Fundamentals of Computer Systems
Boolean Logic

Stephen A. Edwards
Columbia University

Summer 2016

Boolean Logic

AN INVESTIGATION

THE LAWS OF THOUGHT

oN WHICE ARE FOUNDED

THE MATHEMATICAL THEORIES OF LOGIC
AND PROBABILITIES.

ny

GEORGE BOOLE, LL.D.

PROPRSBOR OF MATWENATICS I QURE'S COLLBAE, CORR.

George Boole
1815-1864

LONDON:
WALTON AND MABERLY,
UPPEE GOWER.STREET, AND IVI.LANE, PATERNOSTER-ROW,

CAMBRIDGE: MACMILLAN AND CO.
1854,

Boole’s Intuition Behind Boolean Logic

Variables X, Y, ...

represent classes of things

No imprecision: A thing either is or is not in a class

If X is “sheep”

and Y is “white
things,” XY are
all white sheep,

XY =YX
and

XX

Il
X

If X is “men” and
Y is “women,”

X+Yis "both
men and
women,”

X+Y=Y+X

and

X+X=X.

If Xis “men,” Y is
"women,"” and Z
is “European,”
Z(X+Y)is
"European men
and women” and

Z(X+Y)=2ZX+2ZY.

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A A "not” operator X
An “and” operator “.” A “false” value 0e A

u

An “or” operator “+ A "true” value 1€ A

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A A “not” operator X
An “and” operator “.” A “false” value 0e A
An “or” operator “+" A “true” value 1€ A
Axioms
X+Y=Y+X XY=Y-X

X+(Y+2)=(X+Y)+Z X(Y-Z)=(X-Y)-Z

X+(X-Y)=X x (X+Y)=X

X (Y+2)=(X-V)+(X-Z) X+(Y-2)=(X+Y)-(X+2)

X+X=1 X-X

0

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A A “not” operator X
An "and” operator “." A “false” value 0c A
An “or"” operator “+" A "true” value 1€ A
Axioms
X+Y=Y+X X-Y=Y-X
X+(Y+2)=(X+Y)+Z X(Y-Z)=(X-Y)-Z
X+(X-Y)=X X-(X+Y)=X
X(Y+2Z)=(X-Y)+(X-Z) X+(Y-Z)=(X+Y)-(X+2)
X+)_(=1 X)_(= 0

We will use the first non-trivial Boolean Algebra: A=1{0,1}.
This adds the law of excluded middle: if X #0 then X =1
and if X # 1 then X =0.

Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

Axioms

X+Y=Y+X
Xy=Y-X
X+(Y+2)=(X+Y)+Z
X-(Y-2)=(X-Y)-Z
X+(X-Y)=X
X-(X+Y)=X
X(Y+Z)=(X-Y)+(X-2)
X+(Y-Z)=(X+Y)-(X+2)

X+X=1
X-X=0
Lemma:
X-1 = X-(X+)7)

= X-(X+Y)ify=X
= X

Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

Axioms

X+Y=Y+X
Xy=Y-X
X+(Y+2)=(X+Y)+Z
X-(Y-2)=(X-Y)-Z

- X+(X-Y)=X
X+(X-Y) X-+(§(+Y§:X
v X-(Y+2)=(X-Y)+(X-Z
= (X+X)-(X+Y) X+((YT—Z)):((X+Y))*-—((X+Z))
X+X=1
X-X=0
Lemma:
X1 = X-(X+X)

= X-(X+Y)ify=X

Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

Axioms

X+Y=Y+X
Xy=Y-X
X+(Y+2)=(X+Y)+Z
X-(Y-2)=(X-Y)-Z

— X+(X-Y)=X
X+(X-Y) X-+(§(+Y§:X
v XA(Y+2)=(X-Y)+(X-Z
= (X+X)-(X+Y) X+((Yﬁ-—2)):(()7(+Y))*-—((X+Z))
= 1. (X+Y) X+X=1
X-X=0
Lemma:
X1 = X-(X+X)

= X-(X+Y)ify=X
= X

Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

X+(X-Y)

(X+X)-(X+Y)
1-(X+Y)
X+Y

Axioms

X+Y=Y+X
XyY=Y-X
X+(Y+2Z)=(X+Y)+Z
X-(Y-2)=(X-Y)-Z
X+(X-Y)=X
X-(X+Y)=X
X (Y+Z)=(X-Y)+(X-2)
X+(Y-Z)=(X+Y)-(X+2)

X+X=1
X-X=0

Lemma:
X1 = X-(X+X)

More properties

0+0 =

0+1 =

140 =

1+1 =
T+1+---+41 =
X+0 =

X+1 =
X+X =
X+XY =
X+XY =

<

X X X ©O = = o o o

x
<

More Examples

XY +YZ(Y +2)

X+YX+2)+XZ

XY +YZY +YZZ
XY +YZ
Y(X+2)

X+YX+YZ+XZ
X+YZ+XZ
X+YZ

More Examples

XYZ+X(Y +2) XYZ+ XY +XZ Expand
X(YZ+Y +2) Factor w.r.t. X
X(YZ+Y+Z+YZ) Z—-YZ
X(YZ+YZ+Y+2Z) Reorder

(
(
(Y(Z+2)+Y+2Z) Factor w.rt. Y
(
(

X

X(Y+Y+2) Y+Y=1

X(1+2) 1+Z=1
= X X1=X

XX+XYZ+YX+YYZ+ZX+2ZYZ
X+XYZ+XY+YZ+XZ
X+YZ

(X+Y+2Z)(X+Y2)

Sum-of-products form

Can always reduce a complex Boolean expression to a sum
of product terms:

XY +X(X+Y(Z+XY)+Z) = XY+X(X+YZ+YXY +2)
= XY+XX+XYZ+XYXY +XZ
= XY+XYZ+XZ
(can do better)
= Y(X+X2)+XZ
= Y(X+2)+XZ
- YXZ+XZ
= Y+XZ

What Does This Have To Do With Logic Circuits?

A SYMBCLIC ANALYSIS
OF

RELAY AID SWITCHING CIRCUITS

Claude Elwood Shennon
B.S., University of Licaigan
1935

Submittea in Partial Fulfillment of the

Requirements for ti

Degree of
CE

KASTER OF SCIE

from tae

ssacnusetts Institute of Tecanology

1940

Signature ox‘tA\;I'Aoz‘ - - - o C|aude Shannon
Depertment of Electrical Engineerins, August 10,

’ 1916-2001
Signature of Professor

in Charze of Researca_

Signature of Casirman of Department
Concittee on Graduate Students,

Shannon's MS Thesis

“We shall limit our treatment to circuits containing only
relay contacts and switches, and therefore at any given time
the circuit between any two terminals must be either open
(infinite impedance) or closed (zero impedance).

Shannon's MS Thesis

Xab

B —— g—.b

Filg. 1

X
X+Y .
Fig. 2 Filg. 3

“It is evident that with the above definitions the following postulates hold.

0-0=0

1+1=1

1+0=0+1=1

0-1=1-0=0

0+0=0

A closed circuit in parallel with a closed circuit is a closed
circuit.

An open circuit in series with an open circuit is an open
circuit.

An open circuit in series with a closed circuit in either order
is an open circuit.

A closed circuit in parallel with an open circuit in either
order is an closed circuit.

A closed circuit in series with a closed circuit is a closed
circuit.

An open circuit in parallel with an open circuit is an open
circuit.

At any give time either X=0or X=1

Alternate Notations for Boolean Logic

Operator

Math Engineer Schematic

Copy

Complement

AND

OR

X X X— or x—[>—x
- X x—>o—x

XAy XY orX-Y)Y(::}XY
XVy X+Y XDX+Y
Y

Definitions

Literal: a Boolean variable or its complement

Eg. X X Y Y

Implicant: A product of literals

E.g. X XY XYZ

Minterm: An implicant with each variable once
E.g. XYZ XYZ XYZ

Maxterm: A sum of literals with each variable once

E.Q. X+Y+Z X+Y+Z X+Y+Z

Be Careful with Bars

x|

<I

3
~<

Be Careful with Bars

XY #XY

Let’s check all the combinations of X and Y:

XY X Y XY XY XY
0 0 1 1 1 0 1
0 1 1 0 0 0 1
1 0 o1 0 0 1
1 1 0O 0 0 1 0

Truth Tables

A truth table is a canonical representation of a Boolean

function

X Y Minterm Maxterm X XY XY X+Y X+Y
0 0 XY X+Y 1 0 1 0 1

0 1 XY X+Y 1 0 1 1 0

10 XY X+Y 0O 0 1 1 0

1 1 XY X+Y 0 1 0 1 0

Each row has a unique minterm and maxterm

The minterm 'S ! for only its row
maxterm is 0

Sum-of-minterms and Product-of-maxterms

Two mechanical ways to translate a function’s truth table
into an expression:

X Y Minterm Maxterm F
00 XY X+Y 0
0 1 XY X+Y 1
10 XY X+Y 1
1 1 XY X+Y 0

The sum of the minterms where the function is 1:
F=XY+XY
The product of the maxterms where the function is 0:

F=(X+Y)(X+Y)

Expressions to Schematics

F=XY+XY

Expressions to Schematics

F=XY+XY

Expressions to Schematics

F=XY+XY

Expressions to Schematics

Y—0—[>0#_>7x?

Expressions to Schematics

Expressions to Schematics

F=XY+XY=(X+Y)X+Y)

>

I

<I

>

e

Minterms and Maxterms: Another Example

The minterm and maxterm representation of functions may
look very different:

X Y Minterm Maxterm F
00 XY X+Y 0
0 1 XY X+Y 1
10 XY X+Y 1
1 1 XY X+Y 1

The sum of the minterms where the function is 1:
F=XY+XY+XY
The product of the maxterms where the function is 0:

F=X+Y

Expressions to Schematics 2

F=XY+XY+XY=X+Y

X—o—[>o—

XY +XY+XY=F

DX+Y=F

The Menagerie of Gates

= o b A
I'II'II'II'I

ANDROID NANDROID NOTOROID ORDROID

The Menagerie of Gates

NAND

AND

Inverter

Buffer

o

o —

1>- 9> > >

+]0

NOR XOR

OR

De Morgan’s Theorem

X+Y=X-Y X-Y=X+Y

Proof by Truth Table:

X
0
0
1
1

o =0
_ - O+

De Morgan’s Theorem in Gates

AB = A+B
A+B = A-B

Do

Q

Bubble Pushing

A—
B —

o
Ty

D —

Apply De Morgan'’s Theorem:

Transform NAND into OR with inverted inputs

Bubble Pushing

A —]
B —

C_
D —

Apply De Morgan'’s Theorem:
Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel

Bubble Pushing

A —]
B —

C_
D —

Apply De Morgan'’s Theorem:
Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel

PONG

PONG, Atari 1973

Built from TTL logic gates; no computer, no software

Launched the video arcade game revolution

Horizontal Ball Control in PONG

M L R A B
0 0 O X X
0 0 1 0 1
0O 1 0 0o 1
0 1 1 X X
1 0 O X X
1 0 1 1 0
1T 1 0 1 1
1T 1 1 X X

The ball moves either left or right.

Part of the control circuit has three
inputs: M (“move”), L (“left”), and R
(“right").

It produces two outputs A and B.

Here, “X" means "l don’t care what
the output is; | never expect this input
combination to occur.”

Horizontal Ball Control in PONG

E.g., assume all the X’s are 0’s and use
Minterms:

A=MLR+MLR
B=MLR+MLR+MLR
3inv+4 AND3 + 1 OR2 + 1 OR3

____\OOOO§
- 00—~ —-00|r~
—0O—~0—~,0—~0|>
O = 000000 | >
O—~~000—-=—-0|W

Horizontal Ball Control in PONG

Assume all the X's are 1's and use
Maxterms:

A=(M+L+R)(M+L+R)
B=M+L+R
3inv+ 3 OR3 + 1 AND2

____\OOOO§
- —_ 00 = =00 |r~
- O =, 0O -0 -=0|=>
___\ddoo_\>
—_ e O = = = - a

Horizontal Ball Control in PONG

M L R A B Choosing better values for the X's and
0 0 0 0 1 being much more clever:

0 0 1 0 1 A=M

0 1 0 0 1 S

o 11 o 1 B=MR

1T 00 T 1 1 NAND2 (1)

1 0 1 1 0

1 10 1 1

1 1 1 1 0

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B

0 00 X X The M's are already
0O 0 1 0 1 .

0 1 0 0 1 arranged nicely

0o 1 1 X X

1T 0 O X X

1T 0 1 1 0

1T 1 0 1 1

T 1 1 X X

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
0 0 O X X Let's rearrange the
0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows
0o 1 1 X X
1 0 O X X
1T 0 1 1 0
1T 1 0 1 1
1T 1 1 X X

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
0 0 O X X Let's rearrange the
0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows
0o 1 1 X X
1 0 O X X
1T 0 1 1 0
T 1 0

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B

0 0 O X X Let's rearrange the

0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows

0o 1 1 X X

1 0 O X X

1.0 1 1 o 1O

— —
—_
—
X =
X =

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
0 0 O X X Let's rearrange the
0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows
0o 1 1 X X
1T 1 0

1 1
X X

R
o
o

= X

o X

=2
N
N

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
0 0 O X X Let's rearrange the
0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows
0o 1 1 X X
T 1 0

1 1
1 1 X X

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
0 0 O X X Let's rearrange the
0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows
0o 1 1 X X
1T 1 0 1 1
T 1 1 X X

o
o
- X
o X

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
0 0 O X X Let's rearrange the
0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows
0o 1 1 X X
T 1 0 1 1
T 1 1 X X
1 0 O X X
1T 0 1 1 0

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B

0 0 O X X Let's rearrange the

0O 0 1 0 1 L'sbypermuting two
O 1 0 0 1 pairs of rows

0o 1 1 X X

1T 1 0 1 1

T 1 1 X X

1 0 O X X

1T 0 1 1 0

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B

0 0 O X X The R’s are really

0 0 1 0 1 crazy; let's use the
0O 1 O 0 1 second dimension
0 1 1 X X

1 1 O 1 1

1 1 1 X X

1T 0 O X X

1T 0 1 1 0

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B

00 OO O1)% The R's a|'fe really
crazy; let's use the

00 11 01 %(1)(second dimension

% %

11 00 01 XI)i)

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

X0 X1 The R’s are really
crazy; let's use the
0X 1X second dimension

M L R A B
00 00 01
00 11 01
11 11 01 1X 1X
11 00 01 X1 XO0

Karnaugh Maps

Basic trick: put “similar” variable values near each other so
simple functions are obvious

M L R A B
00 00 01 X0 X1
00 11 01 0X 1X MR
11 11 01 1X] 1
11 00 01 X1 X

Maurice Karnaugh'’s Maps

The Map Method for Synthesis of

Combinational Logic Circuits

M. KARNAUGH

NONMEMBER AlEE

HE SEARCH for simple abstract

techniques to be applied to the design
of switching systems is still, despite
some recent advances, in its early stages,
‘The problem in this area which has been
attacked most energetically is that of the
synthesis of efficient combinational that
is, nonsequential, logic circuits,

be convenient to describe other methods
in terms of Boolean algebra. Whencver
the term “algebra” is used in this paper,
it will refer to Boolean algebra, where
addition corresponds to the logical con-
nective “or,” while multiplication corre-
sponds to ‘“‘and.”

The minimizing chart,? developed at

co Fig. 2. Graphical
6o o 1 i of
BC the input conditions
00 o1 n__ 10 o0 for three and for four
variables
[o1
AB
1 1
10
() G

Transactions of the AIEE, 1953

Karnaugh maps (a.k.a., K-maps)

All functions can be expressed with a map. There is one

square for each minterm in a function’s truth table

X Y minterm Y

0 0 XY mo XN 0 T

0 1 XY mi 0|mO0| m1
1 0 XY m2 1/m2| m3
1 1 XY m3

Karnaugh maps (a.k.a., K-maps)

All functions can be expressed with a map. There is one

square for each minterm in a function’s truth table

X Y minterm Y

0 0 XY mo XN 0]

0 1 XY mi 0|mO| mT)Xx
1 0 XY m2 1/m2| m3| X
1 1 XY m3

Karnaugh maps (a.k.a., K-maps)

All functions can be expressed with a map. There is one

square for each minterm in a function’s truth table

. Y
X Y minterm X 0 1
0 1 XY m1
10 XY m2 1|m2/m3
1 1 XY m3 y Y

Karnaugh maps (a.k.a., K-maps) — Cont. 1

Fill out the table with the values of some function.

o | O

__\oox
—_ 0 = 0O | <
— O™

Karnaugh maps (a.k.a., K-maps) — Cont. 2

When two cells share an edge and both are 1, those two
terms can be combined to form a single, simpler term.

0 1
0/0]| 1
111

F=XY+XY +XY

Karnaugh maps (a.k.a., K-maps) — Cont. 2

When two cells share an edge and both are 1, those two
terms can be combined to form a single, simpler term.

Y
X 0 1
00 1
Y
XN 0 JEIN
F = X + XY
o[o[1 y
1111 X 0o 1
0 1

F=XY+XY +XY

F=Y+XY

Karnaugh maps (a.k.a., K-maps) — Cont. 2

When two cells share an edge and both are 1, those two
terms can be combined to form a single, simpler term.

Y
XN 0 1
0|0 1
Y Y
1011
X N\ 0 1 — XN 0 1
oo/ 1 Py XY olo]
11| 1 X N_0 1 111 1
F=XY+XY +XY 00 |1 F=X+Y

F=Y+XY

Karnaugh maps (a.k.a., K-maps) — Summary So Far

>

»

Circle contiguous groups of 1s (circle sizes must be a power of 2)

There is a correspondence between circles on a k-map and terms in
a function expression

The bigger the circle, the simpler the term
Add circles (and terms) until all 1s on the k-map are circled

Prime implicant: circles that can be no bigger (smallest product
term)

Essential prime implicant: circles that uniquely covers a 1 is
“essential”

Y

X 0 1
00| 1
11111

F=X+Y

3-Variable Karnaugh Maps

» Use gray ordering on edges with multiple variables

» Gray encoding: order of values such that only one bit
changes at a time

» Two minterms are considered adjacent if they differ in
only one variable (this means maps “wrap”)

YZ
X 00 01 11 10

O/mOm1|m3| m2

1/m4| m5| m7| mé6

3-Variable Karnaugh Maps

» Use gray ordering on edges with multiple variables

» Gray encoding: order of values such that only one bit
changes at a time

» Two minterms are considered adjacent if they differ in
only one variable (this means maps “wrap”)

YZ V4
X 00 01 11 10
0O/mOm1| m3| m2

MmO/ m1|{m3| m2

X { m4| m5 m7A m6

1|m4| m5| m7| m6| x
zZ v

4-Variable Karnaugh Maps

An extension of 3-variable maps.

CcD D
ABN_00 01 11 10 .
- 01132
00|01 m 2 m
01/ 4|5 6 B adl| 6
B 12 14
1112 14 12 A
A 8 10
10| 8 10
C

D C

The Seven-Segment Decoder Example

9

b ¢ d e f

a

w X Y Z

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

0

0

0

Karnaugh Map for Seg. a

w X Y Z a
0 0 0 O 1
0 0 0 1 0
0O 0 1 O 1
o o0 1 1 1
0 1 0 O 0
o 1 0 1 1
o 1 1 O 1
o 1 1 1 1
1 0 0 O 1
1 0 0 1 1
1 0 1 0 X
1T 0 1 1 X
1T 1 0 O X
1T 1 0 1 X
1 1 1 0 X
T 1 1 1 0

The Karnaugh Map Sum-of-Products
Challenge

Cover all the 1's and none of the 0's
using as few literals (gate inputs) as
possible.

Few, large rectangles are good.

Covering X’s is optional.

Karnaugh Map for Seg. a

w X Y Z a
0 0 0 O 1
0 0 0 1 0
0O 0 1 O 1
o o0 1 1 1
0 1 0 O 0
o 1 0 1 1
o 1 1 O 1
o 1 1 1 1
1 0 0 O 1
1 0 0 1 1
1 0 1 0 X
1T 0 1 1 X
1T 1 0 O X
1T 1 0 1 X
1 1 1 0 X
T 1 1 1 0

Do
0
X{x

=)

Xeo
XOHH

Dx x| W

The minterm solution: cover each 1
with a single implicant.

..

Y

a = WXYZ+WXYZ+WXYZ+
WXYZ+WXYZ+WXYZ+
WXYZ+WXYZ

8 x4 =32 literals
4 inv + 8 AND4 + 1 OR8

Karnaugh Map for Seg. a

w X Y Z a
0 0 0 O 1
0 0 0 1 0
0O 0 1 O 1
o o0 1 1 1
0 1 0 O 0
o 1 0 1 1
o 1 1 O 1
o 1 1 1 1
1 0 0 O 1
1 0 0 1 1
1 0 1 0 X
1T 0 1 1 X
1T 1 0 O X
1T 1 0 1 X
1 1 1 0 X
T 1 1 1 0

X X 0 X}
w
- X X
Y
Merging implicants helps

Recall the distributive law:
AB+AC=A(B+C)

a = WXYZ+WY+
WXZ+WXY
4+2+3+3=12 literals

4inv+ 1AND4 +2 AND3 + 1 AND2 + 1
OR4

Karnaugh Map for Seg. a

w X Y Z a
0 0 0 O 1
0 0 0 1 0
0O 0 1 O 1
o o0 1 1 1
0 1 0 O 0
o 1 0 1 1
o 1 1 O 1
o 1 1 1 1
1 0 0 O 1
1 0 0 1 1
1 0 1 0 X
1T 0 1 1 X
1T 1 0 O X
1T 1 0 1 X
1 1 1 0 X
T 1 1 1 0

V4

—

1
N

XX 0 X

(1] x X

Y

fw

Missed one: Remember this is actually
a torus.

a = XYZ+WY+
WXZ+WXY

3+2+3+3=11 literals
4inv+ 3 AND3 + 1 AND2 + 1 OR4

Karnaugh Map for Seg. a

w X Y Z a
0 0 0 O 1
0 0 0 1 0
0O 0 1 O 1
o o0 1 1 1
0 1 0 O 0
o 1 0 1 1
o 1 1 O 1
o 1 1 1 1
1 0 0 O 1
1 0 0 1 1
1 0 1 0 X
1T 0 1 1 X
1T 1 0 O X
1T 1 0 1 X
1 1 1 0 X
T 1 1 1 0

V4

—

4
X{O
X X 0 X

e —

Y

fw

Taking don't-cares into account, we
can enlarge two implicants:

a = XZ+WY+
WXZ+WX

2+2+3+2=9 literals
3inv+ 1 AND3 + 3 AND2 + 1 OR4

Karnaugh Map for Seg. a

~—s s s s s s000O0COOCOCOCO|S

__x__\oooo____\oooox

ddOO—\—\OOA—IOOAAOOK

- 0,00, 0—~,0—~0—~0-0]|N

— —
_

x
I =
~<><><

| w

Can also compute the complement of
the function and invert the result.

Covering the 0’s instead of the 1's:

a = WXYZ+XYZ+WY

4+3+2=09 literals

5inv+ 1 AND4 + 1 AND3 + 1 AND2 + 1
OR3

Karnaugh Map for Seg. a

a

w X Y Z

O — O «—

O O v «—

[=NeNeNe)

To display the score, PONG used a TTL

chip with this solution in it:

[
2
o
=
2
o
®
A

(12) OUTPUT

Another Karnaugh Map Example

Consider building a minimal two-level circuit for this
function. Start by choose a large number of adjacent 1's
and X's in a cube shape.

Another Karnaugh Map Example

Here's a big group and the Karnaugh map of the
corresponding implicant.

Another Karnaugh Map Example

The implicant “covers” 4 1's, so it only consists of two terms.

Another Karnaugh Map Example

Not all the 1's are covered, so we need to choose another

o O O o
o O /—= 0O

o O |—= 0O
o O O O

<|

group of adjacent 1's and X's. Here is the Karnaugh map of

the corresponding implicant.

Another Karnaugh Map Example

o O /—= 0O
o O |—= 0O
o O © o

fw

Y
X — Wy W
v | XY XA) wxz

This implicant only covers 2 1s, so it has three terms.

Another Karnaugh Map Example

4 V4 V4
0000 0000 0000
011X 0011 0110

X{X01 1}W X{0011}W X{OOOO}W
0000 0000 0000
Y Y Y
= YLD U] e
Z —
WXZ + XY
Xi
Yi

Together, these two implicants cover all the 1's. ORing the
two implicants together gives the answer.

Boolean Laws and Karnaugh Maps

w
o [o[1] WXYZ+WXVZ+
v 00 [?[? WXYZ+WXYZ+
oo 1)1] WXYZ+WXYZ+
ol o EE z WXYZ+WXYZ

Factor out the W's

Boolean Laws and Karnaugh Maps

W
0|0 1]1 o
[[(W+W)XYZ+
v 0 0[?[? (W+W)XYZ+
0 OEE (W+W)XYZ+
z (W+W)XYZ
o o (1]1]
Use the identities
X
W+W=1
and

Boolean Laws and Karnaugh Maps

w
olof1]1 _
XYZ+
v 11210 (1] XYZ+
0| of1]1 XYZ+
z XYZ

0011

Factor out the Y's

Boolean Laws and Karnaugh Maps

w
o011 _ _
(Y+Y)XZ+
v oof1]1 (Y+Y)XZ
111
0] 0 [Z Apply the identities again
0011

Boolean Laws and Karnaugh Maps

XZ+
111 XZ

7z Factor out Z

o | o |Oo |o

o | o |Oo |o

Boolean Laws and Karnaugh Maps

X(Z+2)

Simplify

o | o |Oo |o
o | o |Oo |o

Boolean Laws and Karnaugh Maps

o | o |Oo |o

o | o |Oo |o

Done

