Fxtend

Language Reference Manual

Ishaan Kolluri(isk2108), Kevin Ye(ky2294) Jared Samet(jss2272), Nigel Schuster(ns3158)

October 26, 2016

Contents

1__Introduction to Extend| 2
|2 Structure of an Extend Program| 3
2.1 Import Statements|o 3
2.2 Global Variableslo 3
2.3 Function Declarationsl oo oo 3

13 Types and Literals| 4
8.1 Primitive Data Types| o 4
3.2 Ranges|. 4
[3.2.1 Range and String Literals| 0 0oL 4

4 Expressions| 5
4.1 Arithmetic Operators| 5
4.2 Boolean Operators| 6
4.3 Conditional Operators| 6
[4.3.1 Ternary Expressions| o o 6

[4.3.2 Switch Expressions| oo 7

44 Function Callsl o . o 7
4.5 Range Expressions| 8
S) e [8

[4.5.2 Selections L 8

4.6 Precedence Expressions| 9
[6_Functions| 10
BT _Formafl. oooov oo e e e 10
9.2 Variable Declarationl oo Lo 10
b.3 Formula Assignment| 11

[0.3.1 Combined Variable Declaration and Formula Assignment|

[6.3.2 Formula Assignment Errors| oo oo

p.4 Dimension Assignment| Lo L

9.6 Application on Ranges| L o

.7 Dependencies Illustrated| o oo

7 Entry Point|

I8 Example Program)|

1. Introduction to Extend

15

15

15

15

16

16

16

17

17

17

17

Extend is a domain-specific programming language used to designate ranges of cells as reusable

functions. It abstracts dependencies between cells and models a dependency graph during com-

pilation. In order to offer great performance for any size of datasets, Extend compiles down to

LLVM.

Extend’s syntax is meant to provide clear punctuation and easily understandable cell range

access specifications, while borrowing elements from languages with C-style syntax for ease of

development. Despite these syntactic similarities, the semantics of an Extend program have more

in common with a spreadsheet such as Microsoft Excel than imperative languages such as C, Java

or Python.

2. Structure of an Extend Program

An Extend program consists of one or more source files. A source file consists of an optional set
of import directives, an optional set of global variable declarations, and an optional set of function

declarations, in that order.

2.1. Import Statements

Import statements in Extend are written with import, followed by the name of a file in double

quotes, and terminated with a semicolon. The syntax is as follows:

import "string.xtnd";

Extend imports act like #include in C, except that multiple imports of the same file are
ignored, and Extend rearranges the initial import and global statements to properly compile. The

imports are all aggregated into a single namespace.

2.2. Global Variables

In essence, global variable declarations function as constants in Extend. They are written with
the keyword global, followed by a variable declaration in the same form as a variable declaration

within a function as described in section

2.3. Function Declarations

Function declarations are described in detail in section Bl

3. Types and Literals

3.1. Primitive Data Types

Extend has two primitive data types, numbers and empty. In the vein of Javascript, num-
bers are primitive values corresponding to a double-precision 64-bit binary format IEEE 754 value.
Numbers can be written in an Extend source file as either integer or floating point constants; both
are represented internally as floating-point values. The empty type can be written as the keyword

empty or the empty string "", and serves a similar function to NULL in SQL.

Primitives | Examples
Number 42 or -5 or 2.71828 or 314159e-5
Empty empty or ""

3.2. Ranges

Extend has one composite type, the range. A range borrows conceptually from spreadsheets;
it is a group of cells with two dimensions, described as rows and columns. Each cell contains a
formula that either evaluates to a number or another range. Cell formulas are described in detail
in section A range can either be declared as described in section [5.2] or with a range literal

expression.

3.2.1. Range and String Literals

A range literal is a semicolon-delimited list of rows, enclosed in curly brackets. Each row is a
comma-delimited list of numbers or range literals. In addition, a range literal can be written in
the form of a string literal, which represents a 1-by-n range corresponding to the ASCII values of

the contents of the string. A few examples follow:

{2,3,4} /* A range consisting of 1 row and 3 columns */

{1,0,0; 0,1,0; 0,0,1} /+ A range corresponding to the 3x3 identity matrix x/
"hello" /* Equivalent to {104,101,108,108,111} x/

{"don’t";"panic"} /* A range with 2 rows and 1 column;

both cells of the range contain a range =/

4. Expressions

Expressions in Extend allows for arithmetic and boolean operations, function calls, conditional
branching, and extraction of contents of other variables. The sections for boolean and conditional
operators refer to truthy and falsey values. Any number besides zero is truthy; zero is falsey.

empty is neither truthy nor falsey.

4.1. Arithmetic Operators

The arithmetic operators listed below take one or two expressions and return a number, if
neither expression is empty, or empty, if either expression is empty. Operators grouped within the
same inner box have the same level of precedence, and are listed from highest precedence to lowest
precedence. All of the binary operators, with the exception of exponentiation, are left-associative.

Exponentiation, bitwise negation, and unary negation are right-associative.

Operator Description Definition

- Bitwise NOT Performs a bitwise negation on the binary represen-
tation of an expression.

- Unary negation | A simple negative sign to negate expressions.

* Power Returns the first expression raised to the power of
the second expression

* Multiplication | Multiplies two expressions

/ Division Divides first expression by second.

% Modulo Finds the remainder by dividing the expression on
the left side of the modulo by the right side expres-
sion.

« Left Shift Performs a bitwise left shift on the binary represen-
tation of an expression.

» Right shift Performs a bitwise right shift on the binary repre-
sentation of an expression.

& Bitwise AND Performs a bitwise AND between two expressions.
If both expressions have a 1 at the same digit, the
resultant expression will have a 1 there; otherwise, it
is 0.

+ Addition Adds two expressions together.

- Subtraction Subtracts second expression from first.

| Bitwise OR Performs a bitwise OR between two expressions. If

at least one of the expressions has a one at the same
digit, the resultant expression will have a 1 there;
otherwise, it is 0.

Bitwise XOR Performs a bitwise exclusive OR between two expres-
sions. If exactly one of the expressions has a one in
the same digit, the resultant expression will have a 1
there; otherwise it is 0.

4.2. Boolean Operators

These operators take one or two expressions and evaluate to empty, if either expression is empty,

or to 0 or 1 if both expressions are numeric. Operators grouped within the same inner box have

the same level of precedence and are listed from highest precedence to lowest precedence. All of

these operators besides logical negation are left-associative.

Operator

Description

Definition

Logical NOT

Returns 0 given a truthy value and 1 given a
falsey value.

Equals

Not equals

Less than

Greater than

Less than or equals to

Greater than or equals
to

Evaluates to 1 if the two expressions are both
numbers and have the same value, or 0 if the
two expressions are both numbers that do not
have the same value. If the two expressions
are ranges, evaluates to 1 if the two ranges
have the same dimensions and each cell of the
first expression == the corresponding cell of
the second expression

Evaluates to 1 if the expressions are not the
same.

Evaluates to 1 if the first expression is less
than the first.

Evaluates to 1 if the first expression is greater
than the first..

Evaluates to 1 if the first expression is less
than or equals to the second.

Evaluates to 1 if the first expression is less
than or equals to the second.

Logical AND

Returns 1 if both expressions evaluate to
truthy values, otherwise 0.

Logical OR

Returns 1 if at least one of the two expressions
evaluate to a truthy value, otherwise 0.

4.3. Conditional Operators

The conditional operators can be used to create expressions that evaluate to a specified ex-

pression based on the truthiness of a specified expression. There are two types of conditional

expressions, ternary expressions and switch expressions.

4.3.1. Ternary Expressions

A ternary expression, written as cond-expr ?

expr—if-true expr-if-false works

like an if-else conditional statement. It evaluates to expr-if-true if cond-expr is numeric

and truthy, or expr-if-false if cond-expr is numeric and falsey. If cond-expr is empty,

the expression evaluates to empty. Both expr-if-true and expr-if-false are mandatory.

4.3.2. Switch Expressions

A switch expression takes a optional condition, and a list of cases and expressions that the
overall expression should evaluate to if the case applies. In the event that multiple cases are true,

the expression of the first matching case encountered will be evaluated. An example is provided

below:

[1,1] foo := 3;

return switch (foo) {
case 2: "foo is 2";
case 3,4: "foo is 3 or 4";
default: "none of the above";

}
/* Equivalently: =/
return switch() {
case foo == 2:
"foo is 2";
case foo == 3, foo ==
"foo is 3 or 4";
default:
"none of the above";
The format for a switch statement is the keyword switch, followed by pair of parentheses that
optionally contain an expression switch-expr, followed by a list of case clauses enclosed in curly
braces and delimited by semicolons. A case clause consists of the keyword case followed by a
comma-separated list of expressions case-exprl [, case-expr2, [...]], a colon, and an
expression match—-expr, or the keyword default, a colon, and an expression default-expr.
If switch-expr is omitted, the value 1 is assumed. The switch expression evaluates to the
match-expr for the first case where one of the case—-exprs is equal to switch-expr, with
equality defined as for the == operator, or default-expr, if none of the case-exprs is equal
to switch-expr for any of the cases.

The switch expression can be used to compactly represent what in most imperative languages

would require a long string such as if (condl) {...} else if (cond2) {...}.

4.4. Function Calls

A function expression consists of an identifier and an optional list of expressions enclosed in

parentheses and separated by commas. The value of the expression is the result of applying the

function to the arguments passed in as expressions. For more detail, see section [5}

4.5. Range Expressions

Range expressions are used to select part or all of a range. A range expression consists of a bare
identifier, a bare range literal, or an expression and a selector. If a range expression has exactly 1
row and 1 column, the value of the expression is the value of the formula of the single cell of the
range. If it has more than 1 row or more than 1 column, the value of the expression is the selected
range. If the range has zero or fewer rows or zero or fewer columns, the value of the expression
is empty. If a range expression with a selector would access a row index or column index greater
than the number of rows or columns of the range, or a negative row or column index, the value of

the expression is empty.

4.5.1. Slices

A slice consists of an optional integer literal or expression start, a colon, and an optional
integer literal or expression end, or a single integer literal or expression index. If start is
omitted, it defaults to 0. If end is omitted, it defaults to the length of the dimension. A single
index with no colon is equivalent to index:index+1. Enclosing start or end in square
brackets is equivalent to the expression row () + start or row() + end, for a row slice, or
column () + start or column() + end for a column slice. The slice includes start and
excludes end, so the length of a slice is end - start. A negative value is interpreted as the
length of the dimension minus the value. As mentioned above, the value of a range that is not 1
by 1 is a range, but the value of a 1 by 1 range is essentially dereferenced to the result of the cell

formula.

4.5.2. Selections

A selection expression consists of an expression and a pair of slices separated by a comma and
enclosed in square brackets, i.e. [row_slice, column_slice|. It can also be written as the
hash symbol # and an expression. As mentioned earlier, the composite range type has the ability

to slice in both an absolute and relative fashion. If one of the dimensions of the range has length

1, the comma and the slice for that dimension can be omitted. If the comma is present but a
slice is omitted, that slice defaults to [0] for a slice corresponding to a dimension of length greater
than one, or 0 for a slice corresponding to a dimension of length one. #expr is syntactic sugar
for expr|,|; for a range with more than column and more than one row, it denotes the position
in the RHS expression corresponding to the position of cell on the left-hand-side of the formula
assignment. For a range with only one column, it denotes the single cell in the same row as the cell
on the left-hand-side of the assignment. For a range with only one row, it denotes the single cell
in the same column as the cell on the left-hand-side of the assignment. These possibilities mean
that there are multiple ways to slice ranges, which are illustrated below.

foo[1,2] /+ This evaluates to the cell value in the second row and third column. */
foo[l,:] /* Evaluates to the range of cells in the second row of foo. */

foo[:,2] /x Evaluates to the range of cells in the third column of foo. x/

foo[:,[1]] /* The internal brackets denote RELATIVE notation.
In this case, 1 column right of the column of the left-hand-side cell. x/

foo[l,] /* Equivalent to foo[l,[0]] if foo has more than one column
or foo[l,0] if foo has one column =*/

foo[5:, 7:] /* All cells starting from the 6th row and 8th column to the bottom right =/

fool[[1l:2], [5:7]]
/+ Selects the rows between the 1st and 2nd row after LHS row, and
between 5th and 7th column from LHS column x/

#foo
/+ If foo has >=2 rows and >= 2 columns, equivalent to foo[[0]

, [0171;
If foo has 1 row and multiple columns, equivalent to foo[O0, [0]

1; etc. */

4.6. Precedence Expressions

A precedence expression is used to force the evaluation of one expression before another, when
that order of operation is required for functions with side-effects. It consists of an expression
prec—expr, the precedence operator —>, and an expression succ—expr. The value of the ex-
pression is succ—expr, but the value of prec—expr will be calculated first and the result ignored.
The only functions with side effects in Extend are the built-in file I/O functions described in sec-
tion [6.3] or user-defined functions that call those built-in functions; an example is located in that

section.

5. Functions

Functions lie at Extend’s core; however, they are not first class objects. Since it can be verbose
to write certain operations in Extend, the language will feature a small number of built-in functions
and and a comprehensive standard library. An important set of built-in functions will handle I/O
(see section [6.3). Besides the built-in file I/O functions, all functions in Extend are free of side

effects.

5.1. Format

Every function in Extend follows the same format, but allows some optional declarations. As
in most programming languages, the header of the function declares the parameters it accepts and
the dimensions of the return value. The body of the function consists of an optional set of variable
declarations and formula assignments, which can occur in any order, and a return statement, which
must be the last statement in the function body. All variable declarations and formula assignments,
in addition to the return statement, must be terminated by a semicolon. This very simple function
returns whatever value is passed into it:

[1,1] foo([1,1] arg) f{

return arg;

}

The leading [1, 1] marks the return dimensions. foo is the function name. In parentheses the
function arguments are declared, again with dimensions of the input. The body of the function

follows, which in this case is only the return statement.

5.2. Variable Declaration

A variable declaration associates an identifier with a range of the specified dimensions, which
are listed in square brackets before the identifier. For convenience, if the square brackets and
dimensions are omitted, the identifier will be associated with a 1x1 range, and if only a single
dimension is listed instead of two, the identifier will be associated with a range consisting of one
row and the specified number of columns. In addition, multiple identifiers, separated by commas,

can be listed after the dimensions; all of these identifiers will be separate ranges, but with equal

10

dimension sizes. The dimensions can be specified either as literal integers or as expressions that
evaluate to integers.

[2, 5] foo; // Declares foo as a range with 2 rows and 5 columns

[m, n] bar; // Declares bar as a range with m rows and n columns

baz; // Declares baz as a 1lxl range
[10] ham, eggs, spam; // Declares ham, eggs and spam as distinct 1x10 ranges

5.3. Formula Assignment

A formula assignment assigns an expression to a subset of the cells of a variable. Unlike most
imperative languages, this expression is not immediately evaluated, but is instead only evaluated if
and when it is needed to calculate the return value of the function. A formula assignment consists
of an identifier, an optional pair of slices enclosed in square brackets specifying the subset of the
cells that the assignment applies to, an =, and an expression, followed by a semicolon. The slices
specifying the cell subset can contain arbitrary expressions, as long as the expression taken as a
whole evaluates to an integer.

[5, 2] foo, bar;
foo[0,0] = 42; // Assigns the expression 42 to the first cell of the first row of foo

foo[0,1] = foo[0,0] % 2; // Assigns (foo[0,0] = 2) to the 2nd cell of the 1st row of foo
bar = 3.14159; // Assigns pi to every cell of every row of bar

/* The next line assigns foo[[-1],0] + 1 to every cell in
both columns of foo, besides the first row x/
foo[l:,0:1] = foo[[-1],0] + 2;

The last line of the source snippet above demonstrates the idiomatic Extend way of simulating
an imperative language’s loop; foo[4,0] would evaluate to 42+2+42+2+2 = 50 and foo[4,1] would
evaluate to (42*2)+2+2+2+2 = 92. Although this may appear wasteful, intermediate values can

be garbage collected once they are no longer needed to calculate the function’s return value.

5.3.1. Combined Variable Declaration and Formula Assignment

For convenience, a variable declaration and a formula assignment to all cells of that variable
can be combined on a single line by inserting a := and an expression after the identifier. Multiple
variables and assignments, separated by commas, can be declared on a single line as well.

/+ Creates two 2x2 ranges; every cell of foo evaluates to 1 and every cell of

bar evaluates to 2. x/
[2,2] foo := 1, bar := 2;

11

5.3.2. Formula Assignment Errors

If the developer writes code in such a way that more than one formula applies to a cell, this
causes a compile-time error if the compiler can detect it or a runtime error if the compiler cannot
detect it in advance and the cell is evaluated. If there is no formula assigned to a cell, the cell will

evaluate to empty.

5.4. Dimension Assignment

Extend will feature gradual typing for function declarations. This will enable users with a weak
experience in typing to use the language, while allowing more sophisticated developers to enforce
type checking at compile time. In addition, it allows the developer to return ranges whose size is
an unpredictable or complex function of the inputs.

To avoid specifying the precise return dimensions, an underscore can be used. This marks a
variable range. Thus our function now looks like this:

[_,1] foo([5,5] argl, [1,1] arg2) {

return argl[O:arg2 ,0];
}

Here we are selecting a range from argl that depends on the value of arg2 and can therefore not

be known ahead of time.

5.5. Parameter Declarations

If a parameter is declared with an identifier for the dimensions, instead of an integer literal,
that identifier will contain the dimension size of the argument inside the function. In addition,
expressions consisting solely of other identifiers are allowed, and will cause a run-time error if the
sizes of the arguments are not consistent.

However Extend will feature even more options to specify ranges. If a certain operation should
be applied to a range of numbers of unknown size, the size can be inferred at runtime and match
the return size:

[m,1] foo([m,1] arg) f{

return arg[0O:m, 0] + 1;

}

12

This function will add 1 to each element in arg. Notice, that m is used across the function as a
variable identifier to apply the operation to the range.

Summarizing, we have 3 ways of specifying a return range:

Type Symbol Example | Description

Number 3 A number is the simplest descriptor. It specifies the absolute

return size

Expression bar * 2 An expression that can be anything, ranging from a simple
arithmetic operation to a function call. To use this, any iden-
tifier used, must also be present as a range descriptor in a

function parameter.

Underscore This marker is unique, since it is a wildcard. While the other

options aim to be specific, the underscore circumvents declar-

ing the range size.

5.6. Application on Ranges

Extend gives the developer the power to easily apply operations in a functional style on ranges.
As outlined in the section above, there are various ways to apply functions to ranges. A feature
unique to Extend is the powerful operation on values and ranges. To apply a function on a per
cell basis, the corresponding variable needs to be preceded by "#". The following function applies
cell wise addition:
[m,n] foo([m,n] argl, [m,n] arg2) {

[m,n] bar := #argl + #arg2;

return bar;

}

If we want to apply a function to the whole range at once we drop the leading symbol. Thus matrix

addition takes the following shape:
[m,n] foo([m,n] argl, [m,n] arg2) {
[m,n] bar := #(madd(argl, arg2));

return bar;

}

While both function above result in the same value, and only show the syntactical difference. If we

wanted each cell to to be the square root divided by the sum of the input we have the following:

[m] foo([m] arg) {

13

[m] bar := sqgrt (#arg) / sum(arg);
return bar;

}

Notice that arg is only once preceded by #.

5.7. Dependencies Illustrated

The dependency resolution is another asset that sets Extend apart from other languages. Most
languages compile ordinarily and execute the given commands sequentially. Extend builds a de-
pendency graph. The advantage of this is that only relevant code segments will be executed. Given

the function

[m,n] foo([m,n] argl, [m,n] arg2) {
[m,n] bar := #argl + 1;
[m,n] faz := #argl + 3;
[m,n] baz := bar + arg2;
return baz;

}

The dependency graph will look like this:

)

Notice that faz does not appear in the graph, because it is not relevant for the return value. Ulti-
mately this graph enables Extend to find the leaves, evaluate code paths in the best configuration

and even in parallel.

14

6. Built-In Functions

There are a small number of built-in functions that allow operations that would otherwise
be impossible to provide through user-defined functions. These are isEmpty (), since comparing
empty with any other value simply returns empty; size (), row (), and column (), to determine
the dimensions of a range or the location of a cell within a range; the file I/O functions open (),
close (), read (), and write (), which have side effects; and the serialization and deserialization

functions toString () and fromString ().

6.1. isEmpty

Since empty cannot be compared to any other value using the boolean operators, the built-in
function isEmpty (expr) can be used to determine whether the supplied expression evaluates to

empty. It returns 1 if the supplied argument is empty and 0 otherwise.

6.2. Dimension and Position Functions

The built-in function size (expr) returns a 1x2 range containing the number of rows and
columns, in that order, of the value of that expression. size (empty) returns {0, 0}. The
built-in functions row () and column () return the row index or column index of the cell in which
they are evaluated. Examples include:

/* The 5x5 identity matrix */
[5,5] id := row() == column() ? 1 : 0;

/* A 1x10 range in which the first 5 cells evaluate to "left"
and the next 5 cells evaluate to "right" x/
[1,10] left_half := column() < 5 2 "left" : "right";

6.3. File I/O

Although the anticipated use cases of Extend generally do not include highly interactive pro-
grams, the language has built-in functions that allow the developer to read from and write to files,
including standard input, output, and error. These functions are the only part of the language with
side effects; as a result, the dependencies between expressions referencing the file I/O functions

should be carefully analyzed by the developer to ensure that the program behaves as intended.

15

The precedence operator —> can be used to create an artificial dependency between expressions to

enforce the correct order of evaluation.

6.3.1. File Pointers

The built-in open and close functions open and close file pointers for reading and writing.
An attempt to open a nonexistent file, or a file that the user does not have permission to read
and write, will result in a runtime error causing the program to halt, as will an attempt to close a
file pointer that is not open. The return value of open is a range that can be supplied as the file
pointer argument to close, read, or write. The return value of close is empty. The built-in
variables STDIN, STDOUT, and STDERR refer to file pointers that do not need to be opened or

closed.

6.3.2. Reading and Writing

The built-in read, readline, and write functions read from and write to an open file
pointer. read takes a maximum number of bytes and a file pointer as arguments and returns a
1-by-n range, where n is the lesser of the number of bytes actually read and the maximum number
of bytes requested. If the maximum number of bytes requested is empty, the entire contents of the
file are returned. readline takes a file pointer as argument and returns a 1-by-n range, where
n is the number of bytes between the current position of the file pointer and the first newline
encountered or EOF, whichever occurs first. The newline, if present, is included in the returned
range. The arguments to write are a 1-by-n range and a file pointer and the return value is

empty.

6.3.3. Example using the precedence operator

bmi () |
gl := write("What is your height in inches?\n", STDOUT);
height := gl -> parseFloat (readline (STDIN)) ;
g2 := height -> write("What is your weight in pounds?\n", STDOUT);
weight := g2 -> parseFloat (readline (STDIN));

return weight * 703 / height xx* 2;

16

6.4. Serialization and Deserialization

The built in functions toString (expr) and fromString (s) will serialize an expression to
a string and vice versa. If expr is a range, toString () will evaluate the value of every cell in
the range, proceeding from left to right within a row and from top to bottom within the range,
and will produce a string that could be used as a range literal in a source file. fromString ()
will do the reverse. Note that these functions do not comprise an eval() function; toString() will
only have numbers in its result, and fromString() will not deserialize a string containing anything
besides literal values. They are provided mainly for convenience in loading and parsing complex
datasets. It is possible that these two functions will be provided as part of the standard library

rather than as built-in functions.

7. Entry Point

7.1. main function

When a compiled Extend program is executed, the main function is evaluated. All computa-
tions necessary to calculate the return value of the function are performed, after which the program
terminates. If the function declaration includes parameters, the first argument will be a 1-by-n
range containing the command line arguments. Any other parameters, if declared, will evaluate to

empty.

8. Example Program

main([1,n] args) {

segFP := open(args[0]);

seql := readline(segFP)[:-2]; // discard newline

seqg2 := seqgl —-> readline(seqgFP) [:-2];

alignment := computeSequenceAlignment (seql, seqg2, 1, -1, -3);
output := write(alignment[:,0], STDOUT) ->

write (alignment([:,1], STDOUT) ->
close (seqfFP) ;
return output;

}

[_,2] computeSequenceAlignment ([m,1] seql, [n,1l] seqg2,
matchReward, mismatchPenalty, gapPenalty) {

[m, n] scoreFromMatch, scoreFromLeft, scoreFromTop;

17

[m, n] step, path;
[1,n] seg2T := transpose(seq2);
[m+1,n+1] score;

score[0, 0] = 0;
score[l:,0] = score[[-1],] + gapPenalty;
score[0,1:] = score[,[-1]] + gapPenalty;
score[l:,1:] = nmax(scoreFromMatch[[-1],[-1]1],
nmax (scoreFromLeft [[-1], [-1]], scoreFromTop[[-11,[-111));
scoreFromMatch = #score + ((#seql == #seg2T) ? matchReward : mismatchPenalty);
scoreFromLeft = score[[l],] + gapPenalty;
scoreFromTop = score[, [1]] + gapPenalty;
step (#scoreFromMatch >= #scoreFromLeft) ?

((#scoreFromMatch >= #scoreFromTop) ? DDD : TTT)
((#scoreFromLeft >= #scoreFromTop) ? LLL : TTT);

path[-1,-1] = 1;
path[-1,:-1] = (step[,[1]] == LLL && !isEmpty(path[,[1]])) 2?2 1 + path[,[1]]
path[:-1,-1] = (step[[1l],] == TTT && !isEmpty(path[[1],])) ? 1 + path[[1],]
path[:-1,:-1] = switch () {
case step[[1],[1]] == DDD && !isEmpty (path[[1],[1]1]):
1 + path([[1],[1]];
case step[,[1]] == LLL && !isEmpty (path(,[1]]):
1 + path[, [1]];
case step[[1l],] == TTT && !isEmpty(path[[1],]):

1 + path[[1],];
bi

pathLen := path[0,0];

[m, 1] seqglPositions := pathLen - rmax(pathl[,:]1);

[1, n] seg2PositionsT := pathLen - rmax(path([:,]);
[n, 1] seg2Positions := transpose (seq2PositionsT);
[pathLen, 1] resIdx := colRange (0, pathLength);
[pathLen, 1] seglLoc := match(resIdx, seglPositions);
[pathLen, 1] seg2Loc := match(resIdx, seg2Positions);

[pathLength, 2] results;
results[:,0] = seqgl[seglloc];
results[:,1] = seg2[seg2loc];

return results;

18

empty;
empty;

	Introduction to Extend
	Structure of an Extend Program
	Import Statements
	Global Variables
	Function Declarations

	Types and Literals
	Primitive Data Types
	Ranges
	Range and String Literals

	Expressions
	Arithmetic Operators
	Boolean Operators
	Conditional Operators
	Ternary Expressions
	Switch Expressions

	Function Calls
	Range Expressions
	Slices
	Selections

	Precedence Expressions

	Functions
	Format
	Variable Declaration
	Formula Assignment
	Combined Variable Declaration and Formula Assignment
	Formula Assignment Errors

	Dimension Assignment
	Parameter Declarations
	Application on Ranges
	Dependencies Illustrated

	Built-In Functions
	isEmpty
	Dimension and Position Functions
	File I/O
	File Pointers
	Reading and Writing
	Example using the precedence operator

	Serialization and Deserialization

	Entry Point
	main function

	Example Program

