Fundamentals of Computer Systems

Combinational Logic

Stephen A. Edwards
Columbia University

Summer 2015

Combinational Circuits

Combinational circuits are stateless.

Their output is a function only of the current input.

- _)-_) -

Basic Combinational Circuits
Enabler
Encoders and Decoders
Multiplexers
Shifters

Circuit Timing
Critical and Shortest Paths
Glitches

Arithmetic Circuits
Ripple Carry Adder
Adder/Subtractor
Carry Lookahead Adder

Overview: Enabler

An enabler has two inputs:

» data: can be several bits, but 1 bit examples for now
» enable/disable: 1 bit on/off switch

When enabled, the circuit’s output is its input data. When
disabled, the output is 0.

ENABLE ENABLE

X——IDATA OUTPUT|——X X——DATA OUTPUT|——>0

When enabled When disabled

Enabler Implementation

Note abbreviated truth table: input, A, listed in output column

A—] A
F
s o T

In both cases, output is enabled when EN = 1, but they
handle the disabled (EN = 0) cases differently.

Overview: Decoder

A decoder takes a k — bit input and produces 2¥ single-bit
outputs.

The input determines which output will be 1, all others 0.
This representation is called one-hot encoding.

Oo——0

1:2 Decoder

The smallest decoder: one bit input, two bit outputs

2:4 Decoder
Decoder outputs are simply minterms. Those values can be
constructed as a flat schematic (manageable at small sizes)
or hierarchically, as below.

B >
3 AB
B 1:2 DEC):>_
B
> _
. —> AB
I 4
A [t —
A 1:2 DEC)_>_ e
A
L) -
. —> AB
I 4

3:8 Decoder

Applying hierarchical design again, the 2:4 DEC helps
construct a 3:8 DEC.

A 1:2 DEC

|
1

5#?9&;%9%

Implementing a function with a decoder

E.g., F=AC + BC

C B A F

0 0 0 O 7

0 0 1 1 6

01 0 0 c— C

01 1 1 = r
1.0 0 0 e e I

1.0 1 0 :

1 1 0 1 ol

11 1 1

Warning: Easy, but not a minimal circuit.

Encoders and Decoders

k bits{ 3:8 DEC ‘zk bits

One-Hot

0 0 0 0 O

BCD
0 0 O

0

1

0

0 0 0 0 0 O

0
0

1

0
0 0 0 O
0 0 0 0 O

0 0 0 0 O
0 0 0 O

1

1

0

0
0 1

0

0 0 0 0 0 0 O

1

0

0

0 0

k bits{ 3:8 ENC ‘f bits

Priority Encoder

An encoder designed to accept any input bit pattern.

01 Op

4
0
1
1
1
1

~o0oo0ooo
X -0 oo
X X =~ oo
X X X =0
__\oox
-0 =0 X

V:I?,—i-lzi—‘rl‘]—l-lo
Or =I5+ 155l
O¢ =1L+ 1kl

Overview: Multiplexer (or Mux)
A mux has a k — bit selector input and 2% data inputs (multi
or single bit).

It outputs a single data output, which has the value of one
of the data inputs, according to the selector.

D ——IN3
Cc——IN;
ourt——B
B——INT
— IN,
A o So
S

2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.

=
-~
o

s s 0000 |0
- —m0O0O-= =00
-0 -0 =0 =0
—_—_ 000 -=0]|O0O

2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.

=
-~
o

_ =, 0000 Wn

-0 -0 -=0-=0

- —_ 00O -~0-=0|O0o
S

2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this

size.

S L Iy O Enabler!
I

0 0 0 O 1

o 0 1 1

01 0 0 ¢

0 1 1 1 Iy

1 0 0 O o—Do—

1 0 1 0 Enabler!

1T 1 0 1 ~

1 1 1 1 S 1:2 Decoder!

4:1 Mux Circuit

ENs EN, EN; ENg
2:4 DEC

S5 So

Muxing Wider Values (Overview)

ENs EN, EN; ENg
2:4 DEC

S5 So

Muxing Wider Values (Components)

3
2
1
)

EN

Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from 2k
outputs.

E.g. F = BC + AC

A B C F
0 0 0 O 0—lo——
o o0 1 0 0—11
0 1 0 0 0—2
0 1 1 1 —
1 3 |
1 0o 0 1 1—2
1 0 1 0 0—l5
1 1 o 1 1—6
1 1 1 1 1_‘7]/]/]’

ABC

Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from 2k
outputs.

E.g. F = BC + AC

A B C F
0 0 0 0 -----0c___ 0—lo——
0 0 1 0 -----c___ |
0 1 0 0 ~-----—__ 0—2
0 1 1 | s ac=o —
- _ ! 3 — F
1 0 0 1 -=----___ 1—a
1 0 1 0 - -----___ 0—l5
1 1 0 1 ----oo___ 1—6
I 1 1 9 -=c==cco- 1_err

Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

>
w
0
-
>
w
-

- 2 O o
- O = O
= NN o

Instead of feeding just 0 or 1 into the mux, as in Version 1,
one can remove a bit from the select, and feed it into the
data ports along with the constant.

Overview: Shifters

A shifter shifts the inputs bits to the left or to the right.

IN

}

SHIFTER

<K enTL

in

ouT

There are various types of shifters.

» Barrel: Selector bits indicate (in binary) how far to the

left to shift the input.

» L/R with enable: Two control bits (upper enables, lower

indicates direction).

In either case, bits may “roll out” or “wraparound”

Example: Barrel Shifter with Wraparound

11001010
$
SHIFTER k<3 011

8

01010110

Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210/ \3210/ \3210/ \3210/

OUT; ouT, ouT, ouT,

Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210 \3210 \3210 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,

Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210 \3210 \3210 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,

Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210 \3210 \3210 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,

Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210 \3210 \32

0 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,

Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

NI—o
N

\L21o \3 10 \32

0 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,

Computation Always Takes Time

)"FD’{) T

741500

There is a delay between
inputs and outputs, due to:

- Limited currents charging
capacitance

- The speed of light

10ns

The Simplest Timing Model

< - » Each gate has its own
propagation delay t,.

In 1 » When an i.nput changes,
any changing outputs do

\7— so after t,,.
Out » Wire delay is zero.

A More Realistic Timing Model

It is difficult to manufacture
t two gates with the same
p(max)
- - delay; better to treat delay as
arange.

tp(min)

»

» Each gate has a minimum
and maximum
propagation delay ty(min)

In — and tp(max)-

» Outputs may start

Oout /// changing after t, (i) and
stablize no later than

A

To(min)-

Critical Paths and Short Paths

How slow can this be?

Critical Paths and Short Paths

A m—
B —

: —

How slow can this be?

The critical path has the longest possible delay.

tp(max) = tp(max7 AND) + tp(max7 OR) + tp(max, AND)

Critical Paths and Short Paths

: -

How fast can this be?

The shortest path has the least possible delay.

tp(min) = {p(min, AND)

Glitches

A glitch is when a single change in input values can cause

multiple output changes.

00000

PR OS—

1|0000B D

-

T1 111

1T 1 1}o]1
> T

s

Glitches may occur when there are multiple paths of
different length from input / to output O.

Glitches

A glitch is when a single change in input values can cause

multiple output changes.

00000

T 11 11
P

-

1T 1 1}o]1
> T

C———

}ﬂm

Glitches may occur when there are multiple paths of
different length from input / to output O.

Glitches

A glitch is when a single change in input values can cause
multiple output changes.

ADWW
=p

————] lo 0 o

00000

Glitches may occur when there are multiple paths of
different length from input / to output O.

Glitches

A glitch is when a single change in input values can cause
multiple output changes.

- W}O/o‘m

00000

————] lo 0 o

Glitches may occur when there are multiple paths of
different length from input / to output O.

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost
of a few extra gates).

17000
L

C{

)
:)

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost
of a few extra gates).

R

y
Ly o

Arithmetic: Addition

Adding two one-bit numbers: A and B

Produces a two-bit result: C and S (carry and sum)

{)
2—0—\)D7$

Half Adder

-~ 200>
—o -0 | W
—ocoo|N
o= =0|un

Full Adder

In general, due to a possible carry in, you need to add three
bits:

3
L/

CGAB

000
001
010
011
100
101
110
111

"
y
?

Co

_em L, OO0 00

A Four-Bit Ripple-Carry Adder

le— >
l«—

Co <

l—C;

“n <

[<— 0

A Two’'s Complement Adder/Subtractor

To subtract B from A, add A and —B.
Neat trick: carry in takes care of the +1 operation.

A3 B3 Ay By A1 B4 Ao Bo

| ‘I | ‘I | ‘I $— SUBTRACT/ADD

VIV VY

FA | FA |+ FA || FA
rl | | |

Ss S S S5 So

Overflow in Two's-Complement Representation

When is the result too positive or too negative?

+ | =2 -1 0 1
10
10
2| 410
00
10 1
1 10 1
L IR T
01 10
00 00 00
o 10 1 00
400 400 400
10 11 00
00 1 00 01
1 10 1 00 01
+01 401 401 +01
11 00 01 10

Overflow in Two's-Complement Representation

When is the result too positive or too negative?

+ -2 —1 0 1
10
D +1g The result does not fit
00 X when the top two carry
bits differ.
10 1
1 10 11 A, An_q
+11 +11 l B, an—1
01X 10 | v
00 00 00 -
10 11 00
01 oo +00 400 ! v
10 11 00 Sn Sn—1
00 1 00 01 D Overflow
: 10 11 00 01
+01 +01 +01 +01
11 00 01 10X

Ripple-Carry Adders are Slow

The depth of a
circuit is the
number of
gateson a
critical path.

: : &)Di This four-bit
adder has a
depth of 8.

. - ,ZL‘LD“ s n-bit

ripple-carry
adders have a

D . depth of 2n.

Carry Generate and Propagate

The carry chain is the slow part of an adder; carry-lookahead
adders reduce its depth using the following trick:

A For bit /,

olof1]0 Cii1 = AB +AC+B(

C{ o |1](1] = AB; + Ci(Ai + B))
—— = G+ CGP;
B

K-map for the Generate G; = A;B; sets carry-out
carry-out regardless of carry-in.
function of a full

Propagate P; = A; + B; copies carry-in to

adder
carry-out.

Carry Lookahead Adder

Expand the carry functions into sum-of-products form:

Ciy1

G

G

G

@)

G,‘ + C,'P,'

Go + CoPo

G+ G Py

G + (Go + CoPo)P1

G + GoPq + CoPoP;

G, + GPy

Gy + (G1 + GoP1 + CoPoP1)P2

Gz + G1P; + GoP1P; + CoPoP1P;

G3 + G3P3

G3 + (G2 + G1P2 + GoP1 P2 + CoPoP1P2)Ps3

G3 + G2P3 + G1P2P3 + GoP1P2P3 + CoPoP1P2P3

The 74283 Binary Carry-Lookahead Adder

(From National Semiconductor)

Carry outihasi+ 1
product terms, largest
of which has i + 1
literals.

If wide gates don’t slow
down, delay is
independent of number
of bits.

More realistic: if limited
to two-input gates,
depth is O(log, n).

	Basic Combinational Circuits
	Enabler
	Encoders and Decoders
	Multiplexers
	Shifters

	Circuit Timing
	Critical and Shortest Paths
	Glitches

	Arithmetic Circuits
	Ripple Carry Adder
	Adder/Subtractor
	Carry Lookahead Adder

