
(DNA#): Molecular Biology Computation

Language Reference Manual

Aalhad Patankar, Min Fan, Nan Yu, Oriana Fuentes, Stan Peceny

{ap3536, mf3084, ny2263, oif2102, skp2140} @columbia.edu

1 Introduction

DNA# is a language designed to provide a platform and means for computation of genomic data, a

rising area in the field of bioinformatics. This programming language is inspired by Biopython, a

Python library providing data structures and methods for dealing directly with bioinformatics

processes. However, our language is a more general version of Biopython geared specifically for

the manipulation of genetic information natively, as is reflected in the language‟s native data types

and syntax. The basic data unit of our language is the nucleotide, and the language provides data

structures for higher levels of genetic modeling (e.g. DNA sequence, amino acid) composed of the

fundamental nucleotide unit. Our language also provides methods for basic file I/O, and a method

to interface with several types of files wherein genetic data is often stored.

1.1 Motivation

Inspired by the parallelism between genetic code and computer code, we would like to provide a

platform to “code” genes easily and natively. We are implementing basic models of molecular

biology in light of heightened interest in understanding genetics and its potential impact on tailoring

medicine, understanding diseases and ultimately improving human life. We are designing DNA#

for both the novice user, who is interested in learning the basics of genetic code, and the advanced

researcher performing analyses on large data sequences. We would like to rethink genetic code

as a form of data representation itself, and provide coders a platform to tinker with genes and

clearly see the biological results without hours of laborious manual transcription, complement

finding, and referencing external resources. In sum, we would like to create a language for

programmers to code in the genetic language and learn synthetic biology, and for synthetic

biologists with limited programming experience to open source and optimize their work.

1.2 Summary of Goals

 Provide basic, intermediate and advanced genetic operations that estimate physical

properties and mimic real genetic processes, including but not limited to transcription

(DNA->RNA) and translation (mRNA-> protein)

 Support primitive and complex data structures that can handle simple base sequences to

full blown genetic maps

DNA# Language Reference Manual

 2 / 19

 Provide means to allow scientists to add physical properties (e.g. bond strength, annealing

temperature) to existing data structures (nucleotide, codon, amino acid, etc.)

 Allow users to input and output files commonly used to store genetic data (e.g. FASTA) and

convert data from such files into mutable native data structures

 Allow users to build higher level algorithms (e.g. finding optimum primer regions, sequence

alignment) to model molecular biology and calculate optimal sub-sequences in DNA to

perform operations such as designing primers for polymerase chain reaction (PCR), a

basic genetic tool.

2 Lexical Conventions

2.1 Identifiers

The identifier rule inherits from the conventional C/C++ identifier rule and can be any string of

letters, digits, and underscores, however, not beginning with a digit.

The regular expression for the identifiers is the following:

[„a-z‟ ‟A-Z‟ „_‟][„a-z‟ „A-Z‟ „_‟ „0-9‟]*

2.2 Keywords

DNA# reserves keywords specified in the table below. The keywords in the table cannot be used

as identifiers.

true false if else

elseif for while continue

break include end local

then return void nuc

int double char bool

aa dna rna codon

peptide dnatorna rnatodna

DNA# Language Reference Manual

 3 / 19

2.3 Data Types

The following keywords start the definition of various types

-Standard types

Type Definition Values

bool Boolean true, false

int Integer integers

double Double Floating Point real numbers

void Valueless no values

char Character Numbers using ASCII encoding

string Sequence of characters Char

-Primitive

Type Definition Values

nuc Individual nucleotides

and variable nucleotides

A, T, G, C, U

K, M, R, Y, S, W, B, V, H, D, X, N

The relation between the different values of nuc and their complementary, transcribed and

translated counterparts can be seen in Figure 1.

DNA# Language Reference Manual

 4 / 19

-Complex

Type Definition/Value Sample Values

dna A Sequence of A,T, G, C Deoxynucleotides AGTXWRCC

rna A Sequence of A, U, G, C Nucleotides AGUCC

codon A three-nucleotide RNA sequence specifying a single amino

acid

UGU, CGA, ACC,

e.t.c

aa Amino acid, basic chemical structures composing a protein Ala, Trp, Cys, e.t.c

peptide Sequence of amino acids (aas) AlaTrpCys

array An array list of values of the same datatype

(0-index based)

[1, 4, 6, 3]

[„A‟, „T‟, „G‟, „T‟]

DNA# Language Reference Manual

 5 / 19

Figure 2 displays the relation between several of the complex data structures on a biological level.

2.4 Control Flow

Control

Flow

Definition

if Initialize a conditional if statement

then Implements some functionality given that the if conditional is true

else Initialize else clause in if statement if the initial if clause is deemed incorrect

elseif Initialize else clause in if statement if the initial if clause is deemed incorrect and

there is another condition to be satisfied

for Initialize for loop to implement certain functionality a set number of times

while Initialize while loop to implement certain functionality while a conditional following

the „while‟ keyword is correct

end End is used at the end of if, for, and while statement to indicate the end of the

clause

DNA# Language Reference Manual

 6 / 19

- if statement

A basic if statement is shown below:

if cond==true then

 …

end

Should there be more than one condition to be decided, use elseif:

if cond1==true then

 …

elseif cond2==true then

 …

else

 …

end

What need to be noticed is that here cond, cond1 and cond2 must be Logical Expressions, which

are expressions whose value is either „true‟ or „false‟. For more detailed information please read

part 3.3.

- for statement

A basic for loop is shown below, which starts with a keyword „for‟ and ends with an „end‟. Inside the

for statement, „start_num‟,‟end_num‟ and „step_length‟ must be valid integers. And the loop

variable (named „i‟ in the example) can be any variable with a type of int, and it has to be

pre-defined before use in the for loop.The loop runs from „start_num‟ to „end_num‟ with an

increment of „step_length‟. If the step_length is 1, it can be omitted.

for i=start_num,end_num,step_length

 …

end

- while statement

Here is a basic example of while statement. It starts with a keyword „while‟ and ends with an „end‟.

Please notice that the keyword „end‟ cannot be omitted for it is a common mistake users may make.

Inside the while loop, cond must be a Logical Expression (For more detail about Logical

Expression please read part 3.3). The loop runs as long as the given condition is true.

while cond==true

 …

end

DNA# Language Reference Manual

 7 / 19

2.5 Built in functions & Syntax

Function Definition Example Use

dnatorna Cast type from DNA to RNA (dnatorna) dna_name

rnatodna Cast type from RNA to DNA (rnatodna) rna_name

len Returns the length of the genetic

sequence, accepts any complex data

type

Int len(dna), int len(rna), int len(peptide),

int len(codon), int len(array), int len(aa)

2.6 Functions

Same as functions in C or C++, all functions have explicit return type and input table, which may

look like:

return_type function_name(input_a_type A,input_b_type B)

 …

end

When declaring a function, the user must designate a „return_type‟ of the function. The

„return_type‟ can be any supported data type of DNA#, including standard types, primitive and

complex types. For more detail information about types please check part 2.3.

For the input list, the types of the input can be any supported data type supported by DNA#. And

the number of inputs can be any number depends on the user's‟ demand. DNA# also supports

functions without any input, but the brackets „()‟ can‟t be omitted. Here is one example:

return_type function_name()

 …

end

Our language also supports Local functions:

local return_type function_name(input_a_type A,input_b_type B)

 …

end

DNA# Language Reference Manual

 8 / 19

 2.7 Literals

Nuc

All the symbols of bases, including the 5 basic types and the variable types

AA

Amino acids are sequences of DNA

Integer
Define a decimal digit with the following regular expression:

digit = [’0’ - ’9’]

An int is a 32-bit signed integer, and consists of at least one digit

digit+

Double

A double is a 64-bit floating point number. Define the regular expression of the

exponential part as follows:

exp = ’e’ [’+’ ’-’]? [’0’-’9’]+

If the decimal point is present, at least one of the the integer and fractional parts

must also be present –the compiler interprets an absent part as 0. If there is no

decimal point, the integer part and the exponent must be present:

((digit+ ’.’ digit* | ’.’ digit+) exp?) | (digit+ exp)

Bool
The boolean type has two predefined constants for each truth value, and no other

values:

True | false

Characters

Characters are single, 8-bit, ASCII characters

Strings

Sequence of characters, designated by “ “ or „ „

DNA# Language Reference Manual

 9 / 19

3. Syntax

3.1 Program structure

At the highest level, DNA# is a scripting language. Every program written in DNA# is compiled line

by line. Therefore, the most important subdivision of a program is scopes. A DNA#

program typically has two different scopes; one is line-scoping, denoted by end-of-line character,

and the other is scoping blocks, denoted by a keyword-pair “begin end”. All variables and functions

must be declared before their usage. Regarding variable scoping, there are no global variables in

DNA#. Every single .dna file is a scope, denoted by its filename, and inside the file there could be

more local scopes, following the rule that variables in the most nested scopes have the highest

overriding priority, followed by function formals if they are nested in a function.

Program:

 variable declarations (single lines of codes)

function declarations (block scoping of codes)

flow control (block of codes)

block of codes denoted with „begin‟ and „end‟

End-of-file

3.2 Variable declaration

Variables can be declared and initialized in a scope, be it inside a function, control flow statement

or a block of code, and will be local to that scope. However, we enforce that every variable must be

initialized upon declaration. The follow structure is used for variable declaration.

data-type variable-id = initial-value semi-colon

„data-type‟ is one of the type tokens indicating what type the newly declared variable belongs to.

„variable-id‟ can be a newly identifier token. „initial-value‟ can be either a literal of the

corresponding data-type or it can be an expression, which is evaluated to the corresponding

data-type.

Multiple assignments in one line is allowed in the following way. „variable-id1‟ and „variable-id2‟

and the following „variable-id‟s will have the same „data-type‟ specified and also have the same

initial value evaluated from the „initial-value‟ expression or literal.

 data-type variable-id1 = variable-id2 = … = initial-value semi-colon

DNA# Language Reference Manual

 10 / 19

The declaration, including single ones and multiple ones, ends with a semi-colon. The expressions

used in the assignment will be detailed in the next section.

A special case for variable declaration is the declaration of arrays. The following syntax rule is

used for array declaration.

 data-type[] array-id = data-type[int-variable] semi-colon

The declaration of arrays does not support multiple declarations in a single. It supports the

initialization of the array as the following. Please note, for the initialization of the array, the

data-type of the passed must match the data-type specified in the declaration and the length must

also match with the length specified in the declaration.

 array-id = [data-type-expression1, data-type-expression2, …]

3.3 Expressions

- Primary expressions

Primary expressions will be comprised of the following two categories, as the terminals in the

grammar.

1. Literals

 The primitive literals mentioned in the Lexical Convention section have the following

corresponding grammar calls, INT_LIT, DOUBLE_LIT, BOOL_LIT, and CHAR_LIT.

 Character arrays of the token STRING

 Character arrays of the token, starting with „#‟ and ending with „#‟ SEQUENCE

 Identifiers of the token ID

2. Parenthesized expressions

 (expression)

- Arithmetic expressions

1. Expressions with binary operators

 numeric_expr bop numeric_expr

„numeric_expr‟ stands for all the expressions including the literals,which are evaluated to be either

the data-type of int or double. However, the data-types of two „numeric_expr‟s on the both sides of

the „bop‟ must be the same. And the final data-type the expression is evaluated to, is the same

data-type.

The bop involved in the arithmetic expressions with binary operators can only one of the following.

 bop meaning

 + plus

DNA# Language Reference Manual

 11 / 19

 - minus

 * multiply

 / divide

 % modulo

2. Expressions with unary operators

 Expressions with left-associative unary operators

uop numeric_expr

^ exponential

In DNA#, there is only one left-associative unary operator, which is for the exponential calculation.

 Expressions with right-associative unary operators

numeric_expr uop

- flip the sign

In DNA#, there is only one right-associative unary operator, which is for the sign-flipping.

- Logical expressions

1. Expressions with binary operators

 logical_expr bop logical_expr

„logical_expr‟ stands for all the expressions including the literals,which are evaluated to be the

data-type of bool. And the final data-type the expression is evaluated to, is the data-type of bool.

The bop involved in the arithmetic expressions with binary operators can only one of the following.

 bop meaning

 | or

 & and

The truth table for the bool evaluation follows the convention of many programming languages.

The | operator evaluates to false only when both sides are false and otherwise true. The &

operator evaluates to true only when both sides are true and otherwise false.

2. Expressions with unary operators

 uop logical_expr

There is only one unary operator related to logical expression, which is the right-associative

negation with following syntax. The symbol for this „uop‟ is „!‟.

 ! negation

-Relational expressions

All the relational expressions have binary operators and the following syntax.

 expr bop expr

The expressions on either sides of the binary operator „bop‟ must have to be comparable. In DNA#,

the numeric values can be compared with other numeric values. And strings are comparable to

other strings based on their lexical alphabetical order. The „bop‟s are listed below with their

meanings.

DNA# Language Reference Manual

 12 / 19

 bop meaning

 < less than

 <= less than or equal to

 > larger than

 >= larger than or equal to

 == equal to

!= not equal to

-Biological Sequence Expressions

1. Expressions with binary operators

 seq_expr bop seq_expr

„seq_expr‟ stands for all the biological sequence expressions including DNA sequences, RNA

sequences, and Peptide data-types. There is only one „bop‟ for this type of expressions which is

concatenation, denoted as „^‟.

 ^ concatenation

2. Expressions with unary operators

 Expressions with left-associative unary operators

 uop numeric_expr

In DNA#, there is only one left-associative unary operator, which is for the complementing a

biological sequence.

@ complement

 Expressions with right-associative unary operators

numeric_expr uop

In DNA#, there are three right-associative unary operator. The first one is used for transcription

(„->‟), the second is for translation („+>‟) from RNA sequence (mRNA) to another RNA sequence (a

sequence of codons) and the last for translation2 („%>‟) from a RNA sequence (a sequence of

codons) to a Peptide. In this sense, the transcription operator can only be applied to DNA

sequences and translation operator can only be applied to RNA sequences.

-> transcribe

+> translate

%> translate2

For all the unary operators on the biological sequences (including both left-associative and

right-associative ones), when they are applied to a sequence, it returns another biological

sequence as its meaning of the expression.

 Function Calls

 Function calls are also expressions that can be reduced to the return type of the

function

DNA# Language Reference Manual

 13 / 19

3.4 Precedence of operators

The following precedence of operators used in DNA# is partially referred to C programming

language.

High

|

V

Low

()

^ ! @

+> ->

* / %

+ -

< <= == >= > ==

&

|

=

3.5 Associativity of operators

The following operators are left-associative:

„()‟ ^ +> -> * / % + - < <= == >= > == & |

The following are right-associative:

= @ !

3.6 Statements

-Assignments

 statement:

 defined-variable = expression semicolon

DNA# Language Reference Manual

 14 / 19

The assignment statements follow the previous rules used in the variable declaration section of

exprprimary expressions. Left side of the assignment operator must be a defined variable, which is

a valid identifier token. If it is a new declaration, it falls back to the declaration expression rules.

The expression on the right side of the assignment operator must be an expression evaluated to

the same data-type of the defined variable. The expression itself could be another assignment

statement, meaning the whole statement is a line of multiple statements. The assignment is ended

with a semicolon.

A special case for the assignment statements is designed for arrays. It has the following syntax

rule.

 array assignment statement:

 defined-array-id = defined-array-id2

 defiend-array[int-expression] = data-type-expression

-Function

 A function is defined as a statement that abides by the following:

- takes a set of arguments, which are statements that are variable declarations with the

following exception: these declarations do not have to be initialized and cannot be terminated by

comma (e.g. int hi is valid)

 - body is its own block of code as defined below, with the restriction that has to return

according to below rule

 - an expression must be followed after return keyword that can be evaluated to be the same

type as specified by function declaration

 Syntax defined in later section

-Blocks and control flow

1. Blocks:

A block is defined inside the space between keywords „begin‟ and „end‟. Blocks can contain zero or

more statements inside them.

 begin

 …

 end

2. Branching statements:

DNA# supports both the if and if-else branching statements with the following syntax rules. Every

branching statement starts with a „begin‟ and an „end‟.

if branching statement:

 if bool-expr begin

DNA# Language Reference Manual

 15 / 19

 …

 end

if-else branching statement:

 if bool-expr begin

 …

 end

 else begin

 ...

 end

Please note, that using these syntax rules, DNA# automatically takes care of the “dangling else”

problem. In the case, “if bool-expr begin ... end if bool-expr begin … end else begin … end”, it is

very obvious that the else will stick with the if immediately before it, since the first if statement was

finished earlier.

3. Iteration statements:

DNA# supports two types of iteration statements. One is the regular for-loop statements, and the

other is the while-loop statements.

for-loop statement:

 for(begin-exproptional; bool-expr; increment-exproptional) begin

 …

 end

while-loop statment:

 while(bool-exproptional) begin

 …

 end

4. Jump statements:

As with other well-designed programming languages, DNA# does not support goto statements.

The following control-jumping statements are supported.

function-return statement:

 return expressionoptional semi-colon

The previous statement returns control to the code that calls the function.

break-statement:

 break semi-colon

The break-statements are used inside for-loop and while-loop to return control earlier than the

normal end of iterations.

continue statement:

 continue semi-colon

DNA# Language Reference Manual

 16 / 19

The continue-statements are used inside for-loop and while-loops to skip current iteration and go

to next iteration.

5. Function-call statement:

The following calls a previously defined function func.

 funct(argument1, argument2, …) semi-colon

The function-call statements use the conventional C-style function calls.

4. Scoping rules

DNA# uses the following scoping rules for variables.

a. Lexical scoping with blocks

*** you can scope anything with begin end, but functions and control flow

has to include these features

b. Function closure

c. Assignment and parameter passing

5. Sample Program

 Program 1:

Here is a basic program demonstrating several components (variables, control flow,

functions) being used in a script. It performs the basic function of reading a DNA code, and

outputting the peptide sequence that results from this sequence. NOTE: we intentionally

picked the sequence not to contain any variable nucleotides. A more useful, and complex

algorithm, would take a DNA sequence and output a list of possible peptides that could be

generated from the sequence, along with properties such as weight and GC content of

each sequence.

File BioExpData.dat

<sample1>

TCCCCAATGAAGGGTGCTTAGTAC

<\sample1>

File DNA2Protein.dnas

DNA# Language Reference Manual

 17 / 19

include “io.dnas”

include “basicBio.dnas”

(* Import the file with DNA sequences *)

DNA SampleA = import_dna("BioExpData.dat");

(*SampleA = TCCCCAATGAAGGGTGCTTAGTAC*)

DNA SampleB = @SampleA;

(*SampleB = AGGGGTTACTTCCCACGAATCATG*)

codon [] codonList = +>(->SampleB)

(* uses the unary operator for transcription (->) and translation (+>) to get a list of codons

corresponding to the DNA

codonList = UCC-CCA-AUG(s)-AAG-GGU-GCU-UAG(e)-UAC*)

(* defining a function findStartCodon, which will return index of start codon *)

int findStartCodon (codon [] cod)

 for i=0, i < len(cod), i++

 if cod[i] == AUG (* the start codon *)

 return i;

 end

 end

end

(* defining a function findEndCodon, which will return index of end codon *)

int findEndCodon (codon [] cod)

 for i=0, i < len(cod), i++

 if cod[i] == UAC (* the end codon *)

 return i;

 end

 end

end

(* call function findStartCodon, which will return an int, to b *)

int i = findStartCodon(codonList) ;

DNA# Language Reference Manual

 18 / 19

int j = findEndCodon(codonList) ;

(* i=3

* j=7

* codonList=AUG(s)-AAG-GGU-GCU-UAG(e) *)

(* function cutOut, which will select a subset of codonList that falls between start and end

codon, will be replaced by inbuilt array function later *)

codon[] cutOut(codon [] clist, int start, int end)

 codon[] newList = [];

 int iterator = 0;

 for i=0, i< len(clist), i++

 if (i > start && i < end)

 newList[iterator] = clist[i];

 iterator = iterator + 1;

 end

 end

end

if (i!=-1 && j!=-1 && i < j)

 codonList = cutOut(,i,j);

else

 codonList = null;

end

aa result1 = %> codonList

print("Below is the result:\n")

print_list(result1)

Running Result

Below is the result:

DNA# Language Reference Manual

 19 / 19

 (origin)

 ->methionine

 ->lysine

 ->glycine

 ->alanine

->(terminal)

References:

[1] Funk Programming Language - 2012

[2] DNA# Project Proposal - 2016

