Types and Static Semantic Analysis

Stephen A. Edwards

Columbia University

Fall 2014

Types

Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated
as something it isn't

g
\ o -
Optimization: eliminates certain
j runtime decisions

Types of Types

Type Examples

Basic Machine words, floating-point numbers,
addresses/pointers

Aggregate Arrays, structs, classes

Function Function pointers, lambdas

Basic Types

Groups of data the processor is designed to operate on.

On an ARM processor,

Type Width (bits)
Unsigned/two’s-complement binary

Byte 8

Halfword 16

Word 32

IEEE 754 Floating Point

Single-Precision scalars & vectors 32, 64, .., 256
Double-Precision scalars & vectors 64, 128, 192, 256

Derived types

Array: a list of objects of the same type, often fixed-length
Record: a collection of named fields, often of different types
Pointer/References: a reference to another object

Function: a reference to a block of code

C's Declarations and Declarators
Declaration: list of specifiers followed by a
comma-separated list of declarators.

basic type
static unsigned 1ntA(-kf[1O])(1nt, Char-k);l

specifiers declarator
Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

C Declarations: specifiers + initializing declarators

declaration
declaration-specifiers init-declarator-listops ; # int a =3, b;

declaration—specifiers # List of specifiers
storage-class—specifier declaration-specifiersop: # static, typedef
type-specifier declaration-specifiersqpr # int, struct
type—qualifier declaration-specifiersopt # const, volatile

init-declarator—list # Comma-separated list of new names
init—declarator
init—declarator-list , init—declarator

init—declarator # A new name given a type and optional initial value
declarator
declarator = initializer

int a, b[10], /+ "a" is an integer; "b" is an array =/
C; / "c" is a pointer x/
static const char d = 'b’, /+ initialized static constant character =/

e[5] = {0, 8 12, 34, 1 };

Storage Classes, Type Specifiers, and Type Qualifiers

storage—class—specifier # \Where to put the object

typedef # Name a type instead of an object
extern # Defined elsewhere; linked in
static # Not on stack/restricted scope
auto # On stack: default
register # In a register: ignored
type—specifier # What the object can hold
void # For functions that return nothing
char # Character 8 bits
short # Short integer 16 bits
int # Machine word (default) 32 bits
long # Longer 64 bits
float # Single—precision FP 32 bits
double # Double—precision FP 64 bits
signed # Allows negative numbers: default
unsigned # Never negative
struct-or—union—-specifier # Objects with multiple fields
enum-specifier # Objects that hold names
typedef-name # A user—defined type (an identifier)
type—qualifier # How to treat data in the object
const # May not be modified after creation

volatile # Do not optimize accesses

C Declarations: Structs and Unions

struct—or—union-specifier
struct-or—union identiﬁeropt { struct—declaration—list } # New struct
struct-or—union identifier # Refer to an existing one

struct-or—union
struct # Enough storage for every field
union # Enough storage for largest field only

struct—declaration—list # List of named fields with types
struct-declaration-listopt struct-declaration

struct—declaration # Field declarations: name and type, no init
specifier—qualifier-list struct—declarator-list ;

struct { int x, y; } a; /+ "a" is a struct with fields x and y */
struct foo { int w; /+ declare struct foo, fields w and z +/

char z; }; /* no storage requested (no declarator) =/
struct foo c; /% "c" holds a struct foo =/

C Declarations: Structs and Unions

specifier—qualifier—list # Note: no extern, static, etc.
type-specifier specifier—qualifier-list op¢ # int, struct
type-qualifier specifier—qualifier-list op¢ # const, volatile

struct-declarator-list # Comma-—separated list of field names
struct—declarator
struct—declarator-list , struct—declarator

struct—declarator
declarator # Named field
declaratorgpt : constant-expression # Named field with bit width

struct foo {
unsigned int c : 3, d : 2; /* ¢ is 3 bits; d is 2 */

unsigned int a; /% a is word length */
double f£; /% field f: double-precision =/
struct foo *fptr; /+* pointer to a struct foo */

};

Structs

Structs are the precursors of objects:

Group and restrict what can be stored in an object, but not
what operations they permit.

Can fake object-oriented programming:
struct poly { ... };

struct poly *poly_create();

void poly_destroy(struct poly *p);

void poly_draw(struct poly #*p);

void poly_move(struct poly =p, int x, int y);
int poly_area(struct poly #p);

Unions: Variant Records

A struct holds all of its fields at once. A union holds only
one of its fields at any time (the last written).

union token {
int 1;

float f;

char *string;

}’

union token t;

t.i = 10;

t.f = 3.14159; /* overwrite t.i */
char *s = t.string; /+ return gibberish =/

Applications of Variant Records

A primitive form of polymorphism:

struct poly {
int x, y;
int type;
union { int radius;
int size;
float angle; } d;
I8

If poly.type == CIRCLE, use poly.d.radius.
If poly.type == SQUARE, use poly.d.size.
If poly.type == LINE, use poly.d.angle.

Name vs. Structural Equivalence

struct f {
int x, y;
} foo={0,11};

struct b {
int x, y;
} bar;

bar = foo;

Is this legal in C? Should it be?

C Declarations: Enums
enum-specifier
enum identifieropt { enumerator-list}
enum identifier

enumerator-list
enumerator
enumerator-list , enumerator

enumerator
enumeration—constant
enumeration—constant = constant—expression

enumeration—constant
identifier

Enumeration constants in the same scope must be distinct;
values need not be.
enum foo { A=5, B, C=3, D, E }; /+ New enum, no storage =/

enum foo a; /% a holds A, B, C, etc. =/
enum { F =42, G=5 } b; /% b holds F, G =/

C Declarations: Declarators
declarator
pointerqp; direct—declarator

direct—declarator
identifier # name to define
(declarator) # override precedence
direct—declarator [constant-expressiongpt | # array
direct—declarator (parameter—type-listope) # function (typed args)

direct-declarator (identifier-list opt) # old—style function (names)
pointer
* type—qualifier-list opt # e.g., %a, xconst b

» type—qualifier-list opr pointer # e.g., xconst «c
type—qualifier—list
type-qualifier-list opt type-qualifier # const, volatile

int a[5]; /% array of 5 integers =/

int *b[6]; /% array of 6 integer pointers =/

int (xc)[6]; /* pointer to array of 6 integers =/

int f(int, float); /+ f: function of two arguments returning int =/
int »g(int); /+ g: function returning a pointer to an integer =/

int (xh)(dint); /+ h: pointer to a function returning an integer =/

C Declarations: Formal Function Arguments

parameter—type-list
parameter—list
parameter-list, ... # Ellipses: variable number of arguments after this

parameter-list # Comma-separated list of parameters
parameter—declaration
parameter-list , parameter—declaration

parameter—declaration
declaration—specifiers declarator # argument with name
declaration—specifiers abstract-declaratoryp # argument type only

int f(int (*)(int, float)); /* argument is function pointer =/
int g(char c); /+# argument given a name x/ J

Type Expressions

C's declarators are unusual: they always specify a name
along with its type.

Languages more often have type expressions: a grammar
for expressing a type.

Type expressions appear in three places in C:
(int *) a /+ Type casts #*/

sizeof(float [10]) /% Argument of sizeof() =/
int f(int, char %, int (+)(int)) /+ Function argument types =/

C's Type Expressions

type—-name # e.g., int, int %, const unsigned char (x)(int, float [])
specifier—qualifier-list abstract—declaratorqpt

Note: no extern, static, etc.

specifier—qualifier—list
type-specifier specifier—qualifier-list oy # int, struct

type—qualifier specifier—qualifier-list op¢ # const, volatile

abstract—declarator # Declarator that does not define a name

pointer
pointerqp; direct—abstract-declarator

direct-abstract—declarator
(abstract—declarator) # override precedence
direct-abstract-declaratoryp: [constant-expressiongpt | # array

direct-abstract-declaratorop (parameter—type-listope) # function

Representing Declarators and Type Expressions
Simplified from the AST of CIL, a C front end in OCaml:

type typeSpecifier =
Tvoid | Tchar | Tshort | Tint | Tlong | Tfloat | Tdouble
| Tnamed of string
| Tstruct of string * field group list option
| Tunion of string * field group list option
| Tenum of string * enum_item list option
and cvspec = CV_CONST | CV_VOLATILE
and storage = NO_STORAGE | AUTO | STATIC | EXTERN | REGISTER
type spec_elem = (* A single type specifier =)
SpecTypedef
| SpecCV of cvspec
| SpecStorage of storage
| SpecType of typeSpecifier

type decl_type = (+ A declarator =)

| JUSTBASE

| ARRAY of decl_type * expression

| PTR of decl_type

| PROTO of decl_type * single_name 1list
and name = string * decl_type (+ declarator with type =*
and single_name = specifier * name
and name_group = spec_elem 1list * name 1list (* int a, #b %)

Semantic Checking: Static vs. Dynamic

Consider the C assignment statement
b = a;
—
What makes this assignment valid? What would make it
invalid?

When are these conditions checked? When the program is
compiled or when it is running?

Static Semantic Analysis

Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

if i 3 "This" /+* valid Java tokens =/
#all23 /* not a token =/ J

Syntactic analysis: Makes sure tokens appear in correct order

for (i=1; i<5; i++) 3 + "foo"; /+ valid Java syntax =/
for break /* invalid syntax =/ J

Semantic analysis: Makes sure program is consistent

int v = 42 + 13; /* valid in Java (if v is new) =/
return f + £(3); /+ invalid #/ J

What To Check

Examples from Java:

Verify names are defined and are of the right type.

int 1 = 5;
int a = z; /% Error: cannot find symbol =/
int b = i[3]; /* Error: array required, but int found =*/

Verify the type of each expression is consistent.

int j = i + 53;
int k = 3 + "hello"; /+ Error: incompatible types */
int 1 = k(42); /* Error: k is not a method =/

if ("Hello") return 5; /+ Error: incompatible types x/
String s = "Hello";
int m = s; /% Error: incompatible types =x/

How To Check: Depth-first AST Walk

Checking function: environment — node — type

1-5) 1 + "Hello"
- +
/N /N
1 5 1 "Hello"
check(-) check(+)

check(1) = int check(1) = int
check(5) = int check("Hello") = string
Success: int — int = int FAIL: Can't add int and string

Ask yourself: at each kind of node, what must be true
about the nodes below it? What is the type of the node?

How To Check: Symbols

Checking function: environment — node — type
1+ a
+
AN
1 a

check(+)
check(1) = int
check(a) = int
Success: int + int = int

The key operation: determining the type of a symbol when
it is encountered.

The environment provides a “symbol table” that holds
information about each in-scope symbol.

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is void f0o()
declared and ends at the end {
Of |t5 bIOCk. lnt X;

From the CLRM, “The scope
of an identifier declared at
the head of a block begins at

the end of its declarator, and
persists to the end of the
block.”

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “If an
identifier is explicitly declared
at the head of a block,
including the block
constituting a function, any
declaration of the identifier
outside the block is
suspended until the end of
the block.”

void foo()
{
{
int x;

c
}

Static Scoping in Java

public void example() {
// X, vy, z not visible

int x;
// x visible

for (int y =1 ; vy <10 ; y++) {
// X, y visible

int z;
// X, v, z visible

// x visible

Basic Static Scope in O'Caml

let x

A name is bound after the
"in" clause of a “let.” If the

name is re-bound, the
binding takes effect after the ~ Returns the pair (12, 8):

I/

in."”

Let Rec in O'Caml

let rec fib i =
if 1 < 1 then 1 else
fib (i-1) + fib (i-2)

The “rec” keyword makes a

name visible to its definition.
This only makes sense for

functions. (+ Nonsensical)

Let...and in O’'Caml

Let...and lets you bind
multiple names at once.
Definitions are not mutually
visible unless marked “rec.”

let x = 8
and v = 9 in

let rec fac n =
if n < 2 then
1

else
n * facl n
and facl n = jEle @ —b)
in
fac 5

Nesting Function Definitions

let articles words =
let report w =

let count = List.length
(List.filter ((=) w) words)
inwA " " A
string_of_int count
in String.concat ", "
(List.map report ["a"; "the"])
in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2"

let count words w = List.length
(List.filter ((=) w) words) in

let report words w=w A ": " A

string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"s "pain"; "in";
"the": "butt"]

A Static Semantic
Analyzer

The Static Semantic Checking Function
A big function: “check: ast — sast”

Converts a raw AST to a “semantically checked AST”

Names and types resolved

type expression =
IntConst of int
| Id of string
| Call of string * expression list

AST:
J

type expr_detail =
IntConst of int
| Id of variable_decl
| Call of function_decl * expression list

type expression = expr_detail * Type.t

SAST:

The Type of Types

Need an OCaml type to represent the type of something in
your language.

An example for a language with integer, structures, arrays,
and exceptions:

type t = (* can’t call it "type" since that’s reserved =)

Void
| Int
| Struct of string * ((string * t) array) (» name, fields =)
| Array of t = int (* type, size =)
|

Exception of string

Translation Environments

Whether an expression/statement/function is correct
depends on its context. Represent this as an object with
named fields since you will invariably have to extend it.

An environment type for a C-like language:

type translation_environment = {

scope : symbol_table; (» symbol table for vars =)
return_type : Types.t; (* Function’s return type *)
in_switch : bool; (» if we are in a switch stmt =)
case_labels : Big int.big int 1list ref; (* known case labels =)
break_label : label option; (* when break makes sense *)
continue_label : label option; (* when continue makes sense =)

exception_scope : exception_scope; (* sym tab for exceptions =)
labels : label list ref; (+ labels on statements =)
forward_gotos : label list ref; (x forward goto destinations)

A Symbol Table

Basic operation is string — type. Map or hash could do this,
but a list is fine.

type symbol_table = {
parent : symbol_table option;
variables : variable_decl list

}

let rec find_variable (scope : symbol_table) name =
try
List.find (fun (s, _, _, _) -> s = name) scope.variables
with Not_found ->
match scope.parent with
Some(parent) -> find_variable parent name
| _ -> raise Not_found

Checking Expressions: Literals and Identifiers

(# Information about where we are =)

type translation_environment = {
scope : symbol_table;

}

let rec expr env = function

(* An integer constant: convert and return Int type =)
Ast.IntConst(v) -> Sast.IntConst(v), Types.Int

(# An identifier: verify it is in scope and return its type =)
| Ast.Id(vname) ->

let vdecl = try

find_variable env.scope vname (* locate a variable by name %)

with Not_found ->
raise (Error("undeclared identifier " A vname))
in
let (_, typ) = vdecl in (* get the variable’s type *)
Sast.Id(vdecl), typ

Checking Expressions: Binary Operators

(# let rec expr env = function =)

| A.BinOp(el, op, e2) —>

let el = expr env el (* Check left and right children =)
and e2 = expr env e2 in

let _, t1 = el (» Get the type of each child =)
and _, t2 = e2 in

if op <> Ast.Equal && op <> Ast.NotEqual then
(* Most operators require both left and right to be integer =
(require_integer el "Left operand must be integer";
require_integer e2 "Right operand must be integer")
else
if not (weak_eq_type t1 t2) then
(* Equality operators just require types to be "close" =)
error ("Type mismatch in comparison: left is " A
Printer.string of_sast_type t1 A "\" right is \"" A
Printer.string of_sast_type t2 A~ "\""
) loc;

Sast.BinOp(el, op, e2), Types.Int (* Success: result is int =)

Checking Statements: Expressions, If

let rec stmt env = function

(* Expression statement: just check the expression =)
Ast.Expression(e) -> Sast.Expression(expr env e)

(» If statement: verify the predicate is integer =)
| Ast.If(e, sl1, s2) ->

let e = check_expr env e in (» Check the predicate =)
require_integer e "Predicate of if must be integer";

Sast.If(e, stmt env sl, stmt env s2) (+ Check then, else *)

Checking Statements: Declarations

(+ let rec stmt env = function =*)

| A.Local(vdecl) ->
let decl, (init, _) = check_local vdecl (* already declared? =)
in

(* side-effect: add variable to the environment =)
env.scope.S.variables <- decl :: env.scope.S.variables;

init (* initialization statements, if any =*)

Checking Statements: Blocks

(* let rec stmt env = function =)

| A.Block(sl) ->
(* New scopes: parent is the existing scope, start out empty *)
let scope’ = { S.parent = Some(env.scope); S.variables = [] }
and exceptions’ =

{ excep_parent = Some(env.exception_scope); exceptions = [] }
in

(* New environment: same, but with new symbol tables =)
let env’ = { env with scope = scope’;
exception_scope = exceptions’ } in
(% Check all the statements in the block =*)
let sl = List.map (fun s -> stmt env’ s) sl in
scope’.S.variables <-
List.rev scope’.S.variables; (* side-effect =)

Sast.Block(scope’, sl) (* Success: return block with symbols =)

	Types
	Static Semantic Analysis
	Scope
	A Static Semantic Analyzer

