

Espresso
Language Reference Manual
10.06.2016
─

Rohit Gunurath, rg2997

Somdeep Dey, sd2988

Jianfeng Qian, jq2252

Oliver Willens, oyw2103

 1

Table of Contents
Table of Contents 1

Overview 3

Types 4
Primitive Types 4

int 4
float 4
bool 4

Reference Types 5

Lexical Conventions 7
Comments 7
White Space 7
Reserved Words 7
Identifiers 8
Literals 8
Operators 9

Expressions 10
Evaluation and Result Computation 10
Expression Type 11
Evaluation order 11
Lexical Literals 11
Arithmetic Operations 12
Relational Operations 12
Method invocation 13
Array Access 13
Assignment 13

Classes 13
class declaration 13
Constructor Declaration 14
Field Declaration 14
Method Declaration 14

 2

Statements 15
Expression Statement 15
Declaration Statement 16
Control Flow Statements 16

If else 16
Looping: for 17
Looping: foreach 17
Looping: while 17

Branching: break, continue,and return 18
Break 18
Continue 18
return 18

Method 19
Empty Statement 19

 3

Overview
Espresso is a hybrid object​ oriented language that incorporates some functional
language features, such as supporting foreach statement blocks. The language is inspired
by Java. The key goal of the project is to practice design of a simple language and use
Ocaml to implement it. Like Java, Espresso is at its best when coding feels intuitive and
allows programmers to worry about high-level programming rather than semantics -
that’s our problem.The basic operators, conditional statements, looping and datatypes
will be supported with object oriented behaviour, along with some new lambda related
features. Espresso is a general use language. Coders can use it to practice object​ oriented
programming as well as create simple programs instinctively. The code of Espresso
possesses similarities in terms of structure with Java, and will be compiled to LLVM. For
purposes of simplification, Espresso will not support access or scope modifiers such as
public, private, protected and default.

 4

Types

Primitive Types

int
Integer is a type that stores a supplied value in 4 bytes. Intuitively, the type should be
used to store whole decimal number values. Integers can store decimal values ranging
from -2​-31 ​ to 2​31​-1.​ ​Initialization is shown below.

int​ latte ​=​ ​4;
int​ mocha ​=​ ​2147483647;
int​ cappuccino ​=​ ​-​9​;

float
Float is a type that stores a supplied value in 4 bytes. Intuitively, the type should be used
to store all real numbers to which the Integer type is insufficient. In practical terms, this
will mean fractional numbers and numbers of greater magnitude than is supported by
Integers. Initialization is shown below.

float​ latte ​=​ ​4.5;
int​ mocha ​=​ ​-​9.0;

bool
The Boolean type is a binary indicator that can be either True or False. Booleans can also
be null. Additionally, a boolean can be compared to or initialized as an Integer that is
assigned as 0 or 1, or assigned as a 1 or 0.

bool​ latte ​=​ ​true;
bool​ coffee ​=​ ​false;
bool​ mug ​=​ ​(​coffee ​==​ ​0​);​ ​//mug is True

char

 5

The Character type is a single alphabetic ASCII character between single quotes. The
range is ‘a’ - ‘z’, ‘A’ - ‘Z’. Initialization is shown below.

char​ roast ​=​ ​'c';

void

The void type is used as a placeholder to imply that a method will not return a value. All
methods ​have ​ to have a return type, so void must be used if there is no concrete return
desired. Below is a sample method declaration:

void​ methodName ​(<​formals_opt​>)​ {
 //method body
 //reading comments again??
}

Reference Types
Arrays

Arrays are datatypes that store into memory 0 or more items of a specific type in an
indexed manner. Sample array declarations are shown below.

int​ fantasticArr​[​10​];​ ​//An array of ten Integers
bool​ true_false_arr​[​1​];​ ​//An array of one Boolean value

Arrays can be initialized at the time of declaration. The values in the array must be
supplied in brackets and separated by commas. A example of this is shown below.

float​ fractionArr​[​3​]​ ​=​ ​{​1.1​,​ ​4.5​,​ ​-​2.2​};

A user can also store values at a specific index later on.

 6

fractionArr​[​2​]​ ​=​ ​0.07​;​ ​//The array is now {1.1, 4.5, 0.07}

Strings

A string is a class. An instance of a string object contains an array of the primitive
datatype char. Espresso supports three methods to manipulate strings: ​substring(),
charAt(), length().

String​ sen ​=​ ​"Fresh cup of coffee."​;
String​ short_sen ​=​ sen​.​substring​(​3​,​6​);​ ​//short_sen holds "sh
c"
//note that substring() is inclusive on both parameters
char​ myChar ​=​ sen​.​charAt​(​0​);​ ​//char holds 'F'
int​ numLetters ​=​ sen​.​length​();​ ​//numLetters holds 20

 7

Lexical Conventions

Comments
Supported comments are of two types :

● Single Line Comments -

//Start typing here

● Multiple Line Comments -

/*

None​ of ​this​ matters.
Nothing​ really matters.
This​ code​,​ like you​,​ ​is​ an insignificant speck.

*/

White Space
White spaces in Espresso are comprised of single space characters, tab spaces, page
breaks and line ending characters. These are ignored by the Espresso compiler (we’ll call
it ​brew ​) with the primary purpose being that of acting as a separator for tokens. That is,
one space serves the same purpose as several lines of space.

Reserved Words
Keywords are reserved and cannot be used as regular identifier names.

 8

for float int String char break

if else for while foreach class

void return new continue true false

boolean extends

Identifiers
An identifier is a sequence of letters, digits, and underscores. It can only begin with a
lowercase letter. Identifiers are essentially the names of variables, methods, and classes.
They are case-sensitive.

Literals
Literals are syntactic depictions of the values of integers, characters, booleans or strings.
They indicate the actual representation of values with the program context.

● Boolean literals - Two possible boolean literals :
○ true
○ false

● Integer Literals

These are of the primitive type ​int. ​They are numeric values that do not
comprise any decimal component.

● Floating Point Literals

These are expressed as decimal fractions and consist of types like 0.56,
1.23, etc.

● Character Literals

Character literals are contained between a pair of single quotes.

 9

'a'

● String Literals

String literals start with ​“​ , followed by any number of characters and end
with ​“​. No newline character can occur with the string unless correctly
escaped.

● Null literals

Null literal refers to a single value that implies a particular does not refer to
any object or value : ​null​.

Operators
Operators will include relational, boolean and logical operators, described in greater
detail in the expressions section.

 10

Expressions

A large component of the work in Espresso is done in the form of evaluation of
expressions. An example of this is the evaluation of variable assignments of the following
type:

int​ a ​=​ ​10;

Evaluation and Result Computation

When an expression is evaluated, the eventual result will be one of the following:

● A variable
● A value or a component of a larger expression
● Void - in the instance of void functions, for example.

The single case in which an expression can be nothing (or void) is in the case of its
utilization as a return type for a particular method/function that has no return type as it
does not return any value on completion of execution.

On the other hand, if the expression evaluates to a variable (which falls under the
subcategory of an identifier), then within the overall evaluation of the expression, the
value of the variable is applied.

As such, for both values and variables, expressions evaluate to ​values​, that in themselves
may be the final result or may be a component of a larger expression, depending on how
they are nested.

 11

Expression Type

Expressions are often used in the form of assignment operations of the following type :

 x ​=​ a ​+​ ​1;

Hence, the evaluation of expressions in Espresso is such that the result is of the same
type as the variable it is assigned to. Often the range of operations that can be
incorporated in specific expressions are only possible given that they are semantically
valid for the types of values/variables that are present in the expression.

Eg.

int​ a;
a ​=​ ​5​ ​%​ ​"​e​";

The above code snippet makes no sense in the context of Espresso, as the ‘​%​’ operator
holds no meaning in relation to the String ​“e”​, even though ordinarily it would indeed
have valid context in relation to ​a ​and ​5.

Evaluation order
The evaluation order that is internally employed by Espresso is universally ​left-to-right.

Lexical Literals
Lexical literals indicate the actual representation of fixed, unchanging values that are the
smallest unbroken unit that can be evaluated as one, and as such can not be further
diluted into expressions.

The mapping between the various literals and their corresponding literals are as follows :

● Integer literals map to ​int​ datatype.
● Floating literals map to ​float​ datatype.

 12

● Boolean literals map to ​boolean​ datatype.
● Character literals map to ​char​ datatype.
● String literals map to the ​String ​datatype.
● Null literal has no datatype; rather it is a single applicable value : ​null​.

Evaluation ​of a literal is essentially a direct mapping.

Arithmetic Operations
Arithmetic operators include the following :

+ Adds values on both sides

- Subtracts value on the right side from the value on the left

* Multiples values on either side

/ Divides left hand operand by the right hand operand

% Divides left hand operand by the right hand operand and computes
remainder

** Computes left operand raised to the value of the right operand

These are only possible when both operands are primitive types like ​int ​or​ float​. They
are all binary operands and follow left to right associativity.

Relational Operations
The value on evaluation of any relational expression always results to boolean. Equality
comparisons can only be between similar types.

== Returns true if both operands equal

!= Subtracts value on the right side from the value on the left

> Returns true if left operand greater, else false

< Returns true if right operand greater, else false

 13

>= Returns true if left operand greater than or equal to right, else false

<= Returns true if left operand lesser than or equal to right, else false

Method invocation

If the invoked method has a return type void, then void(no result) is returned and no
return type is expected. Else, the value with the datatype specified in the method
signature, is returned. A return statement is expected at the end of the invoked method
that has to return a value.

Array Access

Array access is done in the form of an array reference (a variable or identifier) followed
by an index (or position) enclosed in square brackets. The index must be of type ​int​, if
not, Espresso will automatically redirect it to the closest integer value less than the
specified index (flooring to avoid possibility of hitting an index out of bounds greater
than array size).

Assignment
The assignment operator is of the type ‘=’. This is the only type of assignment supported
in Espresso.

Classes

class declaration
A class declaration defines how it is implemented, it has fields and methods.

Class Declarations. A class can extends some other class or none

 14

Class​ A{
}
Class​ ​SubA​ ​extends​ A{
 ​// fields
 ​// methods
}

Constructor Declaration
Constructor declaration is a specific method which has the same name of class and does
not have return type.

Field Declaration
Field declaration is an expression.

Method Declaration

Class​ ​BankCount{
 ​int​ saving;
 ​String​ name;
 ​BankCount​(​String​ n​,​int​ a​){
 name ​=​ n;
 ​Saving​ ​=​ a;
 }
 ​boolean​ withdraw​(​int​ a​){
 ​if​(​ a ​<​ ​0​)
 ​return​ ​false;
 ​else​ ​if​(​saving ​>​ a ​){
 saving ​-=​a;
 ​return​ ​true;
 }
 ​else{
 ​return​ ​false;
 }
 ​boolean​ deposit​(​int​ a ​){
 ​if​ ​(​a ​<​ ​0​ ​){
 ​return​ ​false;
 }
 saving ​+=​a;
 ​return​ ​true;
 ​}

 15

}

Statements

Expression Statement
An expression statement contains an expression, and ends with a semicolon.

expression;

 16

Declaration Statement
Declaration Statement can delcare basic type array or class;

int​ a;
float​ b;
String​ sentence;
boolean​ flag;
String​ ​[]​ sentences;
int​ ​[]​ datas;
Class​ A;

Control Flow Statements

If else
If else flow control can have else or not.

if​ ​(​expr1​)​ expr2;

if​(​expr1​){
 expr2;
}​else{
 expr3;
}

Following is two examples.

bool​ gt​(​int​ a ​,​int​ b ​){
 ​if​ a ​>=​b;
 ​return​ ​true;
 ​return​ ​false;
}

Int​ max​(​int​ a​,​ ​int​ b​){
 ​if​ ​(​a ​>​ ​=​b)
 ​return​ a;
 ​else
 ​return​ b;

 17

}

Looping: for
Looping for works as following:

for​(​expr1​;​expr2​;​expr3​){
 expr4;
}

An example to print number from 0 to 9.

for​(​int​ i ​=​ ​0​;​ i ​<​ ​10​;​i​++){
 ​print​(​ i​);
}

Looping: foreach
Looping foreach works as following:

foreach​ ​(​typ item ​:​ array​)​ ​{​expr1​;}

An example to print an array.

Int​ ​[]​ data ​=​ ​{​1​,​2​,​3​,​4​,​5​};
foreach​(​int​ item​:​ data​){
 ​print​(​item​);
}

Looping: while
Looping while works as following:

while​(​expr1​){
 ​Expr2;
}

An example to print 0 to 9

 18

int​ i ​=​ ​0;
while​(​ i ​<​ ​10​){
 ​print​(​i​);
}

Branching: break, continue,and return

Break
Break with break the closest looping. An example only print the connected positive
number for each array. The output should 1,2,5,6, each for one line.

int​ i ​=​ ​0;
int​ ​[][]​ m ​=​ ​{{​1​,​2​,-​3​,-​4​},{​5​,​6​,-​7​,-​8​}}
while​ ​(​ i ​<​ ​2​){
 ​foreach​ ​(​int​ item ​from​ m​[​i​]){
 ​if​ ​(​item ​>​ ​0)
 ​print​ item;
 ​else
 ​Break;
}

Continue
Continue will pass current expression of looping. An example only print all positive
number for an array.

int​ ​[]​ data ​=​ ​{​1​,​2​,-​3​,​4​};
for​ ​(​int​ i ​=​ ​0​;​ i ​<​ ​4​;​ i​++){
 ​if​(​data​[​i​]​ ​<​ ​0)
 ​continue;
 ​print​(​data​[​i​]);
}

return
Return will return the function, it can return nothing or an expression.

return;
return​ expression;

An example of return the first positive number of an array.

 19

int​ firstPosiviteNumber​(​int​ ​[]​ data​){
 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ ​4​;​ i​++){
 ​if​(​data​[​i​]​ ​>​ ​0)
 ​return​ data​[​i​];
 ​return​ ​-​1;
}

Method
Method statement works as following:

returntype functionname​(​ typ a​,​ typ b​){
 exprs;
 ​return​ returntype;
}

return type can be void or basic type or an array or class;

Class​ A​{}
Class​ B1 ​extends​ A​{}
Class​ B2 ​extends​ A​{}

A factoryMethod​(​String​ t​){
 ​if​(​t​==​"B1)
 ​return​ ​new​ B1;
 ​if​(​t​==​"B2")
 ​Return​ ​new​ B2;
 ​return​ A;
}

Empty Statement
Empty Statement is nothing but just semicolon.

;

