shape in order to enjoy a visually displayed representation. Shapeshifter
relies on OpenGL for the rendering via the GLUT OpenGL toolkit'. For mesh manipulation,
Shapeshifter uses the Cork Boolean Library®.

As much of the technical manipulations are abstracted away from the user, this manual seeks to
instruct the user about the nature of the Shapeshifter language, the specificities of the available
lexical elements, operators, program syntax, etc., and provide instruction on how to build up
increasingly complex visual representations based on the available primitives.

2. Lexical Elements

2.1. Identifiers

An identifier consists of a sequence of letters, digits and the underscore (_). The identifier must
begin with a letter or underscore, but subsequent characters can be any combination of the
previously mentioned characters. By convention, identifiers are are lowercase, and are most
frequently used as variable names. Case does matter: abc and aBC are regarded as two unique
identifiers.

Legal identifiers include: abc, _abc, abc123, _123abc, ab12c3

Illegal identifiers include: 123b, 67

2.2. Keywords

ShapeShifter has a set of keywords that cannot be used as identifiers. These include data types,
booleans, control flow statements, file input/output statements and keywords for pre-defined
shapes. Each of these can be seen below (more information regarding each can be seen in the
tables below) :

Primitive Data Types: int, double, bool, string
Advanced Data Type: Array, void, Shape, Sphere, Cube, Tetra, Cone, Cylinder

! https://www.opengl.org/resources/libraries/glut/
2 https://github.com/gilbo/cork

Booleans: true, false

Control Flow: if, elif, else, return, break, for, while

I/O: render, save, print

Special Value: NULL

Unit Shapes: SPHERE, CUBE, CYLINDER, TETRA, CONE

Operators: UU, NU (Note: Arithmetic and Logical operators are defined by symbols)

Built-in Functions: Scale, Rotate, Translate, Reflect, Intersect, Union, Difference, Copy,
Render, Save

The table below shows each of these keywords along with descriptions and sample ShapeShifter
syntax.

Primitive Data Types

Keyword Syntax

int int x = 7
An integer value such as in C. More
information in the Integer Data type section.

double double x = 7.12345
An 8-byte precision value. More information
in the Double Data type section.

bool bool x = true

A representation of the true/false logical

values.

string string x = “ShapeShifter”

A collection of characters supported from the
local character set.

Advanced Data Types
Keyword Syntax
void void makeHat () {

A special data type used to represent return
types of ‘nothing’. More information in the | }
Data type section.

Shape Shape sl = SPHERE
An advanced data type that represents the | Shape s2 = CUBE
underlying mesh representation. More

information in the Data type section.

Sphere Sphere sl = SPHERE

A special type of Shape that represents the
unit sphere.
Cone Cone cl = CONE
A special type of Shape that represents the
unit Cone.
Cylinder Cylinder cl = CYLINDER
A special type of Shape that represents the
unit Cylinder.
Tetra Tetra tl = TETRA
A special type of Shape that represents the
unit Tetrahedron.
Cube Cube cl = CUBE
A special type of Shape that represents the
unit Cube.
Boolean Keywords
Keyword Syntax
true bool x = true
A representation of the logical value true. | if (x == true) {
More information in the Integer Data type
section. }
false bool x = false
A representation of the logical value false. | if (x == false) {
More information in the Double Data type
section. }
Control Flow Keywords

Keyword Syntax
if if (condition) {
Allows programs to control whether or not //run this
certain code needs to be run, provided | } else {
conditions are met. //run this

}
else if (condition) {
Allows programs to control whether or not //run this
certain code needs to be run, provided | } else {
conditions are not met. This is not optional. //run this

}

elif

Allows programs to control whether or not
certain code needs to be run, provided
conditions are met or not met.

if (condition) {
//run this

} elif (condition) {
//run this

} else {
//run this

}

return

A keyword used to define the return value for
a function. Every statement that comes after a
return will not be executed. Each branch of
execution must include a return statement
corresponding to the function return type.

Shape makeHat {
Shape hat =

return hat;

break
A keyword used to break out of a loop

while (true) {

break;

regardless of whether or not the condition is

satisfied. In the case of nested loops, it breaks | }

out of the innermost loop.

for for (i = 0; i < 10; i++){

A key word used to represent a loop that runs
a certain number of times. Similar to the for
loop in C. Variables must be predefined.

while

A keyword used to represent a special type of
loop that runs while certain conditions are
met.

while (condition) {
/*run this section of
until condition is broken*/

}

code

Shape Keywords

Note: Each of the Shape keywords are predefined mesh values for the unit Shapes
Keyword Syntax
SPHERE Sphere sl = SPHERE
A special keyword used to as a constructor for
the unit sphere.
CONE Cone cl = CONE
A special keyword used to as a constructor for
the unit cone.
CYLINDER Cylinder cl = CYLINDER

A special keyword used to as a constructor for
the unit cylinder.

CUBE Cube cl = CUBE

A special keyword used to as a constructor for

the unit cube.

TETRA Tetra tl = TETRA

A special keyword used to as a constructor for
the unit tetrahedron.

Operator Keywords (Excluding Symbols)

Keyword Syntax
Uu Shape sl = SPHERE
A keyword that maps to the Union() function. | Shape cl = CUBE
It can only be applied to shapes. Shape tl = TETRA
sl UU cl
Shape sct = sl1 UU s2 UU tl
NU Shape sl = SPHERE
A keyword used for the operator that maps to | Shape cl1 = CUBE
the Intersect() function. It can only be applied | Shape t1 = TETRA
to shapes. sl NU cl
Shape sct = sl NU cl NU tl
DU Shape sl = SPHERE
A keyword used for the operator that maps to | Shape cl1 = CUBE
the Difference() function. It can only be | s1 DU cl

applied to shapes.

Built-in Functions
Note: More information on the functions can be found in the Built-In functions section
of this reference manual

Keyword

Syntax

Scale(Shape x, double x, double Yy,
double z)

This is a predefined function that is used to
scale shapes. The x,y, z components scale the
Shape by the input values, which are

positive-valued doubles.

Shape sl =
Scale(sl1,

SPHERE
2.0, 2.0,

2.

0)

Rotate(Shape x, double x, double Yy,
double z)

This is a predefined function that is used to
rotate shapes. It takes in a shape, three double
values that correspond to counter-clockwise

Shape sl =
Rotate (s1,

SPHERE
90.0, O.

0,

0.

0)

rotation about the X, Y, and Z axes. The values
correspond to degrees and the effective values
are mod 360.0

Translate(Shape x, double x, Shape sl = SPHERE

double y, double z) Translate(sl, 10.0, 0.0, 10.0)
This is a predefined function that is used to

translate shapes. It takes in the shape to

translate and the input x,y,z values represent

the offset in the corresponding directions.

Reflect(Shape x, double a, double b, | Shape s1 = SPHERE

double ¢) Reflect(sl, 0.0, 1.0, 0.0)

This is a predefined function that is used to
reflect shapes. It takes in a shape, as well as 3
doubles that define the plane of reflection: ax
+by+cz=o0.

Union(Shape x, Shape y) Shape sl = SPHERE
Union ([Shape x, ShapeYy, ...]) Shape cl = CUBE
This is a predefined function that is used to | Union(s1, c1)
union shapes. The operator UU maps to this

function. It takes in a two shapes and returns

the union as a new shape. Alternatively, Union

can accept an array of length 2 or more shapes.

Intersect(Shape x, Shape y) Shape sl = SPHERE
Intersect ([Shape x, Shape Yy, ...]) Shape cl = CUBE

This is a predefined function that is used to
intersect shapes. The operator NU maps to this
function. It takes in a two shapes and returns
the intersection as a new shape. Alternatively,
Intersect can accept an array of length 2 or
more shapes.

Intersect(sl, cl)

Difference(Shape x, Shape y) Difference
([Shape x, ShapeYy, ...])

This is a predefined function used to take the
difference of shapes. The operator DU maps to
this function. It returns the result of y
subtracted from x as a new shape.
Alternatively, Difference can accept an array of
length 2 or more shapes.

Shape sl
Shape cl

SPHERE
CUBE

Difference(sl, cl)

Copy(Shape x)

This is a predefined function that is used to
copy shapes. It returns a copy of the input
shape.

Shape sl
Shape cl
cl = Copy
Shape s2

i~

SPHERE
NULL

sl)
Copy(cl);

Render() Scene SCENE {
This is a predefined function that is used to
display a shape on the screen. The function Shape sl = SPHERE
takes in a Shape. Render (s1)
}
Save() Scene SCENE {
This is a predefined function that is used to
save the current scene into a file. The function Shape sl = SPHERE
takes in a Shape. Save (s1)
}

Integer literals are sequences of one or more decimal digits. Negative integer literals are
expressed as integer literals with a hyphen prefix.

Examples: -5, 12

Double literals consist of one or more digits, a decimal point, and one or more decimal digits.
As with integer literals, negative float literals are expressed by prepending a hyphen.

Examples: 0.1, 123.456, 12.1
Invalid examples: .0, 50.

String literals are double-quoted sequences of zero or more ASCII characters. Special
characters in a string can be represented with escape sequences.

» «»

Examples: “ShapeShifter is the best”, “Line one\nLine two”,

2.3. Separators

Separators in ShapeShifter are used to separate tokens. Separators include:

2.4. Comments

Comments in ShapeShifter follow the same convention as C, where single line comments go
from // to the end of the line while multiline comments are everything in between /* and */.
Nested comments, however, are not supported by the language.

For example,

// This is a comment in ShapeShifter

/*
This
Is
Also
a
Comment
In
ShapeShifter
*/

2.5. Operators

ShapeShifter uses several operators to compare and combine data. Consult Figure 1 for a
complete overview of relative operator precedence.

2.5.1. Arithmetic Operators

The general binary arithmetic operators are supported for numeric types, and are listed below:
+ - *® /
Each of these are left associative, however, * and / have a higher precedence level than + and -.

2.5.2. Relational and Logical Operators

The following relational operators are all supported by ShapeShifter on numeric types, are left
associative and have the same precedence level:

> < >= <=

Similarly, the equality operators are also supported by the language, however, have a precedence
level slightly lower than the relational operators listed above. These operators are:

1=

Compared to the arithmetic operators defined above, relational operators have a lower
precedence.

The following logical operators are also supported:

&& ||

10

These refer to boolean AND/OR, which return either true or false based on whether or not both
or none of the comparators are true. These operators are both left associative and have a
precedence lower than both equality and binary operators.

Comparisons and logical operators between Shape types are not supported.

2.5.3. Shape Operators
ShapeShifter also supports the following Shape operators:

Uuu NU DU

These represent the UNION, INTERSECTION, and DIFFERENCE of the shapes they are acting
upon, and are both left associative. UU, NU, and DU have a lower precedence level than
arithmetic operators, but a higher precedence level than relational operators.

2.5.4. Unary Operators

ShapeShifter also supports the following Shape operators for numerics and booleans:

Each of these operators are the NOT and NEGATION operators, with the simple functions of
negating a boolean, or negating an integer value (multiplying by negative one). The precedence
level of unary operators can be seen in relation to all other operators in Fig. 1.0; however, unlike
all previously mentioned operators, NOT and NEGATION are right associative.

2.5.5. Other Operators

The following uncategorized operators are also supported by ShapeShifter:
(expression) =
These operators are the PARENTHESES and ASSIGN operators, each of which artificially

influences precedence levels by evaluating what is inside the parentheses first, and assigning the
values to expressions respectively. Their associativity can be seen in Fig 1.

11

Figure 1: Table of Operators and Associativity
Note: Precedence increases as you go down the table

Operator Symbol Name Associativity
= Assign Right
| Or Left
&& And Left
== Equals Left
= Not Equals Left
< Less than Left
> Greater than Left
<= Less than or equals Left
>= Greater than or equals Left
UuU Union Left
NU Intersect Left
DU Difference Left
+ Addition Left
- Subtraction Left
Multiplication Left
Division Left
! Not Right
- Negation Right
() Parentheses Left

3. Data Types

3.1. Primitive Data Types

The standard data types, int, double, string and bool, are all supported by ShapeShifter, along
with the generic Shape type and specific types for a number of basic geometric solids. Any of
these types can be NULL. Details on each of these types are given below, while the syntax can be
seen in the code samples below.

3.1.1. Integer

Integers in ShapeShifter are represented by 32-bit memory chunks in 2’s complement. All the
standard operators can be applied to integers.

The sample below shows the use of integers in ShapeShifter:

12

int x = 7;

int y = 14;
int z = x + y; // z == 21 and z is an integer value
3.1.2. Double

Double values are also supported by ShapeShifter in order to represent more precise values.
Each double is required to have a decimal point and numbers both prior to and following the
decimal point. They follow the same 8-byte standard as C.

The sample below illustrates the use of double values in ShapeShifter.

double x = 7.12345;
double y = 14.12345;
double z = x + y; // z == 21.2469 and z is a double value

3.1.3. Boolean

Boolean data types in ShapeShifter are data types with two values, true or false, that represent
the logical truth values.

The sample below illustrates the use of boolean values in ShapeShifter.

bool x = true;

bool y = false;

bool z = x || y; // z == true
3.1.4. String

The string data type in ShapeShifter is a sequence of characters that are declared within double
quotes. Strings are converted and represented as an array of characters, and hence, can take the
same letters and symbols as characters from the same local character set.

String usage in ShapeShifter can be seen in the sample code below:

String s = “ShapeShifter”;
print(s); // Prints out ‘ShapeShifter’ to the console

3.2. Non-Primitive Data Types

3.2.1. Shape

The Shape data type is the defining factor of ShapeShifter, since this is where shapes can be
declared and modified. Shapes are objects with an underlying triangle mesh representation that

13

the user can manipulate, render to the screen, and save to a file. Hence, they can be modified
with either predefined functions or operators, or instantiated from one of the unit shapes that
are built into the language, which are spheres, cubes, cones, cylinders, and tetrahedrons.

Initialization is done by assigning a new Shape variable either to the result of a function with
Shape as a return type, or by assigning it to one of the built-in primitive types, specified by the
name of that type in uppercase. If an assignment is performed on a variable that already had a
definition, that Shape will be completely overwritten. If there are no references to the original
Shape, it will be deleted and the underlying mesh freed (as happens when Shapes go out of
scope). For instance, the following code sample initializes ball to be a unit sphere, and then
creates a new Shape clone by invoking the Copy function on it.

Sphere ball = SPHERE;
Copy (ball);

Shape clone

Assignment of Shape types, when not done using a built-in initializer or the results of a function,
is done by reference, not value. For instance, in the following example, both ballA and ballB
refer to the same underlying data structure, and the scale affects both.

Sphere ballA = SPHERE;

Sphere ballB = ballA;

Scale (ballk, 1.0, 2.0, 1.0);

Shape is the parent class of Sphere, Cone, Cylinder, Cone, and Tetra. The subclasses
automatically become a Shape once a topology-changing operation is applied. Rigid
transformations, on the other hand, preserve the original geometric type. A subclass can become
a Shape, but the reverse is not allowed. Shapes are the more general form.

The sample below illustrates the use of the Shape data type in ShapeShifter:

Shape makeHat (double y) {
Shape brim = CYLINDER;
Shape top = CYLINDER;
Scale(top, 1.0, vy, 1.0);
return Union (top, brim);

3.2.2. Sphere

The Sphere data type is a subclass of Shape and represents a solid that is topologically
equivalent to a geometric sphere. The initializer SPHERE creates a Sphere with radius 1
centered at the origin.

14

3.2.3. Cone

The Cone data type is a subclass of Shape and represents a solid that is topologically equivalent
to a geometric cone. The initializer CONE creates a Cone with base radius 1 and height 1
centered at the origin.

3.2.4. Cylinder

The Cylinder data type is a subclass of Shape and represents a solid that is topologically
equivalent to a geometric cylinder. The initializer CYLINDER creates a Cylinder with radius 1
and height 1 centered at the origin.

3.2.5. Cube

The Cube data type is a subclass of Shape and represents a solid that is topologically equivalent
to a geometric cube. The initializer CUBE creates a Cube with height 1, width 1, and depth 1,
centered at the origin.

3.2.6. Tetra

The Tetra data type is a subclass of Shape and represents a solid that is topologically equivalent
to a geometric tetrahedron. The initializer TETRA creates a Tetrahedron with all edges equal to
one centered at the origin.

3.2.7. Arrays

ShapeShifter also supports the Array data type, which can be a series of any of the other six
previously mentioned data types.

An array is a data type that can be looked at as a series of other data types within the same
container of a predefined size. It can be an array of any of the previously mentioned data types,

including shapes.

Sample code for arrays in ShapeShifter is provided below:

int[] al = [1,2,3]; // array of type int[]
Shape[] a2 = [sl, s2, s3]; // where sl..3, are all spheres
3.2.8. Void

The void data type represents a non-existent value that can be returned by a function. In other
words, if a function does not return a result, it returns void. Note that void and NULL are not the
same thing.

The sample code below illustrates the void data type in action in ShapeShifter:

15

void addShapeProperties () {

4. Expressions
Expressions in ShapeShifter, similar to C, include at least one operand and zero or more
operators, and can be grouped using parentheses.

Possible expressions include:

42
SPHERE UU CYLINDER
(4 + 2) * 42

4.1. Assignment

The assignment operator = stores values in variables. The left operand, or the lvalue, must be an
identifier. Shapeshifter requires a type declaration prior to the identifier. The rvalue must be an
accepted data type.

Sample variable assignment includes:
Shape box = CUBE; // box is the variable name

int 1 = 0;
Shape terrlble lcecream mess = SPHERE UU CONE;

5. Statements

Statements are single atoms of code execution, delimited by semicolon characters.

5.1. Expression Statements

An expression statement consists of an expression (defined above) followed by a semicolon.

5.2. Declarations

ShapeShifter is a statically typed language. Variable declarations consist of a type, an identifier,
and an rvalue such as:

int counter = 3;
Cylinder ¢ = CYLINDER;

16

5.3. Control Flow

We allow for branches with if-else statements. These statements consist of an if block, followed
by zero or more elif blocks, followed by an else block (note that the else block is required). The if
and elif blocks are preceded by expressions in parentheses that, if true, cause the corresponding
block to execute. Here is an example:

if (expr) {
stmt;

} elif (expr) {
stmt;

} else {
stmt;

5.4. Loops
ShapeShifter allows for two loop constructs: while loops and for loops. Of the two options, while

loops are more general (the body of the loop executes until the expression in parentheses
evaluates to false):

while (expr) {
stmt;

In addition to while loops, ShapeShifter supports for loops. The parentheses before the block
contain three expressions. The first is used for initialization. The body of the loop is called until
the second expression evaluates to false. Variables must be pre-defined. The third expression is
called every time the body of the loop is executed:

for (expr; expr; expr) {
Stmt;

6. Functions

6.1. Built-in Functions

ShapeShifter has a variety of built-in functions that can be used to manipulate shapes that have
already been defined. These are built in order to simplify common functions that users may
want to use while developing scenes and making geometric manipulations. Built-in functions
include: Scale (), Translate(), Rotate(), Reflect(), Union(), Intersect(),

17

Render (), Copy(). Some functions, such as Union() and Intersect () have two
representations in the language -- one as a functions, another as operators (represented as UU
and NU, respectively). The purpose of this duplication is to allow users to have different
approaches to organizing their shape-building process, as more interesting programs will rely on
the creativity of the programmer to make complex, reusable shapes.

Each of these functions and their descriptions can be found below, along with sample code to
illustrate their use in ShapeShifter.

The Scale Function: Scale (Shape x, double x)

The Scale function takes in four arguments, a shape to operate on, as well as three double values
that the determine the scaling for the shape. It multiplies each of the mesh coordinates of the
given shape by the scale factor in the corresponding X, Y, or Z directions. A snippet of code using
the Scale function in ShapeShifter can be seen below.

Shape sl = SPHERE;

Shape s2 = Scale(sl, 3.0, 3.0, 3.0); // uniform scaling

render (s2); //renders sphere with radius 3 on display

The Rotate Function: Rotate (Shape s, double x, double y, double z)

The Rotate function takes in two arguments, a shape to operate on, as well as a double value that
the shape needs to be rotated by for each axis. Function takes the double value mod 360.0 and
rotates the shape that many degrees counter-clockwise in the same axis. A snippet of code using
the Rotate function in ShapeShifter can be seen below.

Shape cl = CONE;
Shape c¢c2 = Rotate(cl, 180.0, 0, 0);
Render (c2); /*renders the unit cone rotated 180 degrees CCW

around the X-axis. By default the unit cone is rendered with the
point pointing out of the screen*/

The Translate Function: Translate (Shape x, double x, double y, double z)

The Translate function takes in four arguments, a shape to operate on, as well as three double
values that the shape needs to be translated by. By default, the second argument is translation in
the x-axis, the third argument is translation in the y-axis, and the fourth argument is the
translation in the z-axis. A snippet of code using the Rotate function in ShapeShifter can be seen
below.

Shape cl CONE;

Shape c2 = Translate(cl, 9.0, 8.0, 7.0);

Render (c2); /*renders the unit cone translated (9.0, 8.0, 7.0)
units respectively*/

18

The Reflect Function: Reflect (Shape x, double a, double b, double c)

The Reflect function takes in four arguments, a shape to operate on, as well as three doubles that
determine the plane of reflection: a*x + b*y + c*z = o.
A snippet of code using the Rotate function in ShapeShifter can be seen below.
Shape cl = CONE;
Shape c2 = Reflect(cl, 0, 1.0, 0.0);
Render (c2); /*renders the unit cone reflected over the xz
plane.*/

The Union Function: Union (Shape x, Shape vy)

The Union function takes in two arguments, two shapes to operate on. The function takes the
union of these shapes and returns the new shape. The input shapes are not modified in any way.
By default, an operator mapping to this function is also available to the programmer in order to
simply use. Alternatively, the Union function will also accept one argument, provided that the
passed value is an array containing two or more shapes. The function takes the union of the first
pair of shapes, then takes the union of the returned shape with the next shape in the array, and
so forth. The underlying behavior when the function takes in an array essentially applies the
logic of the two-argument Union function recursively. A snippet of code using the Union
function in ShapeShifter can be seen below.

Shape cl = CONE;

Shape sl = SPHERE;

Shape scl = Union(sl, cl);

Render (scl); /*renders the union of these two shapes. Think ice
cream cone with the ball of ice cream sticking through the cone*/

The Intersect Function: Intersect (Shape x, Shape y)

The Intersect function takes in two arguments, two shapes to operate on. The function takes the
intersection of these shapes and returns the new shape. The input shapes are not modified in
any way. By default, an operator mapping to this function is also available to the programmer in
order to simply use. Alternatively, the Intersect function will also accept one argument, provided
that the passed value is an array containing two or more shapes. The function takes the
intersection of the first pair of shapes, then takes the intersection of the returned shape with the
next shape in the array, and so forth. The underlying behavior when the function takes in an
array essentially applies the logic of the two-argument Intersect function recursively. A snippet
of code using the Intersect function in ShapeShifter can be seen below.

Shape cl = CONE;

Shape sl = SPHERE;
Shape scl = Intersect(sl, cl);

19

Render (scl); /*renders the intersection of these two shapes*/

The Difference Function: Difference (Shape x, Shape y)

The Difference function takes in two arguments, two shapes to operate on. The function takes
the difference of these shapes and returns the new shape. The second shape is ‘subtracted’ from
the first to form the new shape. The inputs are not modified. By default, an operator mapping to
this function is also available to the programmer in order to simply use. Alternatively, the
Difference function will also accept one argument, provided that the passed value is an array
containing two or more shapes. The function takes the difference of the first pair of shapes, then
takes the difference of the returned shape with the next shape in the array, and so forth. The
underlying behavior when the function takes in an array essentially applies the logic of the
two-argument Difference function recursively. A snippet of code using the Difference function in
ShapeShifter can be seen below.

Shape cl = CONE;

Shape sl = SPHERE;

Shape scl = Difference(sl, cl);

Render (scl); /*renders the difference of these two shapes*/

The Copy Function: Copy (Shape x)

The Copy function takes in one argument, a shape to be copied. It makes an exact copy of the
first shape, with the same underlying mesh, and returns the new shape. The input shape is not
modified. A snippet of code using the Copy function in ShapeShifter can be seen below.

Shape cl = CONE;

Shape sl NULL;

Shape sl Copy (cl) ;

Render (sl); /*renders the unit cone*/

The Render Function: Render (Shape x)
The Render function takes in one argument, the shape to render to the display. The function
takes the given shape value and renders the shape to the display using the defining shape

properties. A snippet of code using the Render function in ShapeShifter can be seen below.

Shape cl = CONE;

Shape sl = NULL;
Shape sl = Copy(cl);
Render (sl); /*renders the unit cone to the display based on the

defining values it contains*/

20

The Save Function: Save (Shape x, string filename)

The Save function takes in two arguments, the shape to save to file and the file to save it to. The
function saves the underlying properties of the shape to a standard .off file that the user can then
import in order to retrieve the shape. By default, the file is saved to the same directory that the
user is working in. A snippet of code using the Save function in ShapeShifter can be seen below.

Shape cl = CONE;
Save (sl, “cone.off”); /*saves the unit cone and all underlying
properties to a txt file that can later be imported by the user*/

6.2. User Functions

6.2.1. Declarations

Functions are declared in the following format:
return type function name (arg type arg name, arg type arg name, ...)
Sample code for a function that creates a shape might look like:
Shape makeHat (double vy)

Shapeshifter does not require users to declare functions in a separate statement from actual
function definitions.

6.2.2. Definitions

Function definitions are included in { } after the function declaration. Each statement within
the body of a function definition is punctuated with ; as is the case with all statements through a
Shapeshifter program. The use of whitespace is encouraged to increase the legibility of a
program and make scope more apparent. A sample function definition may look like:

Shape makeHat (double y) {
Shape brim = CYLINDER;
Shape top = CYLINDER;
Scale(top, 1.0, vy, 1.0);
return Union (top, brim);

Function names can not be repeated; attempting to define a function with the same name will
result in a compiler error.

21

A value of the type corresponding to the function’s return type must be returned using the

return keyword. If there is conditional branching, each branch must have a return statement.

If the function has a void return type, the return statement is not followed by anything, as such:
return;

6.2.3. Calls

Function calls behave like other statements within a Shapeshifter program. A sample function
call may look like:

Shape hat = makeHat (6.9);

In this case, the returned Shape is automatically stored in a variable called hat.

7. Program Structure

There are some particularities within the language. Not unlike C’s int main () function, the
body of each Shapeshifter program must call void scene (). Scene refers to the abstract
coordinate system environment that all following shapes exist in. Function definitions must
occur prior to the scene (). Unlike C, Shapeshifter does not house function declarations
separately -- users are meant to be encouraged to construct custom shapes by creating a
function and then use the space of scene () to produce intermediary or a final visual
representation. This workflow would be most relevant if the user seeks to create custom shapes
that they mean to reuse throughout their program.

Each shape is initialized as a specific subtype: a Sphere, Cone, Cube, Cylinder, or Tetra
(tetrahedron). Successive transformations on these shapes which can then in turn result in more
complex shapes whose properties are not limited to those of the basic subtypes.

Note that shapes can be initialized within the body of a function definition as well as the body of
scene (). The scope of each object or variable is contained within the block (denoted by { })
that it exists.

Statements, expressions, and variable definitions must be contained inside a user-defined
function or Scene{}. There is no support for global variables.

8. Sample Program

/* This function makes a square pyramid of the given number of levels,
with the height of each level corresponding to stepHeight, a base side
length of DbaseSize, and the side length of the topmost level
corresponding to topSize. */

22

Shape makePyramid(int levels, double baseSize,

double stepHeight, double topSize)

Shape base = CUBE; // Create a unit cube centered at origin

Scale (base, baseSize, stepHeight, baseSiz
// Move base to rest on the XZ plane
Translate (base, 0.0, stepHeight / 2.0, 0.0
double sizeDiff = (baseSize - topSize) / 1
Shape prev = base; // Copy by reference
double currSize = baseSize;

e);

)7

evels;

int i = 0; // Variables must be pre-declared

for (i = 0; 1 < levels; 1 =1 + 1) {
Shape next = Copy(prev); // Create an

exact copy of prev

Scale (next, (currSize - sizeDiff)/currSize, 1,
(currSizeSize - sizeDiff)/currSize);

currSize = currSize - sizeDiff;
if (currSize <= 0.0) {

break; // Break out of closest loop

}
else {} // Do nothing
Translate (next, 0.0, stepHeight, 0.0);

// Build the pyramid by Unioning the levels together

base = Union (base, next);

prev = next; // Assignment by reference

return base;

/* This program creates several pyramids

orientations, applies rigid transformations, and merges them.

of wvarying size and

The end

result 1s finally displayed and the wunderlying mesh representation

saved to a file.

Scene
Shape pyr5 = makePyramid(5, 5.0, 1.0, 1.0);
Shape pyr3 = makePyramid(3, 4.0, 1.0, 2.0);
Shape pyr5Inv = makePyramid(5, 1.0, 1.0, 5.

Translate (pyr5i, 0.0, 5.0, 0.0);

// Stack the inverted pyramid on its normal
Shape pyrb5Stack = Union(pyr5, pyr5Inv);
Shape pyr3i = Reflect (pyr3, 0.0, 1.0, 0.0);

counterpart

// Reflect across y=0

23

Translate (pyr3i
Shape pyr3Stack
Rotate (pyr3Stac
Shape merged =

Render (merged) ;
Save (merged, “p

, 0.0, 3.0, 0.0);
= Union(pyr3, pyr3i);
k, 0.0, 0.0, 90.0); // Rotate around 7Z
Union (pyr3Stack, pyr5Stack);
// Display the result
yramids.off”); // Save mesh representation to file

24

