
VisLang: A Visual Language

Final Report

Bryant Eisenbach (UNI: bje2113)

Date: 08/14/2015

VisLang Final Report Page 1 of 71

Contents

1 Introduction 3
1.1 Key Language Features . 3

2 Language Tutorial 4
2.1 Example Program . 5

3 Language Reference Manual 9
3.1 Lexical Convention . 9

3.1.1 XML Elements and Attributes 9
3.1.2 Accepted Elements and Attributes 10
3.1.3 Accepted Types . 10
3.1.4 Comments . 10

3.2 Built-In Parts . 11
3.3 Using Built-In Parts . 12

3.3.1 Basic Language Elements 12
3.3.2 Atomic Parts . 13

4 Project Plan 16
4.1 Software Development Environment 16
4.2 Project Timeline . 17
4.3 Project Log . 18

5 VisLang Compiler Architecture 25

6 Test Plan 26
6.1 Test Case List . 28

7 Conclusion 30
7.1 Lessons Learned . 30
7.2 Future Improvements . 31

A VLCC Source Code 32

B VLCC Utilities 57

C VLCC Test Cases 62

VisLang Final Report Page 2 of 71

List of Figures

1 VLCC Architecture . 25

List of Tables

2 Accepted Attributes . 10
3 Accepted Elements . 11
4 Test Case Descriptions . 29

List of Code Listings

1 Example Top Level . 5
2 Example Referenced Block . 6
3 Generated Code for Top Level . 26
4 Generated Code for Referenced Block 27
5 Top Level . 32
6 XML Scanner . 32
7 XML Parser . 35
8 XML Syntax Tree . 36
9 XML Object to Block Object Converter 38
10 Block Object Ordering and Optimization 51
11 Code Generation . 54
12 VisLang Errors . 56
13 Automated Build Script . 57
14 Automated Testing Script . 58
15 Algebraic Loop Failure Case . 62
16 Bad Connection Failure Case . 63
17 Missing Attribute Failure Case 63
18 Unended Block Failure Case . 63
19 Cascaded Blocks Completion Case 64
20 Empty Block Completion Case 64
21 XML Tolerance Case . 64
22 Buffer Value Test Case . 65
23 Buffer in Buffer Value Test Case 65
24 Comparision Operation Test Case 65
25 Logical Gate Test Case . 66
26 Reference Block Test Case . 67
27 Math Operations Test Case . 68
28 Memory Block Test Case . 68
29 SR Latch Complexity Test Case 69
30 Timer Complexity Test Case . 69

VisLang Final Report Page 3 of 71

1 Introduction

VisLang is a block diagram language designed to allow fast and easy pro-
totyping of programs for embedded processors. The language is created with a
graphical editor in mind, and the core language is designed to be extensible so
that any graphical editor can add additional elements or attributes for graphical
display or other features.

1.1 Key Language Features

The language itself is based on the idea of blocks: small parts that can be
grouped together into ever larger blocks and re-used across different programs.
VisLang has a small group of fundamental (or atomic) blocks that will be under-
stood by the VisLang compiler. Other blocks will be constructed as groupings
of these atomic blocks, and can be referenced in other files. Libraries of useful
function blocks can be constructed from these atomic blocks containing common
parts such as timers, latches, etc. The ability to include blocks from libraries
and other programs is a standard feature of the language.

The syntax of VisLang leverages standard XML, giving the language a well-
formed and machine readable backbone. As noted previously, the point of lever-
aging XML is so that 3rd party programs can manipulate the file format in an
easy way, and so that external programs can add additional elements (e.g. visual
information for display) and attributes (e.g. location information) to the existing
set of elements and attributes defined by the language. Those additional tags
not included in the list of recognized elements/ attributes will be ignored by the
compiler as a valid program is only defined as a series of well-connected blocks.
All parts have a set of necessary attributes, and all connections require the source
to exist. This creates a natural flow to interpreting the language, such that only
functional errors should be raised by the compiler during compilation.

The VisLang Compiler will parse and check the specified input file and gen-
erate a viable C source file that can be used in combination with other generated
and manually created C source files to combine into fully functional programs for
embedded devices. Each generated file contains code that is completely reusable
as the generated code has standard interfaces and does not rely on global defi-
nitions. Some manual coding will still be necessary to link into different types
of embedded devices, the point is to create good intermediate code such that
linking to I/O devices and dealing with the nuances of an arbitrary embedded
device can be minimized.

VisLang Final Report Page 4 of 71

2 Language Tutorial

Any well-formed VisLang program can be constructed with the following
guidance. Firstly, the outer-most set of tags (the top of the XML tree or Top
Block) must be a BLOCK element and should be given a name appropiate to the
intended functionality (file name and block name do not have to match). Next, a
selection of INPUT and OUTPUT elements should be chosen for that block that
describe how it will interface with other blocks or C source files. When those
have been chosen and given names and datatypes, it is now time to design the
inner logic of the block being made.

Any collection of parts can be strung together from any input to any output.
The first important caveat to this is that the datatype of each input and output
must match to the corresponding connection being made. All parts in VisLang
have an explicit or implicit datatype, and that must be matched up as suggested
to avoid compilation errors. The second important caveat is that all calculations
avoid referencing themselves. This means that when tracing from any output to
any input, there is no instance of a calculation being used to define itself unless
a MEM block has been placed to prevent an algebraic loop occurance.

Next comes the decision if there will be any references to external blocks.
The user can specify the location of an external block in a file using the following
syntax: ”/path/to/file.vl|path|to|block”. When using external blocks, it is im-
portant to match the names and datatypes of the inputs/outputs to that block
when making connections to that block. Any incorrect types or names will be
flagged as an error at compilation time. Any BLOCK in any VisLang file can
be referenced, but each file must be compiled separately to avoid runtime errors
when attempting to compile the target generated C files.

Finally, the design of the program could have grown to sufficient complexity
where encapsulating that functionality into a separate block would be desireable.
At that point, encapsulating all of the chosen parts into another BLOCK part
would allow that part to be isolated from other parts in the program (different
namespace), and that part can be referenced into another block in that program
or any other.

There are a few specific things about some of the parts VisLang provides
worth noting. All of the logic gate elements besides the NOT gate (AND, OR,
etc.) and the SUMMER and PROD elements are defined as having two or more
inputs. The way this works in practice is that each successive input increments
the number after the word ”input” e.g. ”input1”, ”input2”, ”input3”, etc. when
making connections to these parts. If a number is skipped or the count does not
start at 1, a compilation error will be raised. These parts are known as ”binary
recursive” parts because the operation involved will be applied to every input to
the block in a recursive fashion e.g. (input1 op (input2 op (...))).

Most attributes for elements are defined with a string. The name attribute
is common to every part in the VisLang language. The connection elements can
reference these names when making connections between any two blocks. If an

VisLang Final Report Page 5 of 71

element is an atomic part (any element besides BLOCK and REFERENCE),
then linking a block input to that name is as easy as using that block’s name.
This is due to the fact that all of the atomic parts in VisLang are defined as only
having one output, so there is no ambiguity. The other attributes have more
explicit values that must match what is specified in the LRM.

When using the ”ic” or ”value” attributes, values they require are literals of
the relevant datatype. Examples of literals for all VisLang types are below:

datatype example literal(s)

boolean false, true
single, double 1.000, -100., .000

integer 100, 0x20, 2x1011, 8x671, -120

Note booleans can only be false or true. Floating point quantities (single,
double) can be a decimal quantity (with or without significant digits after the
decimal point), or specified using a decimal point e.g. 10.600. Floating point
literals can also be specified with a negative sign as well e.g. -1234.00. Integer
quantities (e.g. uint8, uint16, uint32, uint64, int8, int16, int32, int64) can be
specified as a decimal quantity (cannot have a decimal point), or using hex (e.g.
0x1A), binary (e.g.2x1010), or octal (e.g. 8x2462) representation. Only signed
integer datatypes can have a negative sign in front.

2.1 Example Program

The following program illustrates some of the major features of the language.
The program itself takes an Input (presumably on the target device) and starts
a timer when the input is enabled. When the timer counts up to the target time,
it will set the Output true and reset the timer, creating a pulse-blinking light
with a period of 2 seconds.

Listing 1: Example Top Level

../example/timed-blinking-light.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="timed_blinking_light">

3 <!-- This block denotes the contents of a program. Everything

4 contained within (including file references would be compiled

5 as a single binary. -->

6 <vl:INPUT name="digital_input_1" datatype="boolean"/>

7 <vl:CONSTANT name="time" datatype="single" value="2.000"/>

8 <vl:NOT name="not_di_1">

9 <vl:CONNECTION to="input" from="digital_input_1">

10 <!-- Any unrecognized elements or attributes are ignored, e.g.

11 A GUI Program could specify the shape of the connection

12 here, but the compiler would ignore this attribute. -->

13 <shape>This will get ignored!</shape>

14 </vl:CONNECTION>

VisLang Final Report Page 6 of 71

15 </vl:NOT>

16 <!-- literal constants for booleans are "true" and "false"-->

17 <vl:MEM name="count_expired_lp" ic="false" datatype="boolean">

18 <!-- Memory block would store the state each pass of the variable

19 specified by current_pass_value at the end of execution

20 such that the last_pass_value can be used in the local scope

21 without suffering from algebraic loops -->

22 <vl:CONNECTION to="current"

23 from="timer_instance_1|count_expired"/>

24 <!-- The | operator on a name denotes an available connection -->

25 </vl:MEM>

26 <vl:OR name="reset_blink">

27 <!-- OR, AND, etc. Gates can specify any number of inputs via

28 incrementing the input specifiers "input1", "input2",

29 "input3", etc. -->

30 <vl:CONNECTION to="input1" from="not_di_1"/>

31 <!-- Use the block name directly if it is an atomic part -->

32 <vl:CONNECTION to="input2" from="count_expired_lp"/>

33 </vl:OR>

34 <vl:REFERENCE name="timer_instance_1" ref="./timer.vl|timer">

35 <!-- Reference block references a block in an external file as

36 specified. File location is referenced relatively. All

37 Inputs and Outputs of that block will be checked at compile

38 time to match the connections made to the block. -->

39 <vl:CONNECTION to="start" from="digital_input_1"/>

40 <!-- Input and output connections to blocks are partially ambigious.

41 However for a Connection to work, one and only one of "to" or

42 "from" attributes must be an input/output of the part. -->

43 <vl:CONNECTION to="reset" from="reset_blink"/>

44 <vl:CONNECTION to="time" from="time"/>

45 </vl:REFERENCE>

46 <vl:OUTPUT name="digital_output_1" datatype="boolean">

47 <!-- It is good practice to define outputs at the bottom of a document -->

48 <vl:CONNECTION to="digital_output_1"

49 from="timer_instance_1|count_expired"/>

50 <!-- Any un-attached outputs to a block are optimized out, e.g.

51 elapsed_time. All inputs are required -->

52 </vl:OUTPUT>

53 </vl:BLOCK>

As noted, the above file contained a reference to another part called timer defined
in timer.vs in the same directory. Any references must take place on a relative
path to that file, and that reference must contain the same number of inputs
specified by the target file inside the file referencing that part. The number
of outputs need not match, but any outputs specified in the file referencing
that part must also match what is available from the target file or an exception
will be thrown. All other unused outputs will be disregarded. The following
file displays the target file, complete with the relevant inputs and outputs as
specified/required by the previous file.

Listing 2: Example Referenced Block

VisLang Final Report Page 7 of 71

../example/timer.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="timer">

3 <!-- The BLOCK element denotes a subsystem of parts -->

4 <!-- All "parts" added by the user can use Inputs and/or

5 Outputs for utilization elsewhere in project. The

6 reference will search the path for that file -->

7 <!-- All Inputs do not have to be used and will be optimized out -->

8 <vl:INPUT name="start" datatype="boolean"/>

9 <vl:INPUT name="reset" datatype="boolean"/>

10 <vl:INPUT name="time" datatype="single"/>

11 <!-- Constants can be defined as a seperate block as well -->

12 <vl:CONSTANT name="zero_constant" datatype="single" value="0.000"/>

13 <!-- The DT block puts out the difference in time between

14 successive passes of program. In a Soft RTOS, this

15 would be a variable number. In a Hard RTOS, this

16 would be a constant number. Here, we are saying the

17 module will run around 10Hz, or 100ms (0.1 s).

18 The DT module needs an initializer to guess the value

19 on the first pass, but will be updated every pass afterwards -->

20 <vl:DT name="time_since_last_pass" ic="0.100"/>

21 <vl:NOT name="count_not_expired">

22 <vl:CONNECTION to="input" from="count_expired_lp"/>

23 </vl:NOT>

24 <vl:AND name="start_enb">

25 <vl:CONNECTION to="input1" from="start"/>

26 <vl:CONNECTION to="input2" from="count_not_expired"/>

27 </vl:AND>

28 <vl:IF name="increment_value" datatype="single">

29 <!-- Control flow IF switch: If Control is true, execute

30 True assignment, else execute False assignment -->

31 <vl:CONNECTION to="control" from="start_enb"/>

32 <vl:CONNECTION to="true" from="time_since_last_pass"/>

33 <vl:CONNECTION to="false" from="zero_constant"/>

34 </vl:IF>

35 <vl:SUM name="summer" datatype="single">

36 <!-- The summer will add all the inputs together. If you want

37 add a negative number, use the NEG part to negate the

38 signal before connecting to this part. -->

39 <!-- Additionally, the PROD part exists for taking the PI

40 product of a set of inputs, and the INV command for taking

41 the recipicral of a number (divide by zero runtime error

42 is partially mitgated, but unexpected operation may occur) -->

43 <vl:CONNECTION to="input1" from="increment_value"/>

44 <vl:CONNECTION to="input2" from="elapsed_time_lp"/>

45 </vl:SUM>

46 <vl:IF name="reset_switch" datatype="single">

47 <vl:CONNECTION to="control" from="reset"/>

48 <vl:CONNECTION to="true" from="zero_constant"/>

49 <vl:CONNECTION to="false" from="summer"/>

50 </vl:IF>

51 <vl:COMPARE name="is_count_expired" datatype="single" operation=">=">

52 <vl:CONNECTION to="lhs" from="elapsed_time"/>

53 <vl:CONNECTION to="rhs" from="time"/>

54 </vl:COMPARE>

VisLang Final Report Page 8 of 71

55 <vl:MEM name="elapsed_time_lp" datatype="single" ic="0.000" >

56 <vl:CONNECTION to="current" from="elapsed_time"/>

57 </vl:MEM>

58 <vl:MEM name="count_expired_lp" datatype="boolean" ic="false">

59 <vl:CONNECTION to="current" from="count_expired"/>

60 </vl:MEM>

61 <!-- All Outputs need to have a connection in the part,

62 at least to a constant -->

63 <vl:OUTPUT name="count_expired" datatype="boolean">

64 <!-- Outputs of a subsystem need to have a connection specified -->

65 <vl:CONNECTION to="count_expired" from="is_count_expired"/>

66 </vl:OUTPUT>

67 <vl:OUTPUT name="elapsed_time" datatype="single">

68 <vl:CONNECTION to="elapsed_time" from="reset_switch"/>

69 </vl:OUTPUT>

70 </vl:BLOCK>

VisLang Final Report Page 9 of 71

3 Language Reference Manual

3.1 Lexical Convention

VisLang uses standard XML syntax for its file specification. Several built-in el-
ements, called Parts, are defined that make up the core of the language. The
elements have a list of required attributes that must be defined using the correct
type that attribute expects. Parts can be grouped into containers called Blocks
using the BLOCK element, and that Block can be referenced internally or exter-
nally (using the REFERENCE element). All Parts have a name attribute that
must be unique in the local scope of the block it is defined in and can be used as a
named reference using CONNECTION elements to specify connections between
different parts and blocks. Each project file must contain one, and only one, top
level BLOCK element, but a block element can contain any number or level of
additional block elements or built-in parts.

3.1.1 XML Elements and Attributes

Users of VisLang should be comfortable with how XML syntax works, but the
following is a quick overview of how VisLang uses standard XML. XML elements
are defined using the start tag ” < ” and end tag ” > ”. The element identifier
immediately follows the beginning ”<” character of a tag and is a valid Name
matching any alphanumeric characters and the underscore character, completing
at the next character of whitespace. XML elements can also contain attributes
inside the tag after the tag identifier with white space following the identifer
and seperating each additional attribute. The attributes are assigned a value us-
ing the syntax attribute = ”value”, where value can be anything representable
without breaking the current line. The white space between each attribute as-
signment can include linebreaks, however that practice should be discouraged
unless necessary to produce an easy to read document. Finally, XML elements
need a way to describe when they are finished being defined, also known as
”closing”.
An element can be closed immediately using the ”/” character before the end
of the element tag (e.g. ” < element/ > ”) or with an additional tag with the
”/” character following the ” < ” of that ”closing tag” (e.g. ” < element ><
/element > ”). All elements need to be closed in order to be considered well-
formed and not raise an error. The second way of defining the closing tag means
that the element can also contain inner elements. VisLang Block elements can
contain any elements inside it including Parts and other Blocks. However, ba-
sic Parts cannot contain other Parts inside them, only ignored XML elements.
All Parts and Blocks must contain their corresponding CONNECTION elements
inside them if they are to be connected. Additionally, the CONNECTION el-
ement must be the first contained elements in a BLOCK definition (excluding
comments).

VisLang Final Report Page 10 of 71

3.1.2 Accepted Elements and Attributes

An XML namespace vl: was created such that only elements within the names-
pace are scanned. VisLang only accepts elements in the namespace and attributes
inside those elemenbts to be used for compiling purposes, so by design all other
elements and attributes not matching this set will be ignored. This decision
allows developers to define programs that utilize VisLang as a base language.

3.1.3 Accepted Types

Attributes in vislang can only contain values matching the primative types ac-
cepted by the language. The scanning stage of the compiler will ignore any
attributes whose values don’t comply with this rule. This means that additional
attributes to an accepted element can be defined, but VisLang will raise an error
at in a later stage if a required attribute is missing. The list of accepted types
for attribute values are as follows:

Table 2: Accepted Attributes

Type Example Regexp

name ”block name” [A-Za-z][A-Za-z0-9]*

ref ”./path/to/file.vl”
(”./” | ”../”+ | ”/”)
([A-Za-z0-9- .]* ”/”)* name ”.vl”

to, from ”|block|block|etc” (”|” name)+

ic, value -0x32Ab7f

true, false
[+-]? ([0-9]+ ”.” [0-9]* | ”.” [0-9]+)
[+-]? [0-9]+
[+-]? 0 [xX] [A-Fa-f0-9]+
[+-]? 0 [oO] [0-7]+
[+-]? 0 [bB] [0-1]+

datatype uint32

boolean
single
double
[u]?int(8|16|32)

operation ”==”
” > ”, ” < ”, ”! = ”
” == ”, ” >= ”, ” <= ”

Note: value, ic accepts binary, hexidecimal, octal, and decimal coded signed and
unsigned integers.

3.1.4 Comments

Although the usage scenario for VisLang is for developers to use the language
specification as a baseline for further customizations, the VisLang compiler will

VisLang Final Report Page 11 of 71

accept XML-style comments. XML style comments start with the tag ”<!−−”,
and end with the tag ”−− >”. The scanner stage of the compiler will ignore
any character between the opening and closing part of a comment. Comments
are not nested by design in XML, and the VisLang compiler also does not accept
nested comments. The W3C specification for XML states that comments also
should never contain the ”−−” string, or contain three dashes before the closing
tag (e.g. ”−−− >”), so it is suggested to follow that practice even though the
VisLang compiler will accept any character between the comment start and end
tags.
Additionally, the XML specification describes several special tags for the Prolog,
Document Type Definitions, and CDATA. VisLang will accept and ignore these
elements through the same mechanism as the comments. Therefore, any XML
element starting with ”<?” or ”<![” and ending with ”? >” and ”] >” respectively
will have all of it’s contents ignored. Please follow the W3C XML specification
for the full list of characters that should be avoided for this situation.

3.2 Built-In Parts

As discussed previously, VisLang has built-in Parts that are natively understood
by the compiler. These parts have specific attributes and special properties that
for using them, including a list of inputs that must be used.
Below is the list of standard elements supported by the language, and their
required attributes:

Table 3: Accepted Elements

element input(s) output(s) attributes

BLOCK as defined as defined name
REFERENCE as defined (external) as defined (external) name, ref

CONNECTION none none to, from
INPUT none provides ’name’ name, datatype

OUTPUT provides ’name’ none name, datatype

CONSTANT none provides ’name’
name, datatype
value

MEM current ’name’
name, datatype
ic

DT none ’name’ name
NOT input ’name’ name

AND
input#
Note: # > 1

’name’ name

OR
input#
Note: # > 1

’name’ name

VisLang Final Report Page 12 of 71

NOR
input#
Note: # > 1

’name’ name

NAND
input#
Note: # > 1

’name’ name

XOR
input#
Note: # > 1

’name’ name

IF control, true, false ’name’ name, datatype

COMPARE lhs, rhs ’name’
name, datatype
operation

SUM
input#
Note: # > 1

’name’ name, datatype

PROD
input#
Note: # > 1

’name’ name, datatype

GAIN input ’name’
name, datatype
value

INV input ’name’ name, datatype

3.3 Using Built-In Parts

3.3.1 Basic Language Elements

BLOCK: As noted prior, a BLOCK element is a container for other Blocks
and/or Parts. The BLOCK element only has a single attribute ”name”
which is the identifier for that part. All of the valid elements contained
within the BLOCK element is considered inside that block, therefore any
connections made within that block between parts/blocks can reference
any of the elements inside the block as connection points. A block does
not need to have Inputs and Outputs defined. However, any Inputs or
Outputs found directly inside that BLOCK element will be considered an
input or output of that named element for use by other blocks above the
named block, or inside other files through the REFERENCE element.

REFERENCE: The REFERENCE element is similar to the BLOCK ele-
ment, however it has an additional attribute called ”ref” that is a reference
to a block contained within another file. The block referred to by REF-
ERENCE is then used as if it were contained within the local program in
the same way as the BLOCK element would. The REFERENCE element
will need connections to any inputs that the referenced block had, again
similar to as if that block were contained inside the local program.

CONNECTION: The CONNECTION element is special in that it does
not by itself perform a function. The ”to” and ”from” attributes of this
element refer to a connection between the output of one block or part and
the input of another. CONNECTION elements must be contained inside

VisLang Final Report Page 13 of 71

a block or part, and the ”to” attribute must reference that block or part’s
inputs. The ”from” attribute can reference the output of any block or part
within the same level of the block that the ”to” attribute refers to.

INPUT: The INPUT element is used as the input to a block element. It
has a ”name” attribute, which is an identifier that can be used in any
connection at the current block level. The INPUT element does not have
a connection inside it as it is considered a terminal for the block it is
defined in. The ”datatype” attribute refers to Datatype of that identifier.
Datatype can either be a basic datatype (e.g. boolean, uint32, single, etc.)
or it can be a reference to a structure type. Any connections made to the
input must match its datatype to successfully compile.

CONSTANT: The CONSTANT element is also similar to the INPUT ele-
ment except that it does not get used as an input to it’s containing block.
Instead, the CONSTANT element has a ”value” attribute, which is a literal
matching the type of the the element’s ”type” attribute. If the literal value
does not match the definition of the above scanner regular expression for
that type, an error will be thrown at compile time.

OUTPUT: The OUTPUT element is very similar to the INPUT element,
the two differences are that it is considered a named output of the block it
is contained in and that it requires a connection to be made inside it to a
block. All of the rules relating to the attributes of INPUT block apply here
as well. The ”datatype” attribute of the OUTPUT element is where the
compiler first begins it’s type checking, so as it traces the connections made
from the OUTPUT element all the way back to some INPUT element(s),
the corresponding types must match between any intermediary Parts or
Block Outputs.

3.3.2 Atomic Parts

Note: All Atomic Parts have a ”name” attribute to use as an identifier for making
connections to other parts. Unless otherwise specified, the default name for input
to a signal input Part is ”input” and the default name for an output is ”output”.
All Parts are single output.

MEM: The memory block creates a unit-delayed signal that can be reused
inside the current Block, usually to solve an algebraic loop concerning the
connection of a block. The output value of this block will be the same
value of the connection into the block, but only from the previous pass of
the generated code. The ”ic” attribute describes the value that the MEM
element uses for the output on the very first pass of the generated code.
The ”datatype” attribute is required so that the element knows what the
datatype is for it’s input and output.

VisLang Final Report Page 14 of 71

DT: The DT element only provides a signal output called ”dt” which can
be referenced and used as the delta time between passes of the generated
code. This value will always be dynamically updated every pass to reflect
the change in time natively. The DT Parts’ output is a single precision
floating point value.

NOT: The NOT Part provides the logical not of the input as it’s output.
It does not have any special attributes. The input and output type must
be ”boolean”.

AND: The AND Part provides the logical and of two or more inputs as it’s
output. The AND Part is defined recursively in that it identifies each input
and applies the same operation recursively on each input found. There must
be two or more inputs for this operation to work however, or a compilation
error will be given. The input and output type must be ”boolean”.

OR: The OR Part is defined the same as the AND Part, with the exception
that the operation is the logical or of two or more inputs. The input and
output type must be ”boolean”.

NOR: The NOR Part is defined the same as the AND Part, with the
exception that the operation is the logical nor (not any) of two or more
inputs. The input and output type must be ”boolean”.

NAND: The NAND Part is defined the same as the AND Part, with the
exception that the operation is the logical nand (not all) of two or more
inputs. The input and output type must be ”boolean”.

XOR: The OR Part is defined the same as the AND Part, with the excep-
tion that the operation is the logical xor (only one or the other) of two or
more inputs. The recursive nauture of this definition means that the XOR
gate with 3 or more inputs will set it’s output true if an odd number of
inputs are true. The input and output type must be ”boolean”.

IF: The IF Part has three defined inputs and performs a conditional op-
eration to switch passing through to the output between two inputs. The
”control” input must be a boolean type and is used to control the condi-
tional operation. The ”true” input is passed through to the output if the
”control” input is set true, otherwise the ”false” input is passed through.
The ”datatype” attribute is required so that the element knows what the
datatype is for it’s input and output.

COMPARE: The COMPARE Part has two inputs ”rhs” and ”lhs” and
an ”operation” attribute that evaulates the conditional statement ”lhs op-
eration rhs” and passes the result to the output. ”lhs” and ”rhs” must
match datatype and cannot be the boolean datatype, and the operation

VisLang Final Report Page 15 of 71

applied has the mathematical result expected. The ”datatype” attribute is
required so that the COMPARE element knows what the datatype is for
it’s inputs. It’s output is type boolean.

SUM: The SUM Part is similar to the Gate Parts in that there are 2 or
more inputs allowed and the function is defined recursively. However, the
datatype allowed is either integer or floating point (all inputs must match
type). The sum operation is defined as addition between the two or more
inputs. Subtraction must take place using the GAIN Part (essentially unary
negation) prior to the SUM Part, so that the recursive definition of this
function can be used. If the result of the operation would have calculation
returned an undefined result (e.g. outside of the bounds provided by the
datatype), the result will be unhandled meaning care should be taken to
ensure the result can never exceed those bounds.

PROD: The PROD Part is similar to the SUM part, with the only difference
being it applies the multiplcation function recursively instead of addition.
The same rules apply to the PROD Part as the SUM part otherwise. If
division is required, the INV Part should be used prior to the PROD Part
in order to invert the input for division.

GAIN: The GAIN Part is a unary operation that multiples the input by
literal attribute ”value” and returns it as the output of the Part. The input
and output will match datatype, and the literal expression for ”value” needs
to match the datatype of the input in order not to raise an error while
compiling.

INV: The INV Part is similar to the GAIN Part, except that the unary
operation is inversion of the input’s value e.g. division of 1 by that value.
Division by zero is handled by outputing the maximum possible floating
point value, so care must be taken to ensure the input value is never zero
to avoid this behavior.

VisLang Final Report Page 16 of 71

4 Project Plan

Since I was working on this project alone, there was more autonomy in creating
the language. This actually led to be a bit of a problem as my initial ideas for
what I wanted to accomplish were unrealistic and I was more willing to slide
on the schedule I set for myself since there were no other group members to
act in the project manager role to keep things on schedule, nor were any group
members available to ensure that project goals were reasonable. Regardless,
after an initial development period of over a month a working front end was
developed leveraging the XML specification available online with the planned
tags and attributes I had at the time. It was eventually decided that adding
my own namespace for XML tags would be necessary to reduce the processing
load in the scanner and parser section to work with other elements. This is right
around the time the XML Abstract Syntax Tree was fully developed and work
started on the backend of the compiler.
At this point, there was little testing in existance since I was just attempting to
parse the example program, so testing had to be approached. It was decided I
was going to leverage to bash testing script from the MicroC example language
provided in class, and have additional python scripts be created leveraging the
Ctypes module to test the functionality of each test case. Once this was decided,
the first MWE test case was developed (the buffer test case) and more work
was done to get that to pass. More complicated test cases led to a decision
to add a complete block parsing algorithm in order to be able to produce a
correctly formatted program for code generation. After some development, this
algorithm allowed more test cases to pass and work to continue on integrating
block group and referencing functionality. Once this was completed, the initial
draft of VisLang was considered feature complete, and several other planned
features were descoped due to time constraints on the project.

4.1 Software Development Environment

Development for the project took place entirely on an Asus Chromebook C720
using crouton to enable a full linux environment. The tools used for this project
are listed below:

• ubuntu 14.04.2 LTS (Operating system environment)

• git 1.9.1 (source code, test, and documentation configuration management)

• vim 7.4.52 (general purpose text editor)

• ocaml 4.01.0 (including ocamlyacc and ocamllex)

• gcc 4.8.2 (compiling generated code)

• python 2.7.6 (scripting language for testing compiled C objects)

VisLang Final Report Page 17 of 71

4.2 Project Timeline

• 2015-05-27 Decided on Simulink-like block language, using XML syntax

• 2015-05-31 Created example program

• 2015-06-12 Proposal Submitted

• 2015-06-21 First draft of scanner

• 2015-06-26 First draft of parser

• 2015-06-30 Scanner working for all attributes and tags

• 2015-07-04 LRM Submitted

• 2015-07-08 Parser working for new ast

• 2015-07-09 Added top level

• 2015-07-10 Moved errors to their own module

• 2015-07-14 XML ast working

• 2015-07-17 Integrated blockification function

• 2015-07-24 Removed interpreter

• 2015-07-27 Simplified blockification process

• 2015-07-28 Moved trace algorithm from blockify to it’s own module

• 2015-08-05 Working Code Generation for all atomic parts

• 2015-08-12 Got blocks completely working end-to-end

• 2015-08-12 Updated blockification for Reference part

• 2015-08-13 Began working on paper

• 2015-08-14 Submitted paper

• 2015-08-15 Celebrated from Canada

VisLang Final Report Page 18 of 71

4.3 Project Log

2015 -08 -14 Updated some of the old descriptions for things
2015 -08 -14 Cleaned up old comments in these files
2015 -08 -14 Managed to get code listings to appear the way required. Bonus:

fixed bug with underscore display
2015 -08 -14 Shorted test case name so it fit in the table
2015 -08 -14 Redid sections for this part
2015 -08 -14 Updated tutorial file
2015 -08 -14 Cleaned up LRM. Made some minor modifications to other parts
2015 -08 -14 Updated test plan with table any other discussion
2015 -08 -14 Calling top makefile ’s clean rule to clean up after testing
2015 -08 -14 Removed generated C files for example from tracking. Added option

to ignore tests with i-* prefix.
2015 -08 -14 More verbage
2015 -08 -14 Forgot to update this generated file too
2015 -08 -14 Massaged white space in generated code to pretty print for

documentation
2015 -08 -14 Typo in label name
2015 -08 -14 Removed boxes around code listings. Added more TODO ’s
2015 -08 -14 Added C generated files for example into repo for documentation

purposes. Removed C files from gitignore.
2015 -08 -14 Updated project plan and got pretty log working
2015 -08 -14 Updated so all filenames get read
2015 -08 -13 Added gibberish case to list of cases
2015 -08 -13 Added gibberish test case to show that VisLang is tolerant of

random crap
2015 -08 -13 Added a rule to fix bug with no reduction possible if there is junk

inside a tag without any other vl elements inside it
2015 -08 -13 Moved example files up a level now that simavr is gone
2015 -08 -13 Removed simavr submodule
2015 -08 -13 Removed simavr submodule
2015 -08 -13 Removed simavr submodule
2015 -08 -13 Added todo note
2015 -08 -13 Added some stuff to talk about , TODO tag
2015 -08 -13 Added test case listings. Rearranged appendix sections.
2015 -08 -13 Removed unnecessary code
2015 -08 -13 Modified timer test case to be a symbolic link to the example file

instead of a separately maintained file
2015 -08 -13 Removed creating link to pyg file as it was causing more trouble

that it’s worth
2015 -08 -13 Finished with conclusion
2015 -08 -13 Updated git log print out so that it pretty prints only date and

message , and limits output to 80 chars
2015 -08 -13 Removed unused attributes
2015 -08 -13 Added wrapfig package
2015 -08 -13 Completed architecture page
2015 -08 -13 Ignore generated C files in example
2015 -08 -13 No longer automatically re-creating pygment link. Seemed to stop

allowing it to code
2015 -08 -13 Made some more updates. Added architecture figure
2015 -08 -13 completed intro
2015 -08 -13 Added statusing to all files for quick review. Added some stuff to

project plan and conslusion
2015 -08 -13 Added date/time stamp to test log
2015 -08 -13 Added date and time stamp to log file
2015 -08 -13 Abandoned find/replace attempt as luacode wasn ’t working. Also gave

subtitle to paper
2015 -08 -13 Now utilizing macro for appearance. Added makefile and test script ,

which isn ’t working
2015 -08 -13 Removed additional excess rules and non functional characters
2015 -08 -13 Removed unnecessary lines
2015 -08 -13 Added line to clean intermediates created from compiling final

report
2015 -08 -13 Working on paper , added some macro and code listings

VisLang Final Report Page 19 of 71

2015 -08 -13 Cleaned up line endings so they are 81 chars or less for pretty
printing

2015 -08 -13 Added default rule
2015 -08 -12 Trying to get it to compile
2015 -08 -12 Initial version document
2015 -08 -12 Architecture belongs in report
2015 -08 -12 Turned proposal into introduction
2015 -08 -12 Updated for cleaning compiler directory too , and running make

correctly in src folder
2015 -08 -12 Added rule to clean up pyg files from minted
2015 -08 -12 Updated dependancy file now that we ’re parsing files in blockify
2015 -08 -12 Updated autotest script because it was not accurately reporting

errors when failure test cases passed compilation
2015 -08 -12 Added test to check that if a different type of attribute is in a

connection , it will fail
2015 -08 -12 Added test case to show ’name ’ missing will fail parsing
2015 -08 -12 Updated test case to capture all of the operations allowed
2015 -08 -12 Reorganized a bit. Cleaned up comments and code. Added divide by

zero protection for inverse operator
2015 -08 -12 Cleaned up comments and removed commented out dead code ’dead code ’
2015 -08 -12 Updated so that vlcc will smartly write out code to file in only

certain situations
2015 -08 -12 Removed unsupported tags and bitwise operator functionality
2015 -08 -12 Removed bitwise operator functionality
2015 -08 -12 Removed bitwise operator functionality
2015 -08 -12 Modified gates test case to show that 3 inputs can be handled
2015 -08 -12 Added xml header to all test files
2015 -08 -12 Added test case to test algebraic loop detection
2015 -08 -12 Added testing support for referenced files
2015 -08 -12 Added include file for reference blocks
2015 -08 -12 Incorrectly had hi instead of lo for case when input = 10
2015 -08 -12 Updated blockification such that reference models work okay
2015 -08 -12 Needed double backslash to avoid warning
2015 -08 -12 General cleanup. Fixed reference class. Added some additional

information to errors
2015 -08 -12 Reworked test script to use vlcc with direct file I/O
2015 -08 -12 Added ability to call vlcc with or without direct file I/O
2015 -08 -12 Forgot that comparision objects require datatype
2015 -08 -12 Removed optimization module (that was doing nothing). Reorganized

block object in prep for reference obj
2015 -08 -12 Removed all references to scope and size attributes. They will not

be a part of the compiler from now on.
2015 -08 -12 Added new test case testing the reference block
2015 -08 -12 Moved existing check if pass only test cases to have prefix. Added

testing for pass -only files
2015 -08 -12 Old files didn ’t have vl: namespace
2015 -08 -12 Added more conditional code generation for inputs , outputs , inner

blocks of block
2015 -08 -12 Added extra space to code -gen trailer
2015 -08 -12 Needed to have GCC create ’Position -independant code suitable for a

shared library ’ before compiling object file to a shared
library

2015 -08 -12 Reworked so that operation was applied recursively. Ended up
solving the problem with the disapearing inputs in the
top block

2015 -08 -11 Made mistake specifying outputs. Added extra code to make generated
code disappear for blocks with no outputs/inputs

2015 -08 -10 Attempt to integrate blocks -in-blocks
2015 -08 -10 Removed body printing for block objects because we don ’t want to

print the body in the function definition , only in
places it’s used

2015 -08 -10 Removed print statement that was messsing things up
2015 -08 -10 Got it using compare function that was still there!
2015 -08 -10 bumbling with print statements
2015 -08 -10 removed commeneted out code

VisLang Final Report Page 20 of 71

2015 -08 -10 got it to parse with the tuple list
2015 -08 -10 Working on block update
2015 -08 -09 Filtering out connection objects from blockification for inner

blocks
2015 -08 -08 Removed checking for combo blockref/input because we are searching

for blocks , not inputs
2015 -08 -08 Added simple block in block test program
2015 -08 -07 Added test case for timer
2015 -08 -07 Also need to exclude terminating blocks if they were in the current

trace list as that is okay. Discovered by having a
constant that was used in two places on the same path ,
which is only fine because it’s a terminator and not
used to calculate anything

2015 -08 -07 Added IF and DT parts
2015 -08 -07 Updated dt block to 100ms
2015 -08 -06 Added timer complicated test case from example file , also updated

that example file
2015 -08 -06 Bad test result for inv of case 1: 1 not 0.2 is 1/1. Also ,

apparently -1*0 = -0 for ctypes , so added minus sign
2015 -08 -06 Bug in program such: used two instead of 4, thereby printing

infinite for the divide by zero
2015 -08 -06 Commented out dead code parsing because it was printing to

generated code
2015 -08 -06 Added gain and inverse blocks
2015 -08 -06 Added INV and GAIN parts to test case. Note: outputs are in

reverse , and we avoid -4 to prevent div/0 fault
2015 -08 -06 Modified to have both addition and multiplication parts
2015 -08 -06 Reanmed addition module to also check out other math -y operations
2015 -08 -06 test case and results were in opposite order
2015 -08 -06 Corrected bug where blocks that terminate would be added to the

list of objects multiple times if they were split off
from each other because there was no check if they were
in the priors list

2015 -08 -06 test case revealed not all gate parts were implemented
2015 -08 -06 Added gate logic test case
2015 -08 -06 Added failure test case utilities
2015 -08 -06 added vl: to the beginning of block
2015 -08 -06 made file ignore errors when removing intermediates
2015 -08 -06 Needed to modify python script a bit to proper parse through output

structure and pretty -print any type properly
2015 -08 -05 ’const ’ was a reserved keyword for C
2015 -08 -05 constant class print name was ’constant ’ not ’const ’
2015 -08 -05 Added compare class. Enabled constant class to print itself as

static in header
2015 -08 -05 Modified blockification for explicitly setting datatypes for parts

that require it
2015 -08 -05 Modified test cases due to bugs
2015 -08 -05 Made booleans integer type for now
2015 -08 -05 Added datatype when necessary to disambiguiate for compiler
2015 -08 -05 Added datatype printout to io_part
2015 -08 -05 Removed datatype stub that was pointless
2015 -08 -05 Updated file such that error is raised when datatype is unset at

compilation time.
2015 -08 -05 Applied reorganization such that atomic parts are referenced by

name and not by reference to their outputs
2015 -08 -05 Incorrectly stated buffer instead of block name
2015 -08 -05 Had to reorganize such that you do not mention atomic parts by

reference , only by name
2015 -08 -05 Got it working such that atomic parts print correct code almost
2015 -08 -05 Got the correct input names to appear
2015 -08 -05 Took care of little printing bug due to printing the body of input

objects
2015 -08 -05 Switched order of dead code print for top because we already set

the objects to match the pruned inner objects
2015 -08 -05 Solved bug with memory appearing twice. Terminate from trace when

VisLang Final Report Page 21 of 71

memory occurs only after verifying memory is an input to
the trace. Additionally , when returning the trace list
due to the part already occuring on the list , do not
include that part in the trace list.

2015 -08 -05 Added printing in header for memory blocks
2015 -08 -05 Added dead code print
2015 -08 -05 Found bug where trace list was being built up in trace_split

instead of trace function
2015 -08 -05 Some reorginzation , added comments , fixed bug with initializing

trace_start for top
2015 -08 -05 Moved OR gate from before AND gate to after to visualize the

algorithm correctly moving the OR gate where it needs to
go in the list

2015 -08 -05 Moved get connection from external function to internal method of
base class

2015 -08 -04 Made block inner objects work in the right order
2015 -08 -04 Removed scoping attribute
2015 -08 -04 Newline to trailer
2015 -08 -04 Restructuring of program flow for list of blocks
2015 -08 -04 Attempt to re-engineer blockification such that more fine grained

control of blocks are found
2015 -08 -04 Turns out I didn ’t want to seperate these
2015 -08 -04 Setting inner objects before appending to list
2015 -08 -04 Redid function such that a list of blocks is returned instead
2015 -08 -04 working here ...
2015 -08 -04 Modified memory class , added gates and other parts
2015 -08 -04 Slight reorganization
2015 -08 -04 Forgot scope in input
2015 -08 -03 Some errors with tests
2015 -08 -02 Updated regexps for all tags and attributes
2015 -08 -02 Added data sets for test cases
2015 -08 -02 Added some more tests
2015 -08 -01 Got testing to work
2015 -08 -01 Got helper code generation working
2015 -08 -01 Working on getting it to create test code
2015 -08 -01 No more interpreter
2015 -08 -01 Ignore generated C files
2015 -08 -01 Gave explicit datatype to top level ports
2015 -07 -30 Renamed bytecode module to blockparse
2015 -07 -30 Renamed bytecode module as it doesn ’t produce bytecode
2015 -07 -30 Reorganized code such that block tree gets produced by bytecode ,

and compile prints objects. Also added optimization
layer.

2015 -07 -29 Managed to get algorithm working. Currently is not outputting
inputs though

2015 -07 -29 Used wrong error function
2015 -07 -28 Added errors for using methods that trace algorithm should not try

and do
2015 -07 -28 Added memory class
2015 -07 -28 Bytecode print function needed to correctly print class
2015 -07 -28 Moved trace algorithm from blockify
2015 -07 -28 Renamed bytecode methods
2015 -07 -28 Added missing virtual methods
2015 -07 -27 Simplified blockification process. Moving the trace function to

bytecode production
2015 -07 -26 Updated dependancy file
2015 -07 -26 a little more reconfiguration. need to implement bytecode
2015 -07 -25 Updated such that block instantiation calls new block trace

function
2015 -07 -25 Added input to block instantiation for blockify function to removed

cyclic dependancy on that function to use it inside the
block function for creating it’s inner objects

2015 -07 -25 Updated dependancies for top level
2015 -07 -25 added dummy code for printing object for bytecode
2015 -07 -25 Modified top level for current structure of compiler

VisLang Final Report Page 22 of 71

2015 -07 -25 dummy code for now
2015 -07 -25 Forced coercion of return type for blockify function to base class
2015 -07 -25 Needed to modify order of objects for compiling
2015 -07 -25 Added note to remind that there is some extra actions needed for

blockifying a block
2015 -07 -25 Removed bot.ml
2015 -07 -25 Merged bot back into blockify. Decided to make block inner objects

mutable and try it that way
2015 -07 -25 Modified clean rule to clean mli intermediates
2015 -07 -25 Still working on this one. does notgenerate mli file or compile
2015 -07 -25 Added input and output listing
2015 -07 -25 Forgot to rename parser include in scanner
2015 -07 -25 Added ability to generate interface files
2015 -07 -25 Added mli files to ignore list because I have no formal interfaces
2015 -07 -25 Deleting intermediate that was committed by mistake
2015 -07 -25 updated objectification functionality for new structure
2015 -07 -25 Updated dependancy file for new structure
2015 -07 -25 Updated parser for new approach
2015 -07 -25 Simplified method of doing scanner
2015 -07 -25 Renamed front end files to have prefix x, update intermediates
2015 -07 -25 Made type attribute into datatype
2015 -07 -25 Added xml namespaces for conflict management
2015 -07 -25 Renamed pre -parsing step to denote xml
2015 -07 -25 Reorg of files
2015 -07 -25 Continued attempt at making a working blockification method
2015 -07 -24 Updated dependancy file
2015 -07 -24 Removed interpreter
2015 -07 -24 added ’auto ’ to datatype
2015 -07 -24 Committed current updates. not building
2015 -07 -24 added the simplest possible test case
2015 -07 -17 Added semantic checking syntax tree
2015 -07 -17 Integrated blockify
2015 -07 -17 Added Block Parsing error fo blockify
2015 -07 -15 Typo
2015 -07 -14 Added option to run ’pass -*’ tests to show that compilation simply

worked
2015 -07 -14 Added option to clean up test intermediates
2015 -07 -14 Added test case to show unended blocks are caught
2015 -07 -14 Added test case to check that cascaded empty blocks work okay
2015 -07 -14 Added empty block for testing ast
2015 -07 -14 Finally got ast working by adding name attribute to the list of

allowed values , which I forgot before
2015 -07 -14 Added check in parser to ensure tokens for open and close tag match

when reduced using parser.
2015 -07 -13 Added test intermediates to ignore file
2015 -07 -13 Made master make file
2015 -07 -13 Made bash script executable
2015 -07 -13 Added first test and script copied from mc
2015 -07 -12 swapped incorrect tags for datatype and scope
2015 -07 -11 Reformatted how errors are processed for Parsing error to be

correct
2015 -07 -11 redid dependency file for make
2015 -07 -11 didn ’t want to show anything after main compilation rule
2015 -07 -10 Made some of the make rules quiet
2015 -07 -10 Played with error messages a bit. Added ignore to remove compiler

warning on returned type
2015 -07 -10 Moved errors to their own module
2015 -07 -09 Added vislang ’s top level
2015 -07 -09 Main compilation rule was only using first target , not all targets
2015 -07 -09 Added helper functions for debugging ast
2015 -07 -09 Made a typo on the source for the top level
2015 -07 -08 Removed test binaries
2015 -07 -08 Changed name of ast.mli to ast.ml so it can have code for

reproducing the ast
2015 -07 -08 Decided against having seperate binaries for testing. Making

VisLang Final Report Page 23 of 71

special modes to dumb intermediate results to terminal
in main vislang program.

2015 -07 -08 Updated scanner to work with explicit operator tokens. Updated
parser such that open tag is one token

2015 -07 -08 Reconfigured parser and ast to get it to work!
2015 -07 -07 Created new rules for test builds. Added those builds to ignore

list
2015 -07 -07 Updates for scanner so that it will work with parser. Also added

CDATA style tags as a comment to skip those.
2015 -07 -04 Completed draft of language reference for homework
2015 -07 -04 Added nice to have section
2015 -07 -04 Added to do list
2015 -07 -04 changed reference attribute to ref to be shorter
2015 -07 -04 Redid connections to be inside parts and blocks
2015 -07 -03 Renamed block with reference attribute into it’s own block
2015 -07 -03 Renamed IC attribute to a shorter name
2015 -07 -02 So close!
2015 -07 -02 Added secondary rule so that they don ’t get deleted
2015 -07 -02 Some silliness with pretty printing
2015 -07 -02 Valid dependency file NOT generated by ocamldep
2015 -07 -02 Updated makefile from template. Added dependency file , which sucks
2015 -07 -02 Merge branch ’xml ’
2015 -07 -02 Saving draft for idea switch
2015 -07 -02 Added intermediate of parser output to ignore
2015 -07 -02 Added some extra notes
2015 -07 -02 Attempt at parsing more generically
2015 -07 -02 Modifcations made to scanner after discovering built -in int2str

conversion functions work with the relevant prefixes
2015 -07 -01 Merged gitignore file and scanner from parser branch. Going to

create a second parser branch
2015 -07 -01 Trying something new , so committing what I have so far
2015 -07 -01 Removed test build of scanner , added parser intermediates
2015 -07 -01 First draft attempt at ast
2015 -06 -30 Added scope and renamed connection to reference
2015 -06 -30 Added missing datatype attribute value
2015 -06 -30 Added a better comment
2015 -06 -30 Modification made for inner attrbiutes. Not perfect
2015 -06 -30 Now explicitly recursing back to top level tokenizing when an

unfinished tag appears
2015 -06 -30 Made really good progress on scanner. Can now parse all tags and

attributes with relevant values.
2015 -06 -29 Removed Program block , redid file extension to .vl from .vs,

removed device level I/O, other syntax errors
2015 -06 -29 Some bugs with regex to do with literals and files , also bug to do

with line counting for error function
2015 -06 -28 You need to explicitly tell Lexer a new line occured
2015 -06 -28 Managed to get error working
2015 -06 -28 Modified doc makefile and added pyg elements to ignore list
2015 -06 -28 Added simavr submodule along with readme for installation purposes
2015 -06 -26 Finally got parser to work for blocks!
2015 -06 -26 Syntax error. Type was not in quotes. Caught by lexxer!
2015 -06 -26 Still drafting. Added TODO with issue
2015 -06 -25 added some style guide info , etc.
2015 -06 -25 Managed to get it working , displays error on line 1
2015 -06 -21 Second attempt at writing fully functioning xml scanner
2015 -06 -21 Restructured makefile a bit
2015 -06 -21 Added ocaml intermmediate files to ignore
2015 -06 -21 First draft of scanner
2015 -06 -19 Added swap files from vim and intermeddiate file for scanner to

ignore file
2015 -06 -19 Renamed extension to .vl from .vs
2015 -06 -17 Setup files for starting lexxer and parser
2015 -06 -12 Copied language reference table from proposal and added simulation

components to it
2015 -06 -12 Final draft of proposal

VisLang Final Report Page 24 of 71

2015 -06 -12 Updated scope and type to be string attributes
2015 -06 -12 Updated signal types to have size , made values into a string
2015 -06 -11 Added syntax chapter
2015 -06 -11 renamed some connections for brevity
2015 -06 -11 Reconfigured example such that connections are external to blocks ,

and now using the | operator to denote a member of a
name

2015 -06 -10 Updated example to have referenced connections instead of explicit
2015 -06 -09 Added Makefile for building documentation
2015 -06 -09 Removed pdf and added to gitignore because we discovered how to

change the output directory
2015 -06 -09 Updated listings to listingsutf8 to print special chars
2015 -06 -09 Updated PDF to try and get source files to work
2015 -06 -09 Updated proposal
2015 -05 -31 Moved example project to it ’s own directory to make room for other

examples
2015 -05 -31 Added example program

VisLang Final Report Page 25 of 71

5 VisLang Compiler Architecture

Source File (XML)

XML Tokens

XML Object Tree

Block Object Tree

Optimized Block Tree

Auto-generated Code

xscanner.mll

xparser.mly

blockify.ml

blockparse.ml

compile.ml

Figure 1: VLCC
Architecture

The architecture of VisLang has two distinct
stages of operation from source file to target file.
The scanning and parsing stages of the front end
essentially implement read the XML elements of
interest and skip through parsing any unrecog-
nized tokens. After a correctly formed XML Ob-
ject Tree has been formed, the next step is to trans-
late that tree of XML Objects (an XML Object has
a tag, a list of attributes and a list of inner objects,
if any) into a block tree where each block can verify
and access the necessary attributes it should have.
Each object can also see the list of connections as-
signed to it when it was parsed, which is important
when verifying the program is well-formed. That
block tree is then taken and re-organized such that
the inner objects of a block are in Static Single As-
signment form, e.g. each block can be computed
using the outputs of previous blocks in the list for
that containing block.
In the process of reorganizing the inner blocks,
the Block Parse algorithm will also perform the
check that the inner blocks align (e.g. they call
blocks that are properly assigned, they match in
datatype, etc.) and that only inner blocks which
are used to compute the output are in the calcu-
lation. Any blocks which do not align will raise an error (datatype mismatch,
incorrectly attributes for that object, etc.), any blocks which reference other
blocks in a circular fashion will raise an error (algebraic loop), and any blocks
that are not necessary to compute an output will be optimized away. The end
result is that the remaining optimized block tree is a suitable candidate to be
directly translated into generated code as that generated code will have the prop-
erty of minimal side-effects: all computations are computed either from inputs
or derived from inputs.

VisLang Final Report Page 26 of 71

6 Test Plan

The generated target code for Listing 1 and Listing 2 from the Tutorial are below:

Listing 3: Generated Code for Top Level

../example/timed-blinking-light.c
1 #include <stdbool.h>

2 #include <stdint.h>

3 #include <float.h>

4 #include <math.h>

5

6 #include "./timer.c"

7

8 /* I/O Structures for block timed_blinking_light */

9 struct timed_blinking_light_in {

10 bool digital_input_1;

11 };

12

13 struct timed_blinking_light_out {

14 bool digital_output_1;

15 };

16

17 /* Initialize static variables */

18 static bool count_expired_lp = false;

19 static float_t time = 2.;

20

21 struct timed_blinking_light_out

22 /* Function def */ timed_blinking_light(struct timed_blinking_light_in inputs)

23 {

24 /* Inputs for block timed_blinking_light */

25 bool digital_input_1 = inputs.digital_input_1;

26

27 /* Body for block timed_blinking_light */

28 bool not_di_1 = !(digital_input_1);

29 bool reset_blink = not_di_1 || count_expired_lp;

30 struct timer_in timer_instance_1_inputs = {

31 .time = time,

32 .reset = reset_blink,

33 .start = digital_input_1

34 };

35 struct timer_out timer_instance_1_outputs =

36 timer(timer_instance_1_inputs);

37 bool digital_output_1 = timer_instance_1_outputs.count_expired;

38 count_expired_lp = timer_instance_1_outputs.count_expired;

39

40 /* Outputs for block timed_blinking_light */

41 struct timed_blinking_light_out outputs;

42 outputs.digital_output_1 = digital_output_1;

43

44 return outputs;

45 }

46

47 /* Generated using VLCC */

VisLang Final Report Page 27 of 71

Listing 4: Generated Code for Referenced Block

../example/timer.c
1 #include <stdbool.h>

2 #include <stdint.h>

3 #include <float.h>

4 #include <math.h>

5

6 /* I/O Structures for block timer */

7 struct timer_in {

8 bool reset;

9 bool start;

10 float_t time;

11 };

12

13 struct timer_out {

14 bool count_expired;

15 float_t elapsed_time;

16 };

17

18 /* Initialize static variables */

19 static bool count_expired_lp = false;

20 static float_t elapsed_time_lp = 0.;

21 static float_t zero_constant = 0.;

22 static float_t time_since_last_pass = 0.1;

23

24 struct timer_out

25 /* Function def */ timer(struct timer_in inputs)

26 {

27 /* Inputs for block timer */

28 bool reset = inputs.reset;

29 bool start = inputs.start;

30 float_t time = inputs.time;

31

32 /* Body for block timer */

33 bool count_not_expired = !(count_expired_lp);

34 bool start_enb = start && count_not_expired;

35 float_t increment_value = (start_enb) ?

36 (time_since_last_pass) :

37 (zero_constant);

38 float_t summer = increment_value + elapsed_time_lp;

39 float_t reset_switch = (reset) ?

40 (zero_constant) :

41 (summer);

42 float_t elapsed_time = reset_switch;

43 bool is_count_expired = (elapsed_time >= time);

44 bool count_expired = is_count_expired;

45 elapsed_time_lp = elapsed_time;

46 count_expired_lp = count_expired;

47

48 /* Outputs for block timer */

49 struct timer_out outputs;

50 outputs.count_expired = count_expired;

VisLang Final Report Page 28 of 71

51 outputs.elapsed_time = elapsed_time;

52

53 return outputs;

54 }

55

56 /* Generated using VLCC */

The output program, when compiled using gcc, will be able to process the inputs
provided by ’connecting’ to that block and update it’s outputs over time for every
iteration of the program in the main loop. For programs without MEM or DT
blocks, the resulting code has the property of being time-invariant, that is no
matter how many times it is called or whatever the duration between calls are, it
will produce the exact same result every time. The MEM element will remember
a value between the last call and the current such that the resulting program loses
that time invariance, but this operation allows the production of functionality
such as states and transfer functions to be modeled using VisLang. The DT
element is used when the amount of time between calls is important, but for a
steady system this should never be an issue as it should stay relatively constant.
This means programs using DT may or may not be almost time invariant, but
that depends on the usage of the block.
To automate testing of VisLang programs, a shell script (Listing 14) was bor-
rowed from the MicroC example language. The shell script looks at all of the
files in a directory and processes them into 1 of 3 testing groups: test, pass, fail.
The pass and fail testing groups simply looks to verify that the source file for
such a test case either pass compilation (pass cases) or fails compilation (fail).
In this way, specific compiler features that have to do with processing the input
file (instead of the code generated) can be checked without further complication.
The ’test’ cases first verify that the source file can generate the target file, but
additionally a functional check is provided through associated *.in and *.out files
that are run against the target file.
The methodology for testing these cases involves additionally compiling the tar-
get files as source files for gcc, and turning the resulting object file into a shared
library that can be interpreted through a testing script. The testing script is
a python script that is generated using the -d option of vlcc which takes the
*.in file and runs a while loop over each line of the file and produces what the
output of the program would be for each timestep. The timestep is purposely
never updated to ensure that a repeatable test environment exists. The output
produced by the test script is then compared against the associated *.out file to
see if any differences exist. If the two files match, then the test is determined to
be passing.

6.1 Test Case List

The following is a list of the test cases used to verify the VisLang compiler
produces correct code:

VisLang Final Report Page 29 of 71

Table 4: Test Case Descriptions

Test Case Description

Algebraic Loop Failure Case
Source Code: Listing 15

Shows that an algebraic loop is caught

Bad Connection Failure Case
Source Code: Listing 16

Shows that a badly specified connection
is caught

Missing Attribute Failure Case
Source Code: Listing 17

Shows that a missing attributes in a
block is caught

Unended Block Failure Case
Source Code: Listing 18

Shows that an unended block is caught

Empty Block Completion Case
Source Code: Listing 20

Shows that an empty block compiles
okay

Cascaded Blocks Completion Case
Source Code: Listing 19

Shows that multiple empty blocks in-
side each other are okay

XML Tolerance Case
Source Code: Listing 21

Shows that random XML and other in-
put is okay between tags

Buffer Value Test Case
Source Code: Listing 22

Shows proper operation of buffer block
(O = I)

Buffer in Buffer Value Test Case
Source Code: Listing 23

Shows that a block within a block works

Memory Block Test Case
Source Code: Listing 28

Shows the memory block works okay

Comparision Operation Test Case
Source Code: Listing 24

Shows all the comparision operations
work

Logical Gate Test Case
Source Code: Listing 25

Shows all the logical gates work

Math Operations Test Case
Source Code: Listing 27

Shows all math blocks work okay

Reference Block Test Case
Source Code: Listing 26

Shows a reference block works okay

SR Latch Complexity Test Case
Source Code: Listing 29

Shows that a complex block (SR Latch)
works

Timer Complexity Test Case
Source Code: Listing 30

Shows that example (Timer block)
works

VisLang Final Report Page 30 of 71

7 Conclusion

The VisLang compiler was moderately a success because it lays the groundwork
for future iterations of the program for use in a fully optimized environment as a
replacement for developing embedded programs using proprietary IDEs or pro-
gramming languages that are more difficult to understand. A variety of lessons
where learned during the development of the program that will be detailed below.
As a result of several of the lessons learned, suggestions for future development
are also presented.

7.1 Lessons Learned

The original idea for VisLang was very ambitious: to make a general purpose
embedded computing language in a visual format that could be used to develop
programs for small embedded devices such as the Aruduino platform. Early on
the in the project it was realized that this is much to ambitious of a goal because
that would mean essentially replicating the avr C libraries in a language that
was not meant for it. Instead, the scope of VisLang was first pared down such
that VisLang instead generated C code instead of assembly so that it would
be easy to link with the already feature- complete libraries that exist for the
platform. Integration with the avr libraries remains untested at this time, but
it is easy to show how VisLang-generated code could be easily integrated into
while loop almost any embedded device utilizes to run code. The thought is that
the specialty code needed to interface with the device is only a small portion of
the overall code the user is interested in running, so such a tradeoff would be
acceptable.
Another lesson that was learned a few weeks into development of VisLang was
that testcase driven development would be required to move forward at an ac-
ceptable pace. Originally, the development philosophy was trying to implement
all of the required features of the language at once, but even trying to get the
simplest program (a buffer block, which passes input directly to output) was a
difficult task and a philosophy change was needed. A test case for the buffer
block was written and the compiler was made to work appropiately with that
test case first before further test cases were developed and more functionality
was implemented to meet those new cases. The benefits of this approach primar-
ily are that these test cases are available for quick turnover later on to validate
future changes to the code. This happened several times where a change made to
satisfy one test case ultimately did, but broke several of the already completed
test cases. Integrating test cases into development was one of the biggest lessons
learned at first.
Finally, the last lesson that was learned was to complete more preliminary work
before creating a specification for a language. Knowing how much would be
possible as well as prototyping some of the features beforehand would have helped
to write a much more sound specification to begin with so that scope reduction

VisLang Final Report Page 31 of 71

and philosophy changes would be minimized.

7.2 Future Improvements

Several pieces of VisLang’s original specification were descoped for the initial
version of the compiler due to time constraints. Given future development time,
most of these features would be required for VisLang to reach it’s full potential
as a general purpose prototyping and embedded controller language to match
potential rivals such as Simulink and Modelica.
First off, a graphical interface for manipulating VisLang code would make de-
velopment of programs in the language much easier, since that was the original
intended use-case. Significant development would be necessary here, but thank-
fully true to the original design goals development to VisLang and any GUI
environment that might use the language could happen mostly in parallel. Spe-
cific attention would need to be taken to overhaul VisLang’s front end to make
it truly resilient to non-VisLang XML elements. As it stands right now, Vis-
Lang supports ignoring additional attributes, but using attributes of the same
name can confuse the parser which will throw an error. Either an alternative
way to specify VisLang attributes would need to be attempted, the VL Compiler
would need to be hardened against those attributes by more clever design of
the front end, or a better methodology of specifying the XML would need to be
investigated to satisfy this goal.
Arrays and Structures would be essential to truly allowing the language to pros-
per in all of its intended use cases. Originally, the Array features of VisLang
would allow a user to create and pass around Arrays to inputs, enabling Function
Language elements such as Filter, Reduce, and Map to be applied so duplicate
functionality can be performed with minimal coding. This is important to larger
embedded devices because they typically have redundant interfaces that require
the exact same processing to each element. Additionally, digital busses can be
arrays of packet structures that need the exact same processing where a language
that operated on them in parallel would be able be more efficient in its operation.
Structures would be used in a similar way, enabling I/O messages to be stripped
apart and processed in a predictable way, or output messages to be created in a
specified manner.
Of course, a block language like VisLang can always support more parts. The
original specification for VisLang included several parts that were deemed unnec-
essary for the initial implementation of the compiler, so identifying and adding
that functionality would be an obvious next step for the language. Adding the
ability to encapsulate or link to arbitrary code would also be another possible
design goal for VisLang as often it is necessary to have a calculation drive some
action that interfaces with the embedded processor, such as servicing the watch-
dog timer or managing interrupts. This would be important if VisLang were to
be used on larger projects.

VisLang Final Report Page 32 of 71

A VLCC Source Code

Listing 5: Top Level

../src/vislang.ml
1 open Xscanner

2 open Xparser

3 open Blockify

4 open Blockparse

5 open Compile

6

7 type action = BlockTree | Compile | DebugCode

8 type rwfile = File | StdIO

9

10 let _ =

11 let action = if Array.length Sys.argv > 1 then

12 List.assoc Sys.argv.(1) [("-b", BlockTree);

13 ("-c", Compile);

14 ("-d", DebugCode)]

15 else Compile

16 and rwfile = if (Array.length Sys.argv > 2) then File else StdIO in

17

18 let filein =

19 match rwfile with

20 File -> (open_in Sys.argv.(2))

21 | StdIO -> stdin

22 in

23 let lexbuf = Lexing.from_channel filein in

24 let xml_tree = Xparser.xml_tree Xscanner.token lexbuf in

25 let block_tree = Blockify.parse_xml_tree xml_tree in

26 let program = Blockparse.block_parse block_tree in

27 let listing =

28 match action with

29 BlockTree -> Blockparse.print_list program

30 | Compile -> Compile.translate program

31 | DebugCode -> Compile.gen_debug_code program

32 in let write_out_with_ext ext = output_string

33 (open_out

34 (Str.global_replace

35 (Str.regexp "\\.vl")

36 ext

37 Sys.argv.(2)

38)

39)

40 in match (rwfile, action) with

41 (* Only print out to a new file if we are compiling or making debug

42 * code with an input file, else print to screen if standard input

43 * is used or we are printing the blocktree *)

44 (File, Compile) -> write_out_with_ext ".c" listing

45 | (File, DebugCode) -> write_out_with_ext ".py" listing

46 | (_ , _) -> print_string listing

Listing 6: XML Scanner

VisLang Final Report Page 33 of 71

../src/xscanner.mll
1 {

2 open Xparser

3 open Errors

4 }

5 (* Main definitions for use below *)

6 let ws = [’ ’ ’\t’]

7 let nl = [’\r’ ’\n’]

8 let tag = ("BLOCK"

9 | "REFERENCE"

10 | "INPUT"

11 | "OUTPUT"

12 | "CONSTANT"

13 | "MEM"

14 | "DT"

15 | "NOT"

16 | "AND"

17 | "OR"

18 | "NOR"

19 | "NAND"

20 | "XOR"

21 | "IF"

22 | "COMPARE"

23 | "SUM"

24 | "PROD"

25 | "GAIN"

26 | "INV"

27 | "CONNECTION"

28) (* all accepted tags *)

29 let attr = ("name"

30 | "ref"

31 | "datatype"

32 | "to"

33 | "from"

34 | "ic"

35 | "operation"

36 | "value"

37) (* all accepted attributes *)

38 let name = [’A’-’Z’ ’a’-’z’][’A’-’Z’ ’a’-’z’ ’0’-’9’ ’_’]*

39 let datatype= ("auto"

40 | "double" | "single"

41 | "boolean"

42 | ’u’? "int" ("8" | "16" | "32") (* all integer types *)

43 (*| name (* for structs *)*)

44)

45 (* file names acceptable for referencing *)

46 let file = (".." | ".")? ("/" [’A’-’Z’ ’a’-’z’ ’0’-’9’ ’_’ ’-’ ’.’]+)+ ".vl"

47 (* Value literals. Used for CONSTANT, MEMORY, and GAIN blocks *)

48 let sign = ("+" | "-")

49 let boolean = ("true" | "false")

50 let digit = [’0’ - ’9’]

51 let flt_pt = sign? (digit+ "." digit* | "." digit+)

52 let hex = sign? ’0’ [’x’ ’X’] [’A’-’F’ ’a’-’f’ ’0’-’9’]+

53 let oct = sign? ’0’ [’o’ ’O’] [’0’-’7’]+

54 let bin = sign? ’0’ [’b’ ’B’] [’0’ ’1’]+

VisLang Final Report Page 34 of 71

55 let dec = sign? digit+ (* Allow signed integers for any encoding *)

56

57 (* Main scanner step: search for elements, attributes, and comments *)

58 rule token =

59 parse

60 (* Comments: Search for any of the following ignored tag openings,

61 * then jump to rule for parsing an ignore anything inside it. *)

62 "<?" | (* XML Declarators *)

63 "<!--" | (* XML Comments *)

64 "<![" (* DOCTYPE Markup *)

65 as ctype { comm ctype lexbuf }

66 (* Elements: Scan for supported blocks and link to parsing stage.

67 * If an unsupported block is found, note it as information for

68 * compilation *)

69 | "<" "vl:" (tag as t) { O_ELEM(t) }

70 | "</" "vl:" (tag as t) ">" { C_ELEM(t) }

71 | "/>" { E_ELEM }

72 | ">" (* No token required *) { token lexbuf }

73 (* Attributes: The following are tokens for different values

74 * attributes might take on. *)

75 | attr as a "=" { ATTR (a) }

76 | "\"" (datatype as d) "\"" { DTYPE (d) }

77 (* note: names and files are allowed to have references *)

78 | "\"" (name as n) "\""? { NAME (n) }

79 | "\"" (file as f) "\""? { FILE (f) }

80 (* note: a reference always appears as a suffix to a name or file *)

81 | "|" (name as r) "\""? { REF (r) }

82 (* Comparision Operators *)

83 | "\"" "==" "\"" { EQT }

84 | "\"" ">" "\"" { GRT }

85 | "\"" "<" "\"" { LST }

86 | "\"" ">=" "\"" { GEQ }

87 | "\"" "<=" "\"" { LEQ }

88 | "\"" "!=" "\"" { NEQ }

89 (* Literals *)

90 | "\"" (boolean as b) "\"" { BOOL (b) }

91 | "\"" (flt_pt as f) "\"" { FLOAT (f) }

92 | "\"" (hex as h) "\"" { HEX (h) }

93 | "\"" (dec as d) "\"" { DEC (d) }

94 | "\"" (oct as o) "\"" { OCT (o) }

95 | "\"" (bin as b) "\"" { BIN (b) }

96 (* Extras: The following are tokens for other values *)

97 | ws { token lexbuf }

98 | nl { Lexing.new_line lexbuf;

99 token lexbuf }

100 (* This allows anything unsupported to be ignored *)

101 | _ { token lexbuf }

102 | eof { EOF }

103 (* Comment sub-rule: search for matching comment tag.

104 * If a different comment tag type found, then continue,

105 * else return to token scanner.*)

106 and comm ctype =

107 parse "-->" { if ctype = "<!--" then token lexbuf else comm ctype lexbuf }

108 | "?>" { if ctype = "<?" then token lexbuf else comm ctype lexbuf }

109 | "]>" { if ctype = "<![" then token lexbuf else comm ctype lexbuf }

VisLang Final Report Page 35 of 71

110 | nl { Lexing.new_line lexbuf; comm ctype lexbuf }

111 | _ { (* Skip everything else *) comm ctype lexbuf }

Listing 7: XML Parser

../src/xparser.mly
1 %{

2 open Xst

3 open Errors

4 %}

5

6 %token E_ELEM EOF

7 %token <string> O_ELEM C_ELEM ATTR

8 %token <string> NAME FILE REF DTYPE

9 %token GRT LST EQT NEQ LEQ GEQ

10 %token <string> BOOL FLOAT HEX DEC OCT BIN

11

12 %left DTYPE NAME FILE REF

13 %left BOOL FLOAT HEX DEC OCT BIN

14 %left O_ELEM C_ELEM ELEM ATTR

15

16 %start xml_tree

17 %type <Xst.xml_obj> xml_tree

18 %type <Xst.xml_obj list> xml_list

19 %type <Xst.xml_obj> xml_obj

20

21 %%

22

23 xml_tree:

24 xml_obj EOF { $1 }

25

26 xml_obj:

27 O_ELEM attr_list E_ELEM { { tagname = $1 ;

28 attributes = $2 ;

29 inner_objs = [] } }

30 | O_ELEM attr_list C_ELEM { if $1 <> $3

31 then xml_parse_error (3)

32 ("Open/Close element mismatch. " ^

33 "Element " ^ $1 ^ " <> " ^ $3)

34 else

35 { tagname = $1 ;

36 attributes = $2 ;

37 inner_objs = [] } }

38 | O_ELEM attr_list xml_list C_ELEM { if $1 <> $4

39 then xml_parse_error (4)

40 ("Open/Close element mismatch. " ^

41 "Element " ^ $1 ^ " <> " ^ $4)

42 else

43 { tagname = $1 ;

44 attributes = $2 ;

45 inner_objs = $3 } }

46

47 xml_list:

VisLang Final Report Page 36 of 71

48 xml_obj { [$1] }

49 | xml_list xml_obj { $2 :: $1 }

50

51 attr_list:

52 attr { [$1] }

53 | attr_list attr { $2 :: $1 }

54

55 attr:

56 ATTR value { { aname = $1 ;

57 avalue = $2 } }

58

59 value:

60 ref { Ref ($1) }

61 | NAME { Name ($1) }

62 | literal { ($1) }

63 | compopr { Compopr ($1) }

64 | DTYPE { Datatype ($1) }

65

66 ref:

67 FILE ref_list { { reftype = "FILE" ;

68 refroot = $1 ;

69 reflist = $2 } }

70 | NAME ref_list { { reftype = "NAME" ;

71 refroot = $1 ;

72 reflist = $2 } }

73

74 ref_list:

75 REF { [$1] }

76 | ref_list REF { $2 :: $1 }

77

78 literal:

79 BOOL { Bool (bool_of_string $1) }

80 | FLOAT { Float (float_of_string $1) }

81 | HEX { Int (int_of_string $1) }

82 | DEC { Int (int_of_string $1) }

83 | OCT { Int (int_of_string $1) }

84 | BIN { Int (int_of_string $1) }

85

86 compopr:

87 GRT { Grt }

88 | LST { Lst }

89 | EQT { Eqt }

90 | NEQ { Neq }

91 | LEQ { Leq }

92 | GEQ { Geq }

Listing 8: XML Syntax Tree

../src/xst.ml
1 (* Abstract Syntax Tree Definition *)

2 type copr = Grt | Lst | Eqt | Neq | Leq | Geq (* Comparison operators *)

3

4 type ref = {

VisLang Final Report Page 37 of 71

5 reftype : string;

6 refroot : string;

7 reflist : string list;

8 }

9

10 type value =

11 Ref of ref (* List of strings leading to a block *)

12 | Name of string (* Name of a block *)

13 | Int of int (* Standard int type *)

14 | Float of float (* Standard float type *)

15 | Bool of bool (* Standard boolean type *)

16 | Datatype of string (* datatype from set of types *)

17 | Compopr of copr (* Comparision operator *)

18

19 type attr = {

20 aname : string; (* Attribute Name *)

21 avalue : value; (* Attrbiute Value *)

22 }

23

24 type xml_obj = {

25 tagname : string; (* Block Name *)

26 attributes : attr list; (* Dictionary of attribute names and values*)

27 inner_objs : xml_obj list; (* List of contained XML objects

28 * (can be empty) *)

29 }

30

31 (* Helper functions for printing XML AST *)

32 let string_of_comp_opr v = match v with

33 Grt -> ">"

34 | Lst -> "<"

35 | Eqt -> "=="

36 | Neq -> "!="

37 | Leq -> "<="

38 | Geq -> ">="

39

40 let string_of_ref (v) =

41 v.refroot ^ "|" ^ String.concat "|" (v.reflist) ^

42 " (" ^ v.reftype ^ " REF)"

43

44 let string_of_value value = match value with

45 Ref v -> string_of_ref v

46 | Name v -> v

47 | Int v -> string_of_int v

48 | Float v -> string_of_float v

49 | Bool v -> string_of_bool v

50 | Datatype v -> v

51 | Compopr v -> string_of_comp_opr v

52

53 let string_of_attr (a) =

54 a.aname ^ ": " ^ string_of_value a.avalue

55

56 let rec string_of_xml (obj) =

57 "Block: " ^ obj.tagname ^ "\n" ^

58 "Attributes:\n-" ^

59 (String.concat "\n-" (List.map string_of_attr obj.attributes)) ^

VisLang Final Report Page 38 of 71

60 if obj.inner_objs == []

61 then "\n"

62 else

63 "\n\nChildren:\n" ^

64 (String.concat "\n" (List.map string_of_xml obj.inner_objs)) ^

65 "\nEnd of Children for: " ^ obj.tagname ^"\n"

Listing 9: XML Object to Block Object Converter

../src/blockify.ml
1 open Xst

2 open Errors

3 (* Helper functions for Object instantiaion *)

4 let get_attr attribute xml_obj =

5 let attr = List.filter (fun x -> x.aname = attribute) xml_obj.attributes in

6 match attr with

7 [] -> object_error ("No attribute named " ^ attribute ^

8 " in:\n" ^ (string_of_xml xml_obj))

9 | [a] -> a.avalue

10 | _ :: _ -> object_error ("Too many attributes named " ^ attribute ^

11 " in:\n" ^ (string_of_xml xml_obj))

12

13 let get_datatype dtype =

14 match dtype with

15 "boolean" -> "bool"

16 | "single" -> "float_t"

17 | _ as d -> d ^ "_t" (* e.g. uint32_t, int8_t, etc. *)

18

19 let if_elements l printstr =

20 if (List.length l) > 0

21 then printstr

22 else ""

23

24 (* Structure for returning input and output types *)

25 type interface = {

26 name : string;

27 datatype : string;

28 }

29

30 (* virtual Base class all blocks inherit from. All methods here

31 * will be utilized by upstream utilities *)

32 class virtual base xml_obj = object

33 val name : string = string_of_value (get_attr "name" xml_obj)

34 method name = name

35 (* Block-specific functionality *)

36 method virtual inputs : interface list

37 method virtual outputs : interface list

38 method virtual inner_objs : base list

39 (* Potentially dangerous, but only used in context of

40 * getting inner objects first *)

41 method virtual set_inputs : interface list -> unit

42 method virtual set_outputs : interface list -> unit

43 method virtual set_inner_objs : base list -> unit

VisLang Final Report Page 39 of 71

44 (* Used for general purposes and to distinguish blocks *)

45 method virtual print_class : string

46 method virtual print_obj : string

47 (* Code generation functions *)

48 method virtual header : string

49 method virtual body : string

50 method virtual trailer : string

51 (* Function used in trace algorithm in order to find

52 * connection from an input *)

53 method get_connection input_to =

54 let input_from = List.filter (fun x -> (get_attr "to" x) = Name input_to)

55 (List.filter (fun x -> x.tagname = "CONNECTION") xml_obj.inner_objs)

56 in match input_from with

57 [] -> object_error

58 ("No connections found for " ^

59 string_of_value (get_attr "name" xml_obj)

60)

61 | [cnx] -> get_attr "from" cnx

62 | _ :: _ -> object_error

63 ("Too many connections defined for " ^

64 string_of_value (get_attr "name" xml_obj)

65)

66 end;;

67

68 (* Intermediate class used by both block and reference classes *)

69 class virtual blk_or_ref blockify xml_obj = object (self)

70 inherit base xml_obj

71 val mutable virtual inner_objs : base list

72 method inner_objs = List.rev inner_objs

73 (* Get input/output objects inside this object *)

74 method inputs = List.map

75 (fun x -> List.hd ((x :> base) #outputs))

76 (List.filter

77 (fun (x : base) -> ((x :> base) #print_class) = "input")

78 inner_objs

79)

80 method outputs = List.map

81 (fun x -> List.hd ((x :> base) #outputs))

82 (List.filter

83 (fun (x : base) -> ((x :> base) #print_class) = "output")

84 inner_objs

85)

86 (* Since this object has a set of inputs we want to keep immutable

87 * use the following construct such that we can print what the body

88 * code needs without modifying the block’s list of inputs/outputs *)

89 val mutable connected_inputs = []

90 method connected_inputs = connected_inputs

91 method set_inputs new_inputs = connected_inputs <- new_inputs

92 method set_outputs a = object_error (

93 "Should not set outputs of " ^

94 self#print_class ^ " object")

95 method input_type = if_elements

96 self#inputs

97 ("struct " ^ self#func ^ "_in")

98 method output_type = if_elements

VisLang Final Report Page 40 of 71

99 self#outputs

100 ("struct " ^ self#func ^ "_out")

101 method virtual func : string (* Used because block cannot have

102 * a different name, but reference can *)

103 method body = if_elements (* Create code for setting input structure *)

104 self#inputs

105 (self#input_type ^ " " ^

106 self#name ^ "_inputs = " ^ "{\n\t\t" ^

107 (String.concat

108 ",\n\t\t"

109 (List.map

110 (fun (x, y) -> "." ^ x.name ^

111 " = " ^ y.name

112)

113 (List.combine

114 self#inputs

115 self#connected_inputs

116)

117)

118) ^ "\n\t};\n\t"

119) ^

120 if_elements (* Create code for setting output struct *)

121 self#outputs

122 (self#output_type ^ " " ^

123 self#name ^ "_outputs =\n\t\t") ^

124 self#func ^ "(" ^ (* function call *)

125 if_elements (* Only apply inputs if block has inputs *)

126 self#inputs

127 (self#name ^ "_inputs") ^

128 ");"

129 method print_obj = "\"" ^ self#print_class ^ "\": {\n" ^

130 " \"name\":\"" ^ name ^ "\"\n" ^

131 " \"inner_objs\": [\n " ^

132 (String.concat "\n "

133 (List.map

134 (fun (x : base) -> (x :> base) #print_obj)

135 self#inner_objs

136)

137) ^ "\n]" ^

138 "\n}\n"

139 end;;

140

141 (* Block class: BLOCK tag, is a container for other blocks *)

142 class block blockify xml_obj = object (self)

143 inherit blk_or_ref blockify xml_obj

144 val mutable inner_objs = List.map

145 blockify

146 (List.filter

147 (fun x -> x.tagname <> "CONNECTION")

148 xml_obj.inner_objs

149)

150 method func = name

151 method set_inner_objs new_inner_objs = inner_objs <- new_inner_objs

152 method ref_blks = List.filter

153 (fun (x : base) -> let c = ((x :> base) #print_class) in

VisLang Final Report Page 41 of 71

154 c = "reference"

155)

156 inner_objs

157 method print_inc = if_elements

158 self#ref_blks

159 (String.concat

160 "\n"

161 (List.map

162 (fun x -> (x :> base) #header)

163 self#ref_blks

164) ^ "\n\n"

165)

166 method static_blks = List.filter

167 (fun (x : base) -> let c = ((x :> base) #print_class) in

168 c = "memory"

169 || c = "constant"

170 || c = "dt"

171)

172 inner_objs

173 method print_static = if_elements

174 self#static_blks

175 ("/* Initialize static variables */\n" ^

176 String.concat

177 "\n"

178 (List.map

179 (fun x -> (x :> base) #header)

180 self#static_blks

181) ^ "\n\n"

182)

183 method print_class = "block"

184 method input_struct = if_elements

185 self#inputs

186 (self#input_type ^ " {\n\t" ^

187 (String.concat ";\n\t"

188 (List.map

189 (fun x -> (get_datatype x.datatype) ^

190 " " ^ x.name

191)

192 self#inputs)

193) ^ ";\n};\n\n"

194)

195 method output_struct = if_elements

196 self#outputs

197 (self#output_type ^ " {\n\t" ^

198 (String.concat ";\n\t"

199 (List.map

200 (fun x -> (get_datatype x.datatype) ^

201 " " ^ x.name

202)

203 self#outputs)

204) ^ ";\n};\n\n"

205)

206 method header = (* Include statements for referenced files*)

207 self#print_inc ^

208 (* Structure definition for block *)

VisLang Final Report Page 42 of 71

209 if_elements

210 (self# inputs @ self#outputs)

211 ("/* I/O Structures for block " ^ name ^ " */\n") ^

212 self#input_struct ^

213 self#output_struct ^

214 (* Initialize static constants and parameters *)

215 self#print_static ^

216 (* Function definition *)

217 (let out_struct = self#output_type in

218 if out_struct <> ""

219 then out_struct

220 else "void") ^

221 "\n/* Function def */ " ^ name ^ "(" ^

222 (let in_struct = self#input_type in

223 if in_struct <> ""

224 then in_struct ^ " inputs"

225 else "") ^

226 ")\n{\n" ^

227 (* Unpack inputs *)

228 (let input_blk = String.concat "\n\t"

229 (List.map

230 (fun x -> (get_datatype x.datatype) ^ " " ^

231 x.name ^ " = inputs." ^ x.name ^ ";"

232)

233 self#inputs) in

234 if input_blk <> ""

235 then "\t/* Inputs for block " ^ name ^

236 " */\n\t" ^ input_blk ^ "\n\n"

237 else "") ^

238 (* Code for inner objects in SSA form *)

239 if_elements

240 self#inner_objs

241 ("\t/* Body for block " ^ name ^ " */\n\t" ^

242 (String.concat "\n\t"

243 (List.map

244 (fun x -> (x :> base) #body)

245 (* Skip parts block takes care of *)

246 (List.filter

247 (fun x -> let c =

248 (x :> base) #print_class

249 in

250 not (c = "input"

251 || c = "dt"

252 || c = "constant"

253)

254)

255 self#inner_objs

256)

257)

258) ^ "\n\n")

259

260 method trailer = (* Pack up outputs *)

261 if_elements

262 self#outputs

263 ("\t/* Outputs for block " ^ name ^" */\n\t" ^

VisLang Final Report Page 43 of 71

264 self#output_type ^ " outputs;\n\t" ^

265 (String.concat ";\n\t"

266 (List.map

267 (fun x -> "outputs." ^ x.name ^ " = " ^ x.name)

268 self#outputs)

269) ^ ";\n\n" ^

270 (* terminate function *)

271 "\treturn outputs;") ^

272 "\n}\n"

273 end;;

274

275 (* Parse referenced file for the referenced block and return it for down below *)

276 let get_file xml_obj =

277 let r = (get_attr "ref" xml_obj)

278 in match r with

279 Ref r -> if r.reftype = "FILE"

280 then r.refroot

281 else object_error "Ref object only supports " ^

282 "file references"

283 | _ -> object_error "Incorrect Type for filename"

284

285 (* Get the referenced block in the right file for the given reference object *)

286 let get_ref_blk xml_obj =

287 let rec get_inner_blk blk_list xml_obj =

288 match blk_list with

289 [] -> xml_obj

290 | hd :: tl -> begin

291 let new_xml_obj =

292 (List.filter

293 (fun x -> string_of_value

294 (get_attr "name" x) = hd)

295 (List.filter

296 (fun x -> x.tagname <> "CONNECTION")

297 (xml_obj :: xml_obj.inner_objs)

298)

299)

300 in if (List.length new_xml_obj) <> 1

301 then object_error ("Did not find exactly one " ^

302 "referenced block")

303 else get_inner_blk tl (List.hd new_xml_obj)

304 end

305 in let file = get_file xml_obj

306 in let xml_obj = (Xparser.xml_tree Xscanner.token

307 (Lexing.from_channel (open_in file))

308) (* Have to parse referenced

309 * file to get block *)

310 and blk_list =

311 let r = (get_attr "ref" xml_obj)

312 in match r with

313 Ref r -> r.reflist

314 | _ -> object_error "Incorrect Type for block ref"

315 in get_inner_blk blk_list xml_obj

316

317 (* Reference class: REFERENCE tag, references a block in another file *)

318 class reference blockify xml_obj = object (self)

VisLang Final Report Page 44 of 71

319 inherit blk_or_ref blockify xml_obj

320 method func = string_of_value (get_attr "name" (get_ref_blk xml_obj))

321 val mutable inner_objs = List.map

322 blockify

323 (List.filter

324 (fun x -> x.tagname <> "CONNECTION")

325 (get_ref_blk xml_obj).inner_objs

326)

327 method set_inner_objs new_inner_objs = object_error

328 ("Should not try to set inner objects of " ^

329 self#print_class ^ " object: " ^ self#name ^ "")

330 method print_class = "reference"

331 method header = let vlfile = (get_file xml_obj)

332 in let cfile = (Str.global_replace

333 (Str.regexp "\\.vl")

334 ".c"

335 vlfile

336)

337 in "#include \"" ^ cfile ^"\""

338 method trailer = ""

339 end;;

340

341 (* virtual I/O Part class: do all I/O Part attributes and checking *)

342 class virtual io_part xml_obj = object (self)

343 inherit base xml_obj

344 method inner_objs = object_error

345 ("Should not try to access inner objects of " ^

346 self#print_class ^ " object: " ^ self#name ^ "")

347 method set_inner_objs new_inner_objs = object_error

348 ("Should not try to set inner objects of " ^

349 self#print_class ^ " object: " ^ self#name ^ "")

350 val datatype = string_of_value (get_attr "datatype" xml_obj)

351 method datatype = datatype

352 val mutable inputs = [{ name = string_of_value

353 (get_attr "name" xml_obj);

354 datatype = string_of_value

355 (get_attr "datatype" xml_obj)

356 }]

357 method inputs = inputs

358 method set_inputs new_inputs = inputs <- new_inputs

359 method outputs = [{ name = self#name; datatype = self#datatype }]

360 method set_outputs a = object_error (

361 "Should not set outputs of " ^

362 self#print_class ^ " object")

363 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

364 "\"name\":\"" ^ name ^ "\", " ^

365 "\"datatype\":\"" ^ datatype ^ "\", " ^

366 " }"

367 method header = ""

368 method body = ""

369 method trailer = ""

370 end;;

371

372 (* Input class: INPUT tag*)

373 class input xml_obj = object (self)

VisLang Final Report Page 45 of 71

374 inherit io_part xml_obj as super

375 method inputs = object_error "Should never access inputs of input obj"

376 method set_inputs a = object_error

377 ("Should not set inputs of " ^

378 self#print_class ^ " object")

379 method print_class = "input"

380 end;;

381

382 (* Output class: OUTPUT tag *)

383 class output xml_obj = object (self)

384 inherit io_part xml_obj as super

385 method print_class = "output"

386 method body = get_datatype (List.hd self#outputs).datatype ^ " " ^

387 self#name ^ " = " ^

388 (List.hd self#inputs).name ^ ";"

389 end;;

390

391 (* Constant class: CONSTANT tag*)

392 class constant xml_obj = object (self)

393 inherit input xml_obj (* A constant acts like an input, except it has

394 * a value and doesn’t interact with block I/O *)

395 val value = string_of_value (get_attr "value" xml_obj)

396 method value = value

397 method header = (* overriden for block#header*)

398 "static " ^ (get_datatype self#datatype) ^ " " ^

399 self#name ^ " = " ^ value ^ ";"

400 method print_class = "constant"

401 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

402 "\"name\":\"" ^ name ^ "\", " ^

403 "\"value\":\"" ^ value ^ "\", " ^

404 " }"

405 end;;

406

407 (* DT class: starts as ic, gets updated each pass as delta t in code exec *)

408 class dt xml_obj = object (self)

409 inherit base xml_obj

410 method inner_objs = object_error

411 ("Should not try to access inner objects of " ^

412 self#print_class ^ " object: " ^ self#name ^ "")

413 method set_inner_objs new_inner_objs = object_error

414 ("Should not try to set inner objects of " ^

415 self#print_class ^ " object: " ^ self#name ^ "")

416 method inputs = object_error "Should never access inputs of dt obj"

417 method set_inputs a = object_error

418 ("Should not set inputs of " ^

419 self#print_class ^ " object")

420 method outputs = [{ name = self#name; datatype = "single" }]

421 method set_outputs a = object_error (

422 "Should not set outputs of " ^

423 self#print_class ^ " object")

424 method datatype = "single"

425 val init_cond = string_of_value (get_attr "ic" xml_obj)

426 method header = "static " ^ (get_datatype self#datatype) ^ " " ^

427 self#name ^ " = " ^ init_cond ^ ";"

428 method body = ""

VisLang Final Report Page 46 of 71

429 method trailer = ""

430 method print_class = "dt"

431 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

432 "\"name\":\"" ^ name ^ "\", " ^

433 "\"ic\":\"" ^ init_cond ^ "\", " ^

434 " }"

435 end;;

436

437 (* All other parts inherit from this one *)

438 class virtual part xml_obj = object (self)

439 inherit base xml_obj

440 method inner_objs = object_error

441 ("Should not try to access inner objects of " ^

442 self#print_class ^ " object: " ^ self#name ^ "")

443 method set_inner_objs new_inner_objs = object_error

444 ("Should not try to set inner objects of " ^

445 self#print_class ^ " object: " ^ self#name ^ "")

446 val virtual mutable inputs : interface list

447 method inputs = inputs

448 method set_inputs new_inputs = inputs <- new_inputs

449 val virtual mutable outputs : interface list

450 method outputs = outputs

451 method set_outputs new_outputs = outputs <- new_outputs

452 method virtual body : string

453 method header = ""

454 method trailer = ""

455 end;;

456

457 (* Memory class: MEM tag*)

458 class memory xml_obj = object (self)

459 inherit part xml_obj

460 val init_cond = string_of_value (get_attr "ic" xml_obj)

461 val mutable inputs = [{ name = "current"; datatype = "auto" }]

462 val mutable outputs = [{ name = "stored"; datatype = "auto" }]

463 val datatype = string_of_value (get_attr "datatype" xml_obj)

464 method datatype = datatype

465 method init_cond = init_cond

466 method print_class = "memory"

467 method print_obj = "\"memory\": { " ^

468 "\"name\":\"" ^ name ^ "\", " ^

469 "\"init_cond\":" ^ init_cond ^ "\"" ^

470 " }"

471 method header = (* overriden for block#header*)

472 "static " ^ (get_datatype self#datatype) ^ " " ^

473 self#name ^ " = " ^ init_cond ^ ";"

474 method body = self#name ^ " = " ^

475 (List.hd inputs).name ^ ";"

476 end;;

477

478 (* NOT Gate Part class: unary NOT operation *)

479 class not_gate xml_obj = object (self)

480 inherit part xml_obj

481 val mutable inputs = [{ name = "input"; datatype = "boolean" }]

482 val mutable outputs = [{ name = "output"; datatype = "boolean" }]

483 method print_class = "not"

VisLang Final Report Page 47 of 71

484 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

485 "\"name\":\"" ^ name ^ "\", " ^

486 "\"operation\":\"!\" }"

487 method body = (get_datatype (List.hd outputs).datatype) ^ " " ^

488 self#name ^ " = !(" ^

489 (List.hd inputs).name ^ ");"

490 end;;

491

492 (* Helper functions for binary operation parts, which can have an arbitrary

493 * number of inputs, so long as there is at least 2. *)

494 let get_num_connections xml_obj =

495 let inputs = List.filter

496 (fun x -> x.tagname = "CONNECTION")

497 xml_obj.inner_objs

498 in List.length inputs

499

500 let get_cnx_list xml_obj set_type=

501 let num_cnx = get_num_connections xml_obj

502 in

503 let rec create_cnx_list num_cnx cnx_list =

504 let idx = (num_cnx - (List.length cnx_list))

505 in let idx_name = "input" ^ (string_of_int idx)

506 in match idx with

507 0 -> cnx_list

508 | _ -> let cnx_list =

509 {name = idx_name; datatype = set_type} :: cnx_list

510 in create_cnx_list num_cnx cnx_list

511 in create_cnx_list num_cnx []

512 (* inputs for binop parts are named input1 through inputN

513 * and the operation will be applied on all elements *)

514

515 (* virtual Binary Operation class: do all binary attributes and checking *)

516 class virtual binop_part xml_obj = object (self)

517 inherit part xml_obj

518 val virtual operation : string

519 method operation = operation

520 method virtual datatype : string

521 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

522 "\"name\":\"" ^ name ^ "\", " ^

523 "\"operation\":\"" ^ self#operation ^ "\" }"

524 method body = (get_datatype self#datatype) ^ " " ^

525 self#name ^ " = " ^ String.concat

526 (" " ^ self#operation ^ " ")

527 (List.map

528 (fun x -> x.name)

529 self#inputs

530) ^

531 ";"

532 end;;

533

534 (* intermediate class to explicitly set datatype for gate parts *)

535 class virtual gate xml_obj = object

536 inherit binop_part xml_obj as super

537 val datatype = "boolean"

538 method datatype = datatype

VisLang Final Report Page 48 of 71

539 val mutable inputs = get_cnx_list xml_obj "boolean"

540 val mutable outputs = [{ name = "output"; datatype = "boolean" }]

541 end;;

542

543 (* OR gate: inherits from binary_gate_part, logical OR operation *)

544 class or_gate xml_obj = object (self)

545 inherit gate xml_obj

546 val operation = "||"

547 method print_class = "or"

548 end;;

549

550 (* AND gate: inherits from binary_gate_part, logical AND operation *)

551 class and_gate xml_obj = object (self)

552 inherit gate xml_obj

553 val operation = "&&"

554 method print_class = "and"

555 end;;

556

557 (* NOR gate: inherits from binary_gate_part, logical NOR operation *)

558 class nor_gate xml_obj = object (self)

559 inherit gate xml_obj as super

560 val operation = "" (* overriden body, operation is AND of NOT-ed inputs *)

561 method print_class = "nor"

562 method body = (get_datatype self#datatype) ^ " " ^

563 self#name ^ " = !(" ^ String.concat

564 (") && !(")

565 (List.map

566 (fun x -> x.name)

567 self#inputs

568) ^

569 ");"

570 end;;

571

572 (* NAND gate: inherits from binary_gate_part, logical NAND operation *)

573 class nand_gate xml_obj = object (self)

574 inherit gate xml_obj

575 val operation = "" (* overriden body, operation is OR of NOT-ed inputs *)

576 method print_class = "nand"

577 method body = (get_datatype self#datatype) ^ " " ^

578 self#name ^ " = !(" ^ String.concat

579 (") || !(")

580 (List.map

581 (fun x -> x.name)

582 self#inputs

583) ^

584 ");"

585 end;;

586

587 (* XOR gate: inherits from binary_gate_part, logical XOR operation *)

588 class xor_gate xml_obj = object (self)

589 inherit gate xml_obj as super

590 val operation = "" (* overriden body, operation is NEQ of each input *)

591 method print_class = "xor"

592 method body = (get_datatype self#datatype) ^ " " ^

593 self#name ^ " = (" ^ String.concat

VisLang Final Report Page 49 of 71

594 (") != (")

595 (List.map

596 (fun x -> x.name)

597 self#inputs

598) ^

599 ");"

600 end;;

601

602 (* Summation point: inherits from binop_part, addition operation *)

603 class sum xml_obj = object (self)

604 inherit binop_part xml_obj

605 val operation = "+"

606 val datatype = string_of_value (get_attr "datatype" xml_obj)

607 method datatype = datatype

608 method print_class = "sum"

609 val mutable inputs = get_cnx_list xml_obj "auto"

610 val mutable outputs = [{ name = "output"; datatype = "auto" }]

611 end;;

612

613 (* Production point: inherits from binop_part, multiplication operation *)

614 class prod xml_obj = object (self)

615 inherit binop_part xml_obj

616 val operation = "*"

617 val datatype = string_of_value (get_attr "datatype" xml_obj)

618 method datatype = datatype

619 method print_class = "prod"

620 val mutable inputs = get_cnx_list xml_obj "auto"

621 val mutable outputs = [{ name = "output"; datatype = "auto" }]

622 end;;

623

624 (* GAIN Part class: unary multiplication operation *)

625 class gain xml_obj = object (self)

626 inherit part xml_obj

627 val mutable inputs = [{ name = "input"; datatype = "auto" }]

628 val mutable outputs = [{ name = "output"; datatype = "auto" }]

629 val datatype = string_of_value (get_attr "datatype" xml_obj)

630 method datatype = datatype

631 val value = string_of_value (get_attr "value" xml_obj)

632 method value = value

633 method print_class = "gain"

634 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

635 "\"name\":\"" ^ name ^ "\", " ^

636 "\"datatype\":\"" ^ datatype ^ "\", " ^

637 "\"value\":\"" ^ value ^ "\" }"

638 method body = (get_datatype datatype) ^ " " ^

639 self#name ^ " = " ^ value ^ " * " ^

640 (List.hd inputs).name ^ ";"

641 end;;

642

643 (* INV Part class: unary inversion/division operation *)

644 class inv xml_obj = object (self)

645 inherit part xml_obj

646 val mutable inputs = [{ name = "input"; datatype = "auto" }]

647 val mutable outputs = [{ name = "output"; datatype = "auto" }]

648 val datatype = string_of_value (get_attr "datatype" xml_obj)

VisLang Final Report Page 50 of 71

649 method datatype = datatype

650 method print_class = "inv"

651 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

652 "\"name\":\"" ^ name ^ "\", " ^

653 "\"datatype\":\"" ^ datatype ^ "\" }"

654 method body = let input = (List.hd inputs).name in

655 (get_datatype datatype) ^ " " ^

656 self#name ^ " = " ^

657 (* Divide by zero protection *)

658 "(abs(" ^ input ^ ") >= FLT_MIN) ?\n\t\t" ^

659 "(1 / (" ^ input ^ ")) : (0.000f);"

660 end;;

661

662 (* Compare Part: compares two inputs using operation *)

663 class compare xml_obj = object (self)

664 inherit part xml_obj

665 val operation = string_of_value (get_attr "operation" xml_obj)

666 val datatype = string_of_value (get_attr "datatype" xml_obj)

667 method datatype = datatype

668 method print_class = "compare"

669 val mutable inputs = [{ name = "lhs"; datatype = "auto" };

670 { name = "rhs"; datatype = "auto" }]

671 val mutable outputs = [{ name = "output"; datatype = "boolean" }]

672 method body = (get_datatype (List.hd outputs).datatype) ^ " " ^

673 self#name ^ " = (" ^

674 String.concat

675 (" " ^ operation ^ " ")

676 (List.map (fun x -> x.name) self#inputs)

677 ^ ");"

678 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

679 "\"name\":\"" ^ name ^ "\", " ^

680 "\"datatype\":\"" ^ datatype ^ "\", " ^

681 "\"operation\":\"" ^ operation ^ "\" }"

682 end;;

683

684 (* If part: if control is true, pass true input, else false input *)

685 class if_sw xml_obj = object (self)

686 inherit part xml_obj

687 val datatype = string_of_value (get_attr "datatype" xml_obj)

688 method datatype = datatype

689 method print_class = "if"

690 val mutable inputs = [{ name = "control"; datatype = "boolean" };

691 { name = "true"; datatype = "auto" };

692 { name = "false"; datatype = "auto" }]

693 val mutable outputs = [{ name = "output"; datatype = "auto" }]

694 method body = (get_datatype datatype) ^ " " ^

695 self#name ^ " = (" ^ (List.nth self#inputs 0).name ^

696 ") ?\n\t\t(" ^ (List.nth self#inputs 1).name ^

697 ") :\n\t\t(" ^ (List.nth self#inputs 2).name ^

698 ");"

699 method print_obj = "\"" ^ self#print_class ^ "\": { " ^

700 "\"name\":\"" ^ name ^ "\", " ^

701 "\"datatype\":\"" ^ datatype ^ "\" }"

702 end;;

703

VisLang Final Report Page 51 of 71

704 (* Main block management functions *)

705 (* Blockify goes through and matches the tagname to the appropiate object *)

706 let rec blockify xml_obj =

707 match xml_obj.tagname with

708 "BLOCK" -> (new block blockify xml_obj :> base)

709 | "REFERENCE" -> (new reference blockify xml_obj :> base)

710 (* Note: passing blockify into block/ref instantiation because they

711 * can’t see at compile time what the function blockify refers to *)

712 | "INPUT" -> (new input xml_obj :> base)

713 | "OUTPUT" -> (new output xml_obj :> base)

714 | "CONSTANT" -> (new constant xml_obj :> base)

715 | "DT" -> (new dt xml_obj :> base)

716 | "MEM" -> (new memory xml_obj :> base)

717 | "NOT" -> (new not_gate xml_obj :> base)

718 | "AND" -> (new and_gate xml_obj :> base)

719 | "OR" -> (new or_gate xml_obj :> base)

720 | "NAND" -> (new nand_gate xml_obj :> base)

721 | "NOR" -> (new nor_gate xml_obj :> base)

722 | "XOR" -> (new xor_gate xml_obj :> base)

723 | "SUM" -> (new sum xml_obj :> base)

724 | "PROD" -> (new prod xml_obj :> base)

725 | "GAIN" -> (new gain xml_obj :> base)

726 | "INV" -> (new inv xml_obj :> base)

727 | "COMPARE" -> (new compare xml_obj :> base)

728 | "IF" -> (new if_sw xml_obj :> base)

729 (* CONNECTION blocks are not supported by this operation.

730 * See get_connection above *)

731 | _ as name -> object_error ("Tag " ^ name ^ " not supported.")

732

733 (* Main caller function simply to protect against top level blocks not being

734 * of type BLOCK *)

735 let parse_xml_tree xml_obj =

736 match xml_obj.tagname with

737 "BLOCK" -> blockify xml_obj

738 | _ as name -> object_error

739 ("Tag " ^ name ^ " cannot be top level block")

Listing 10: Block Object Ordering and Optimization

../src/blockparse.ml
1 open Blockify

2 open Errors

3 open Xst

4

5 let print_list program = String.concat "\n\n"

6 (List.map (fun x -> (x :> base) #print_obj) program)

7

8 (* Block Parse intelligently traces through the objects inside a block from

9 * output to input and finds an appropiate path through the block such

10 * that when the code is extracted from the order obtained here,

11 * the program is consistent and no runtimes issues occur. *)

12 let rec block_parse top =

13 (* Algorithm:

VisLang Final Report Page 52 of 71

14 * The block trace algorithm will get the list of outputs from the

15 * current block level, and recursively traverse the current object

16 * list by finding the connection made from each input (starting at

17 * the output), and tracing it back to it’s last output. The recursion

18 * will continue until either: an input is found (terminate that branch),

19 * a memory block is found (terminate that branch, and add memory’s input

20 * to the list of traversals), a traversal is made to an object on the list

21 * of priors (terminate branch), or an algebraic loop is detected (raise

22 * error if the next traversal is already in the list of traversals made).

23 * At the termination of a traversal for an output, all of the objects

24 * detected are consistent and the entire list of objects is added to the

25 * list of priors. This process continues until all output and memory

26 * blocks successfully traverse back to inputs or priors branches. *)

27 let rec trace block_list prior_list trace_list current =

28 let compare_obj n = (fun x -> (x :> base) #name = n)in

29 match ((current :> base) #print_class) with

30 "input"

31 | "constant"

32 | "dt" -> if List.exists (compare_obj current#name) prior_list

33 || List.exists (compare_obj current#name) trace_list

34 (* If terminating block exists in EITHER

35 * list, exclude *)

36 then trace_list

37 else current :: trace_list

38 | _ as blk ->

39 (* If current object exists in the current trace loop,

40 * this means there’s a cyclic reference in the trace that

41 * will not be possible to escape, e.g. algebraic loop *)

42 if List.exists (compare_obj current#name) trace_list

43 then object_error (blk ^ ": " ^ ((current :> base) #name) ^

44 " is in an algebraic loop...")

45 (* If current object exists on the list of priors, that means

46 * that value is already computed and will not need to be

47 * computed again. *)

48 else if List.exists (compare_obj current#name) prior_list

49 then trace_list

50 (* Default case: kick off trace for each connected input

51 * in current object’s list of inputs *)

52 else if (blk = "memory") && ((List.length trace_list) > 0)

53 then trace_list (* Terminate trace at memory block

54 * if one is found as an input *)

55 else

56 (* First find and verify all inputs connected to current

57 * block, matching them to the relevant blocks for further

58 * recursion. Next, set names of current blocks to the

59 * outputs of those blocks correctly such that they can

60 * be printed correctly in SSA form without error.

61 * Note: need to handle blocks (function calls) separetely

62 * using the REF type so that SSA works.

63 * Note: In order to link current block to inputs, we

64 * need to replace input names for current block with

65 * the output names of the corresponding parts. E.g.

66 * block name for basic parts and structured defs

67 * for block and reference function calls. *)

68 let (new_inputs, input_names) =

VisLang Final Report Page 53 of 71

69 List.split

70 (List.map

71 (fun x -> let ref = current#get_connection x.name

72 in match ref with

73 Name n -> ({

74 name = n;

75 datatype = x.datatype

76 },

77 n)

78 (* When a reference is found, assume

79 * the function call completed and we

80 * are extracting the relevant output

81 * to that block here. *)

82 | Ref r ->

83 if r.reftype = "NAME"

84 then if ((List.length r.reflist) = 1)

85 then let cnx = (List.hd r.reflist)

86 in ({ name = r.refroot ^

87 "_outputs." ^

88 cnx;

89 datatype = x.datatype

90 }, r.refroot)

91 else object_error

92 ("Cannot reference more " ^

93 "than 1 deep for blocks")

94 else object_error

95 ("FILE reference type " ^

96 "not supported for ref " ^

97 (string_of_ref r)

98)

99 | _ as attr -> object_error

100 ("Attribute " ^

101 (string_of_value attr) ^

102 " not supported.")

103)

104 ((current :> base) #inputs)

105)

106 (* Compute the list of inputs to the current block

107 * to split path and continue traversal *)

108 in let input_list =

109 (List.map

110 (fun x ->

111 (List.find

112 (compare_obj x)

113 block_list

114)

115)

116 input_names

117)

118 in ((current :> base) #set_inputs new_inputs);

119 let trace_list = current :: trace_list

120 in trace_split block_list prior_list trace_list input_list

121 (* for each input of a block, trace out the list from that point on *)

122 and trace_split block_list prior_list trace_list input_list =

123 match input_list with

VisLang Final Report Page 54 of 71

124 [] -> trace_list

125 | hd :: tl -> let trace_list =

126 (trace block_list prior_list trace_list hd)

127 in trace_split block_list prior_list trace_list tl

128

129 (* trace_start function: this function is the wrapper used to call the

130 * inner trace algorithm. It recurses through the list of start objects,

131 * applying the trace algorithm for each object, then appending the result

132 * to the list of priors for the next recursion *)

133 in

134 let rec trace_start block_list prior_list start_list =

135 match start_list with

136 [] -> List.rev prior_list (* reverse list here because we were

137 * traversing backwards above *)

138 | hd :: tl -> let prior_list = prior_list @

139 (trace block_list prior_list [] hd)

140 in trace_start block_list prior_list tl

141

142 (* start_list: the list of objects in the top block used to prime the trace

143 * algorithm. All outputs and memory blocks are added to the start list

144 * because they are the termination of the code the block will generate *)

145 in

146 let inner_objs obj = (obj :> base) #inner_objs

147 in

148 let start_list obj =

149 (List.filter

150 (fun x -> (x :> base) #print_class = "output")

151 (inner_objs obj)

152)

153 @ (List.filter

154 (fun x -> (x :> base) #print_class = "memory")

155 (inner_objs obj)

156)

157 in

158 (* Perform the same mutation operations for any inner blocks of top.

159 * Note: at this point, if an inner object was not used, it should not appear

160 * in the code for top below. *)

161 let inner_block_list = List.filter

162 (fun x-> (x :> base) #print_class = "block")

163 (inner_objs top)

164 in

165 (* Perform the trace operation and re-set the inner objects of top with the

166 * result. Also print objects that will be removed. *)

167 let new_inner_objs = (trace_start (inner_objs top) [] (start_list top))

168 in

169 top#set_inner_objs new_inner_objs;

170 (* Return a list of blocks with properly configured inner objects

171 * to be used for compilation. Note: we reverse the list here so that

172 * inner_blks are first to be compiled. *)

173 List.rev (top :: List.flatten (List.map block_parse inner_block_list))

Listing 11: Code Generation

VisLang Final Report Page 55 of 71

../src/compile.ml
1 open Blockify

2 open Blockparse

3

4 let translate program =

5 (* Print standard libraries required *)

6 "#include <stdbool.h>\n"

7 ^ "#include <stdint.h>\n"

8 ^ "#include <float.h>\n"

9 ^ "#include <math.h>\n"

10 ^ "\n"

11 (* Print print the code for each block in the program using the optimized and

12 * ordered inner blocks in the body code method for each *)

13 ^ String.concat "\n\n" (List.map

14 (fun x -> let obj = (x :> base) in

15 obj#header ^ obj#trailer

16)

17 program

18)

19 ^ "\n/* Generated using VLCC */\n"

20 (* Generate python script for processing in files and sending it through the

21 * compiled binary and printing the results as it is running *)

22 let gen_debug_code program =

23 let top = ((List.hd (List.rev program)) :> base) in

24 let name = top#name in

25 let inputs = top#inputs in

26 let outputs = top#outputs in

27 let ctypes = List.map

28 (fun x -> x.name ^ "\", "

29 ^ match x.datatype with

30 "uint8" -> "c_uint8"

31 | "uint16" -> "c_uint16"

32 | "uint32" -> "c_uint32"

33 | "int8" -> "c_int8"

34 | "int16" -> "c_int16"

35 | "int32" -> "c_int32"

36 | "single" -> "c_float"

37 | "double" -> "c_double"

38 | "boolean"-> "c_byte" (* Assume uint8 *)

39 | _ -> failwith "unassigned value"

40)

41 in

42 "import sys\n"

43 ^ "import ctypes\n"

44 ^ "from ctypes import *\n"

45 ^ "lib = cdll.LoadLibrary(’./test-" ^ name ^ ".so’)\n"

46 ^ "class " ^ name ^ "_inputs(Structure):\n"

47 ^ " _fields_ = [(\""

48 ^ (String.concat "), (\"" (ctypes inputs)) ^ ")]\n"

49 ^ " \n"

50 ^ "class " ^ name ^ "_outputs(Structure):\n"

51 ^ " _fields_ = [(\""

52 ^ (String.concat "), (\"" (ctypes outputs)) ^ ")]\n"

53 ^ " \n"

54 ^ "lib." ^ name ^ ".restype = " ^ name ^ "_outputs\n"

VisLang Final Report Page 56 of 71

55 ^ "with open(sys.argv[1]) as f:\n"

56 ^ " for line in f:\n"

57 ^ " listargs = line.strip(’\\n’).split(’,’)\n"

58 ^ " inputs = " ^ name ^ "_inputs("

59 ^ (String.concat

60 ", "

61 (List.mapi

62 (fun i x -> (

63 match x.datatype with

64 "uint8"

65 | "uint16"

66 | "uint32"

67 | "int8"

68 | "int16"

69 | "int32" -> "int"

70 | "single"

71 | "double" -> "float"

72 | "boolean"-> "int" (* Assume uint8 *)

73 | _ -> failwith "unassigned value"

74)

75 ^ "(listargs[" ^ string_of_int(i) ^ "])"

76)

77 inputs

78)

79)

80 ^ ")\n"

81 ^ " outputs = lib." ^ name ^ "(inputs)\n"

82 ^ " print ’,’.join(["

83 ^ (String.concat

84 ", "

85 (List.map

86 (fun x -> "\"" ^ (

87 match x.datatype with

88 "uint8"

89 | "uint16"

90 | "uint32"

91 | "int8"

92 | "int16"

93 | "int32" -> "%d"

94 | "single"

95 | "double" -> "%.3f"

96 | "boolean"-> "%d" (* Assume uint8 *)

97 | _ -> failwith "unassigned value"

98)

99 ^ "\" % outputs." ^ x.name

100)

101 outputs

102)

103)

104 ^ "])"

Listing 12: VisLang Errors

VisLang Final Report Page 57 of 71

../src/errors.ml
1 open Lexing

2 open Parsing

3 open Xst

4

5 (* Define errors *)

6 let issue msg start finish =

7 Printf.sprintf "(line %d: char %d..%d): %s"

8 (start.pos_lnum)

9 (start.pos_cnum - start.pos_bol)

10 (finish.pos_cnum - finish.pos_bol)

11 msg

12 exception XML_Error of string

13 let xml_error lexbuf = raise

14 (XML_Error

15 (issue

16 ("Badly Formatted XML: " ^ (Lexing.lexeme lexbuf))

17 (Lexing.lexeme_start_p lexbuf)

18 (Lexing.lexeme_end_p lexbuf)

19)

20)

21 let xml_warning lexbuf = ignore

22 (issue

23 ("Warning -- Skipping XML: " ^ (Lexing.lexeme lexbuf))

24 (Lexing.lexeme_start_p lexbuf)

25 (Lexing.lexeme_end_p lexbuf)

26)

27 exception XML_Parse_Error of string

28 let xml_parse_error nterm msg = raise

29 (XML_Parse_Error

30 (issue

31 ("Badly Formatted XML: " ^ msg)

32 (rhs_start_pos nterm)

33 (rhs_end_pos nterm)

34)

35)

36

37 exception Block_Error of string

38 let block_error blk msg = raise

39 (Block_Error

40 (msg ^ " for block:\n" ^ Xst.string_of_xml blk)

41)

42

43 let object_error msg = raise (Block_Error (msg))

B VLCC Utilities

Listing 13: Automated Build Script

../src/Makefile
1 .DEFAULT_GOAL := vlcc

2

VisLang Final Report Page 58 of 71

3 OCAMLC=ocamlc

4 OCAMLOPT=ocamlopt

5 OCAMLDEP=ocamldep

6 OCAMLLEX=ocamllex

7 OCAMLYACC=ocamlyacc

8

9 # main compilation

10 .SECONDARY:

11 MAIN_OBJS = xst.cmo errors.cmo xscanner.cmo xparser.cmo \

12 blockify.cmo blockparse.cmo compile.cmo vislang.cmo

13 vlcc : $(MAIN_OBJS)

14 @echo "$(OCAMLC) -o vlcc"

15 @$(OCAMLC) -o $@ str.cma $^

16

17 # Lexxer rules

18 %.ml : %.mll

19 $(OCAMLLEX) -q $<

20

21 # Parser rules

22 %.ml %.mli : %.mly

23 $(OCAMLYACC) $<

24

25 # Common rules

26 .SUFFIXES: .ml .mli .cmo .cmi .cmx

27

28 .ml.cmo:

29 $(OCAMLC) -c $<

30

31 .mli.cmi:

32 $(OCAMLC) -c $<

33

34 .ml.cmx:

35 $(OCAMLOPT) -c $<

36

37 clean:

38 rm -f vlcc

39 rm -f xscanner.ml xparser.ml xparser.mli

40 rm -f *.cm[iox]

41

42 # Dependencies

43 depend:

44 $(OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

45

46 include .depend

Listing 14: Automated Testing Script

../test/run_tests.sh
1 #!/bin/sh

2

3 VLCC="../src/vlcc"

4 GCC="gcc"

5 PYTHON="python"

VisLang Final Report Page 59 of 71

6

7 # Set time limit for all operations

8 ulimit -t 30

9

10 globallog="../testall.log"

11 rm -f $globallog

12 error=0

13 globalerror=0

14

15 keep=0

16

17 Usage() {

18 echo "Usage: testall.sh [options] [.vl files]"

19 echo "-k Keep intermediate files"

20 echo "-h Print this help"

21 exit 1

22 }

23

24 SignalError() {

25 echo "FAILED"

26 error=1

27 echo " $1"

28 }

29

30 # Compare <outfile> <reffile> <difffile>

31 # Compares the outfile with reffile.

32 # Differences, if any, written to difffile

33 Compare() {

34 generatedfiles="$generatedfiles $3"

35 echo diff -b $1 $2 ">" $3 1>&2

36 diff -b "$1" "$2" > "$3" 2>&1 || {

37 SignalError "$1 differs"

38 echo "FAILED $1 differs from $2" 1>&2

39 }

40 }

41

42 # Run <args>

43 # Report the command, run it, and report any errors

44 Run() {

45 echo $* 1>&2

46 eval $* || {

47 SignalError "failure: $*"

48 return 1

49 }

50 }

51

52 Check() {

53 error=0

54 basename=‘echo $1 | sed ’s/.*\\///

55 s/.vl//’‘

56 reffile=‘echo $1 | sed ’s/.vl$//’‘

57 basedir="‘echo $1 | sed ’s/\/[^\/]*$//’‘/."

58

59 echo -n "$basename..."

60

VisLang Final Report Page 60 of 71

61 echo 1>&2

62 echo "###### Testing $basename" 1>&2

63

64 generatedfiles=""

65

66 generatedfiles="$generatedfiles ${basename}.c" &&

67 Run "$VLCC" "-c" $1 &&

68 referencedfiles="$(cat ${basename}.c | grep ’#include \".*\.c\"’ |

69 sed ’s/\#include *\"//’ | sed ’s/\.c\"/.c/’)" &&

70 generatedfiles="$generatedfiles $referencedfiles" &&

71 for file in $referencedfiles; do

72 Run "$VLCC" "-c" "${file%.c}.vl";

73 done &&

74 generatedfiles="$generatedfiles ${basename}.o" &&

75 Run "$GCC" "-c -fPIC" ${basename}.c &&

76 generatedfiles="$generatedfiles ${basename}.so" &&

77 Run "$GCC" "-shared -o" ${basename}.so ${basename}.o &&

78 generatedfiles="$generatedfiles ${basename}.py" &&

79 Run "$VLCC" "-d" $1 &&

80 generatedfiles="$generatedfiles ${basename}.c.out" &&

81 Run "$PYTHON" ${basename}.py ${basename}.in > ${basename}.c.out &&

82 Compare ${basename}.c.out ${reffile}.out ${basename}.c.diff

83

84 # Report the status and clean up the generated files

85

86 if [$error -eq 0] ; then

87 if [$keep -eq 0] ; then

88 rm -f $generatedfiles

89 fi

90 echo "OK"

91 echo "###### SUCCESS" 1>&2

92 else

93 echo "###### FAILED" 1>&2

94 globalerror=$error

95 fi

96 }

97

98 CheckPass() {

99 error=0

100 basename=‘echo $1 | sed ’s/.*\\///

101 s/.vl//’‘

102 reffile=‘echo $1 | sed ’s/.vl$//’‘

103 basedir="‘echo $1 | sed ’s/\/[^\/]*$//’‘/."

104

105 echo -n "$basename..."

106

107 echo 1>&2

108 echo "###### Testing $basename" 1>&2

109

110 generatedfiles=""

111 # Basically check if we can compile all of it,

112 # then stop short of any testing

113 generatedfiles="$generatedfiles ${basename}.c" &&

114 Run "$VLCC" "-c" $1 &&

115 generatedfiles="$generatedfiles ${basename}.o" &&

VisLang Final Report Page 61 of 71

116 Run "$GCC" "-c -fPIC" ${basename}.c &&

117

118 # Report the status and clean up the generated files

119

120 if [$error -eq 0] ; then

121 if [$keep -eq 0] ; then

122 rm -f $generatedfiles

123 fi

124 echo "OK"

125 echo "###### SUCCESS" 1>&2

126 else

127 echo "###### FAILED" 1>&2

128 globalerror=$error

129 fi

130 }

131

132 SignalPass() {

133 if [$error -eq 1] ; then

134 echo "OK"

135 error=0

136 fi

137 }

138

139 # RunFail <args>

140 # Report the command, run it, and report any errors

141 RunFail() {

142 echo $* 1>&2

143 eval $* && {

144 SignalError "uncaught: $*"

145 return 1

146 } || {

147 SignalPass

148 return 0

149 }

150 }

151

152 CheckFail() {

153 error=1

154 basename=‘echo $1 | sed ’s/.*\\///

155 s/.vl//’‘

156 reffile=‘echo $1 | sed ’s/.vl$//’‘

157 basedir="‘echo $1 | sed ’s/\/[^\/]*$//’‘/."

158

159 echo -n "$basename..."

160

161 echo 1>&2

162 echo "###### Testing $basename" 1>&2

163

164 RunFail "$VLCC" "-c" $1

165

166 # Report the status and clean up the generated files

167 if [$error -eq 0] ; then

168 if [$keep -eq 0] ; then

169 rm -f $generatedfiles

170 fi

VisLang Final Report Page 62 of 71

171 echo "###### SUCCESS" 1>&2

172 else

173 echo "###### FAILED" 1>&2

174 globalerror=$error

175 fi

176 }

177

178 while getopts kdpsh c; do

179 case $c in

180 k) # Keep intermediate files

181 keep=1

182 ;;

183 h) # Help

184 Usage

185 ;;

186 esac

187 done

188

189 shift ‘expr $OPTIND - 1‘

190

191 if [$# -ge 1]

192 then

193 files=$@

194 else

195 files="./fail-*.vl ./pass-*.vl ./test-*.vl"

196 fi

197

198

199 for file in $files

200 do

201 case $file in

202 *test-*)

203 Check $file 2>> $globallog

204 ;;

205 *fail-*)

206 CheckFail $file 2>> $globallog

207 ;;

208 *pass-*)

209 CheckPass $file 2>> $globallog

210 ;;

211 *)

212 echo "unknown file type $file"

213 globalerror=1

214 ;;

215 esac

216 # Date and Time stamp for user log

217 echo "Test completed at $(date ’+%H:%M:%S on %m/%d/%y’)" 1>> $globallog

218 done

219

220 exit $globalerror

C VLCC Test Cases

VisLang Final Report Page 63 of 71

Listing 15: Algebraic Loop Failure Case

../test/fail-algebraic_loop.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="set_reset_latch">

3 <vl:INPUT name="set" datatype="boolean"/>

4 <vl:INPUT name="reset" datatype="boolean"/>

5 <vl:NOT name="not_reset">

6 <vl:CONNECTION to="input" from="reset"/>

7 </vl:NOT>

8 <vl:AND name="latch_and_not_reset">

9 <vl:CONNECTION to="input1" from="set_or_mem"/>

10 <vl:CONNECTION to="input2" from="not_reset"/>

11 </vl:AND>

12 <vl:OR name="set_or_mem">

13 <vl:CONNECTION to="input1" from="set"/>

14 <vl:CONNECTION to="input2" from="latch"/>

15 </vl:OR>

16 <vl:MEM name="latch_lp" datatype="boolean" ic="false">

17 <vl:CONNECTION to="current" from="latch_and_not_reset"/>

18 </vl:MEM>

19 <vl:OUTPUT name="latch" datatype="boolean">

20 <vl:CONNECTION to="latch" from="latch_and_not_reset"/>

21 </vl:OUTPUT>

22 </vl:BLOCK>

Listing 16: Bad Connection Failure Case

../test/fail-bad_connection.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="buffer">

3 <vl:INPUT name="in" datatype="uint32"/>

4 <vl:OUTPUT name="out" datatype="uint32">

5 <vl:CONNECTION to="out" from="0x32"/>

6 </vl:OUTPUT>

7 </vl:BLOCK>

Listing 17: Missing Attribute Failure Case

../test/fail-missing_attribute.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK>

3 <vl:INPUT name="in" datatype="uint32"/>

4 <vl:OUTPUT name="out" datatype="uint32">

5 <vl:CONNECTION to="out" from="in"/>

6 </vl:OUTPUT>

7 </vl:BLOCK>

Listing 18: Unended Block Failure Case

VisLang Final Report Page 64 of 71

../test/fail-unended_block.vl
1 <vl:BLOCK name="empty_block">

Listing 19: Cascaded Blocks Completion Case

../test/pass-cascaded_empty_blocks.vl
1 <vl:BLOCK name="empty_block">

2 <vl:BLOCK name="empty_block1"/>

3 <vl:BLOCK name="empty_block2"/>

4 <vl:BLOCK name="empty_block3">

5 <vl:BLOCK name="empty_block4"/>

6 </vl:BLOCK>

7 <vl:BLOCK name="empty_block5">

8 <vl:BLOCK name="empty_block6"/>

9 <vl:BLOCK name="empty_block7"/>

10 </vl:BLOCK>

11 <vl:BLOCK name="empty_block8"/>

12 <vl:BLOCK name="empty_block9"/>

13 </vl:BLOCK>

Listing 20: Empty Block Completion Case

../test/pass-empty_block.vl
1 <vl:BLOCK name="empty_block"/>

Listing 21: XML Tolerance Case

../test/pass-gibberish.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 sfdghsdf

3 sfgnsfjhs

4 fj

5 rtsr

6 thntr<Sgadfgsfg?>fsgfg<!>

7 </Sfdghsdths>

8 <vl:BLOCK name="buffer">

9 gibberish name fgfgavava datatype fgdfablah

10 <vl:INPUT name="in" datatype="uint32"/>

11 <vl:OUTPUT name="out" datatype="uint32">

12 sfdgadfnagt

13 CONNECTION " blah"

14 <vl:CONNECTION to="out" from="in"/>

15 OUTPUT dfgdfger

16 more gibberish

17 </vl:OUTPUT>

18 this is all gibberish!

19 </vl:BLOCK>

VisLang Final Report Page 65 of 71

Listing 22: Buffer Value Test Case

../test/test-buffer.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="buffer">

3 <vl:INPUT name="in" datatype="uint32"/>

4 <vl:OUTPUT name="out" datatype="uint32">

5 <vl:CONNECTION to="out" from="in"/>

6 </vl:OUTPUT>

7 </vl:BLOCK>

Listing 23: Buffer in Buffer Value Test Case

../test/test-buffer_in_buffer.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="buffer_in_buffer">

3 <vl:INPUT name="in" datatype="uint32"/>

4 <vl:BLOCK name="buffer">

5 <!-- ’from’ in connection is scoped external

6 of block, ’to’ is internal -->

7 <vl:CONNECTION to="in" from="in"/>

8 <vl:INPUT name="in" datatype="uint32"/>

9 <vl:OUTPUT name="out" datatype="uint32">

10 <vl:CONNECTION to="out" from="in"/>

11 </vl:OUTPUT>

12 </vl:BLOCK>

13 <vl:OUTPUT name="out" datatype="uint32">

14 <vl:CONNECTION to="out" from="buffer|out"/>

15 </vl:OUTPUT>

16 </vl:BLOCK>

Listing 24: Comparision Operation Test Case

../test/test-compare.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="compare">

3 <vl:INPUT name="in" datatype="single"/>

4 <vl:CONSTANT name="ten" datatype="single" value="10.000"/>

5 <vl:COMPARE name="grt" datatype="single" operation=">">

6 <vl:CONNECTION to="lhs" from="in"/>

7 <vl:CONNECTION to="rhs" from="ten"/>

8 </vl:COMPARE>

9 <vl:OUTPUT name="grt_out" datatype="boolean">

10 <vl:CONNECTION to="grt_out" from="grt"/>

11 </vl:OUTPUT>

12 <vl:COMPARE name="lst" datatype="single" operation="<">

13 <vl:CONNECTION to="lhs" from="in"/>

14 <vl:CONNECTION to="rhs" from="ten"/>

VisLang Final Report Page 66 of 71

15 </vl:COMPARE>

16 <vl:OUTPUT name="lst_out" datatype="boolean">

17 <vl:CONNECTION to="lst_out" from="lst"/>

18 </vl:OUTPUT>

19 <vl:COMPARE name="geq" datatype="single" operation=">=">

20 <vl:CONNECTION to="lhs" from="in"/>

21 <vl:CONNECTION to="rhs" from="ten"/>

22 </vl:COMPARE>

23 <vl:OUTPUT name="geq_out" datatype="boolean">

24 <vl:CONNECTION to="geq_out" from="geq"/>

25 </vl:OUTPUT>

26 <vl:COMPARE name="leq" datatype="single" operation="<=">

27 <vl:CONNECTION to="lhs" from="in"/>

28 <vl:CONNECTION to="rhs" from="ten"/>

29 </vl:COMPARE>

30 <vl:OUTPUT name="leq_out" datatype="boolean">

31 <vl:CONNECTION to="leq_out" from="leq"/>

32 </vl:OUTPUT>

33 <vl:COMPARE name="eq" datatype="single" operation="==">

34 <vl:CONNECTION to="lhs" from="in"/>

35 <vl:CONNECTION to="rhs" from="ten"/>

36 </vl:COMPARE>

37 <vl:OUTPUT name="eq_out" datatype="boolean">

38 <vl:CONNECTION to="eq_out" from="eq"/>

39 </vl:OUTPUT>

40 <vl:COMPARE name="neq" datatype="single" operation="!=">

41 <vl:CONNECTION to="lhs" from="in"/>

42 <vl:CONNECTION to="rhs" from="ten"/>

43 </vl:COMPARE>

44 <vl:OUTPUT name="neq_out" datatype="boolean">

45 <vl:CONNECTION to="neq_out" from="neq"/>

46 </vl:OUTPUT>

47 </vl:BLOCK>

Listing 25: Logical Gate Test Case

../test/test-gates.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="gates">

3 <vl:INPUT name="in1" datatype="boolean"/>

4 <vl:INPUT name="in2" datatype="boolean"/>

5 <vl:NOT name="not">

6 <vl:CONNECTION to="input" from="in1"/>

7 </vl:NOT>

8 <vl:OUTPUT name="not_gate" datatype="boolean">

9 <vl:CONNECTION to="not_gate" from="not"/>

10 </vl:OUTPUT>

11 <vl:OR name="or">

12 <vl:CONNECTION to="input1" from="in1"/>

13 <vl:CONNECTION to="input2" from="in2"/>

14 </vl:OR>

15 <vl:OUTPUT name="or_gate" datatype="boolean">

16 <vl:CONNECTION to="or_gate" from="or"/>

VisLang Final Report Page 67 of 71

17 </vl:OUTPUT>

18 <vl:AND name="and">

19 <vl:CONNECTION to="input1" from="in1"/>

20 <vl:CONNECTION to="input2" from="in2"/>

21 </vl:AND>

22 <vl:OUTPUT name="and_gate" datatype="boolean">

23 <vl:CONNECTION to="and_gate" from="and"/>

24 </vl:OUTPUT>

25 <vl:NOR name="nor">

26 <vl:CONNECTION to="input1" from="in1"/>

27 <vl:CONNECTION to="input2" from="in2"/>

28 <vl:CONNECTION to="input3" from="and"/>

29 </vl:NOR>

30 <vl:OUTPUT name="nor_gate" datatype="boolean">

31 <vl:CONNECTION to="nor_gate" from="nor"/>

32 </vl:OUTPUT>

33 <vl:NAND name="nand">

34 <vl:CONNECTION to="input1" from="in1"/>

35 <vl:CONNECTION to="input2" from="in2"/>

36 <vl:CONNECTION to="input3" from="not"/>

37 </vl:NAND>

38 <vl:OUTPUT name="nand_gate" datatype="boolean">

39 <vl:CONNECTION to="nand_gate" from="nand"/>

40 </vl:OUTPUT>

41 <vl:XOR name="xor">

42 <vl:CONNECTION to="input1" from="in1"/>

43 <vl:CONNECTION to="input2" from="in2"/>

44 <vl:CONNECTION to="input3" from="nor"/>

45 </vl:XOR>

46 <vl:OUTPUT name="xor_gate" datatype="boolean">

47 <vl:CONNECTION to="xor_gate" from="xor"/>

48 </vl:OUTPUT>

49 </vl:BLOCK>

Listing 26: Reference Block Test Case

../test/test-hysteresis_sw.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="hysteresis_sw">

3 <vl:INPUT name="in" datatype="single"/>

4 <vl:CONSTANT name="hi" datatype="single" value="20.000"/>

5 <vl:CONSTANT name="lo" datatype="single" value="10.000"/>

6 <vl:COMPARE name="hi_cmp" datatype="single" operation=">=">

7 <vl:CONNECTION to="lhs" from="in"/>

8 <vl:CONNECTION to="rhs" from="hi"/>

9 </vl:COMPARE>

10 <vl:COMPARE name="lo_cmp" datatype="single" operation="<=">

11 <vl:CONNECTION to="lhs" from="in"/>

12 <vl:CONNECTION to="rhs" from="lo"/>

13 </vl:COMPARE>

14 ‘ <vl:REFERENCE name="sr_latch"

15 ref="./test-set_reset_latch.vl|set_reset_latch">

16 <vl:CONNECTION to="set" from="hi_cmp"/>

VisLang Final Report Page 68 of 71

17 <vl:CONNECTION to="reset" from="lo_cmp"/>

18 </vl:REFERENCE>

19 <vl:OUTPUT name="out" datatype="boolean">

20 <vl:CONNECTION to="out" from="sr_latch|latch"/>

21 </vl:OUTPUT>

22 </vl:BLOCK>

Listing 27: Math Operations Test Case

../test/test-math_constant.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="math_constant">

3 <vl:INPUT name="in" datatype="single"/>

4 <vl:CONSTANT name="two" datatype="single" value="2"/>

5

6 <vl:SUM name="summer" datatype="single">

7 <vl:CONNECTION to="input1" from="in"/>

8 <vl:CONNECTION to="input2" from="two"/>

9 </vl:SUM>

10 <vl:OUTPUT name="sum_out" datatype="single">

11 <vl:CONNECTION to="sum_out" from="summer"/>

12 </vl:OUTPUT>

13

14 <vl:PROD name="mult" datatype="single">

15 <vl:CONNECTION to="input1" from="in"/>

16 <vl:CONNECTION to="input2" from="two"/>

17 </vl:PROD>

18 <vl:OUTPUT name="mult_out" datatype="single">

19 <vl:CONNECTION to="mult_out" from="mult"/>

20 </vl:OUTPUT>

21

22 <vl:GAIN name="gain" datatype="single" value="-1.000">

23 <vl:CONNECTION to="input" from="in"/>

24 </vl:GAIN>

25 <vl:OUTPUT name="gain_out" datatype="single">

26 <vl:CONNECTION to="gain_out" from="gain"/>

27 </vl:OUTPUT>

28

29 <!-- Add four to input to prevent DIV/0 fault -->

30 <vl:CONSTANT name="four" datatype="single" value="4"/>

31 <vl:SUM name="summer2" datatype="single">

32 <vl:CONNECTION to="input1" from="in"/>

33 <vl:CONNECTION to="input2" from="four"/>

34 </vl:SUM>

35 <vl:INV name="inv" datatype="single">

36 <vl:CONNECTION to="input" from="summer2"/>

37 </vl:INV>

38 <vl:OUTPUT name="inv_out" datatype="single">

39 <vl:CONNECTION to="inv_out" from="inv"/>

40 </vl:OUTPUT>

41 </vl:BLOCK>

VisLang Final Report Page 69 of 71

Listing 28: Memory Block Test Case

../test/test-memory.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="memory">

3 <vl:INPUT name="in" datatype="uint32"/>

4 <vl:MEM name="mem" datatype="uint32" ic="0x0">

5 <vl:CONNECTION to="current" from="in"/>

6 </vl:MEM>

7 <vl:OUTPUT name="out" datatype="uint32">

8 <vl:CONNECTION to="out" from="mem"/>

9 </vl:OUTPUT>

10 </vl:BLOCK>

Listing 29: SR Latch Complexity Test Case

../test/test-set_reset_latch.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="set_reset_latch">

3 <vl:INPUT name="set" datatype="boolean"/>

4 <vl:INPUT name="reset" datatype="boolean"/>

5 <vl:NOT name="not_reset">

6 <vl:CONNECTION to="input" from="reset"/>

7 </vl:NOT>

8 <vl:AND name="latch_and_not_reset">

9 <vl:CONNECTION to="input1" from="set_or_mem"/>

10 <vl:CONNECTION to="input2" from="not_reset"/>

11 </vl:AND>

12 <vl:OR name="set_or_mem">

13 <vl:CONNECTION to="input1" from="set"/>

14 <vl:CONNECTION to="input2" from="latch_lp"/>

15 </vl:OR>

16 <vl:MEM name="latch_lp" datatype="boolean" ic="false">

17 <vl:CONNECTION to="current" from="latch_and_not_reset"/>

18 </vl:MEM>

19 <vl:OUTPUT name="latch" datatype="boolean">

20 <vl:CONNECTION to="latch" from="latch_and_not_reset"/>

21 </vl:OUTPUT>

22 </vl:BLOCK>

Listing 30: Timer Complexity Test Case

../test/test-timer.vl
1 <?xml version="1.0" encoding="UTF-8"?>

2 <vl:BLOCK name="timer">

3 <!-- The BLOCK element denotes a subsystem of parts -->

4 <!-- All "parts" added by the user can use Inputs and/or

5 Outputs for utilization elsewhere in project. The

6 reference will search the path for that file -->

7 <!-- All Inputs do not have to be used and will be optimized out -->

VisLang Final Report Page 70 of 71

8 <vl:INPUT name="start" datatype="boolean"/>

9 <vl:INPUT name="reset" datatype="boolean"/>

10 <vl:INPUT name="time" datatype="single"/>

11 <!-- Constants can be defined as a seperate block as well -->

12 <vl:CONSTANT name="zero_constant" datatype="single" value="0.000"/>

13 <!-- The DT block puts out the difference in time between

14 successive passes of program. In a Soft RTOS, this

15 would be a variable number. In a Hard RTOS, this

16 would be a constant number. Here, we are saying the

17 module will run around 10Hz, or 100ms (0.1 s).

18 The DT module needs an initializer to guess the value

19 on the first pass, but will be updated every pass afterwards -->

20 <vl:DT name="time_since_last_pass" ic="0.100"/>

21 <vl:NOT name="count_not_expired">

22 <vl:CONNECTION to="input" from="count_expired_lp"/>

23 </vl:NOT>

24 <vl:AND name="start_enb">

25 <vl:CONNECTION to="input1" from="start"/>

26 <vl:CONNECTION to="input2" from="count_not_expired"/>

27 </vl:AND>

28 <vl:IF name="increment_value" datatype="single">

29 <!-- Control flow IF switch: If Control is true, execute

30 True assignment, else execute False assignment -->

31 <vl:CONNECTION to="control" from="start_enb"/>

32 <vl:CONNECTION to="true" from="time_since_last_pass"/>

33 <vl:CONNECTION to="false" from="zero_constant"/>

34 </vl:IF>

35 <vl:SUM name="summer" datatype="single">

36 <!-- The summer will add all the inputs together. If you want

37 add a negative number, use the NEG part to negate the

38 signal before connecting to this part. -->

39 <!-- Additionally, the PROD part exists for taking the PI

40 product of a set of inputs, and the INV command for taking

41 the recipicral of a number (divide by zero runtime error

42 is partially mitgated, but unexpected operation may occur) -->

43 <vl:CONNECTION to="input1" from="increment_value"/>

44 <vl:CONNECTION to="input2" from="elapsed_time_lp"/>

45 </vl:SUM>

46 <vl:IF name="reset_switch" datatype="single">

47 <vl:CONNECTION to="control" from="reset"/>

48 <vl:CONNECTION to="true" from="zero_constant"/>

49 <vl:CONNECTION to="false" from="summer"/>

50 </vl:IF>

51 <vl:COMPARE name="is_count_expired" datatype="single" operation=">=">

52 <vl:CONNECTION to="lhs" from="elapsed_time"/>

53 <vl:CONNECTION to="rhs" from="time"/>

54 </vl:COMPARE>

55 <vl:MEM name="elapsed_time_lp" datatype="single" ic="0.000" >

56 <vl:CONNECTION to="current" from="elapsed_time"/>

57 </vl:MEM>

58 <vl:MEM name="count_expired_lp" datatype="boolean" ic="false">

59 <vl:CONNECTION to="current" from="count_expired"/>

60 </vl:MEM>

61 <!-- All Outputs need to have a connection in the part,

62 at least to a constant -->

VisLang Final Report Page 71 of 71

63 <vl:OUTPUT name="count_expired" datatype="boolean">

64 <!-- Outputs of a subsystem need to have a connection specified -->

65 <vl:CONNECTION to="count_expired" from="is_count_expired"/>

66 </vl:OUTPUT>

67 <vl:OUTPUT name="elapsed_time" datatype="single">

68 <vl:CONNECTION to="elapsed_time" from="reset_switch"/>

69 </vl:OUTPUT>

70 </vl:BLOCK>

	Introduction
	Key Language Features

	Language Tutorial
	Example Program

	Language Reference Manual
	Lexical Convention
	XML Elements and Attributes
	Accepted Elements and Attributes
	Accepted Types
	Comments

	Built-In Parts
	Using Built-In Parts
	Basic Language Elements
	Atomic Parts

	Project Plan
	Software Development Environment
	Project Timeline
	Project Log

	VisLang Compiler Architecture
	Test Plan
	Test Case List

	Conclusion
	Lessons Learned
	Future Improvements

	VLCC Source Code
	VLCC Utilities
	VLCC Test Cases

