
Fundamentals of Computer Systems

Combinational Logic

Stephen A. Edwards

Columbia University

Summer 2015



Combinational Circuits

Combinational circuits are stateless.

Their output is a function only of the current input.

Combinational
Circuit

Inputs Outputs



Basic Combinational Circuits

Enabler

Encoders and Decoders

Multiplexers

Shifters

Circuit Timing

Critical and Shortest Paths

Glitches

Arithmetic Circuits

Ripple Carry Adder

Adder/Subtractor

Carry Lookahead Adder



Enablers



Overview: Enabler

An enabler has two inputs:

I data: can be several bits, but 1 bit examples for now
I enable/disable: 1 bit on/off switch

When enabled, the circuit’s output is its input data. When
disabled, the output is 0.

DATAX

ENABLE

1

OUTPUT X

When enabled

DATAX

ENABLE

0

OUTPUT 0

When disabled



Enabler Implementation

Note abbreviated truth table: input, A, listed in output column

EN F

0 0
1 A

A
EN

F

EN F

0 1
1 A

A
EN

F

In both cases, output is enabled when EN = 1, but they
handle the disabled (EN = 0) cases differently.



Encoders and Decoders



Overview: Decoder

A decoder takes a k − bit input and produces 2k single-bit
outputs.

The input determines which output will be 1, all others 0.
This representation is called one-hot encoding.

I11

I01

O3 1

O2 0

O1 0

O0 0



1:2 Decoder

The smallest decoder: one bit input, two bit outputs

A
A

A



2:4 Decoder
Decoder outputs are simply minterms. Those values can be
constructed as a flat schematic (manageable at small sizes)
or hierarchically, as below.

1:2 DECB
B

B

1:2 DECA
A

A

AB

AB

AB

A B



3:8 Decoder
Applying hierarchical design again, the 2:4 DEC helps
construct a 3:8 DEC.

1:2 DECA
A

A

2:4 DEC
B

C

BC

BC

BC

B C

ABC

ABC

ABC

AB C

ABC

ABC

A BC

A B C



Implementing a function with a decoder

E.g., F = AC + BC

C B A F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

A
B
C

0
1
2
3
4
5
6
7

F

Warning: Easy, but not a minimal circuit.



Encoders and Decoders

3:8 DECk bits 2k bits

BCD One-Hot

0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

3:8 ENCk bits 2k bits



Priority Encoder

An encoder designed to accept any input bit pattern.

I3 I2 I1 I0 V O1 O0

0 0 0 0 0 X X
0 0 0 1 1 0 0
0 0 1 X 1 0 1
0 1 X X 1 1 0
1 X X X 1 1 1

V = I3 + I2 + I1 + I0
O1 = I3 + I3I2
O0 = I3 + I3 I2I1



Multiplexers



Overview: Multiplexer (or Mux)
A mux has a k − bit selector input and 2k data inputs (multi
or single bit).

It outputs a single data output, which has the value of one
of the data inputs, according to the selector.

IN0A

IN1B

IN2C

IN3D

S1

0

S0

1

OUT B



2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.

S I1 I0 0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

S

I0

I1

O

Enabler!

Enabler!

1:2 Decoder!



2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.

S I1 I0 0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1 S

I0

I1

O

Enabler!

Enabler!

1:2 Decoder!



2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.

S I1 I0 0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1 S

I0

I1

O

Enabler!

Enabler!

1:2 Decoder!



4:1 Mux Circuit

2:4 DEC
EN3 EN2 EN1 EN0

I3

I2

I1

I0

S1 S0

O



Muxing Wider Values (Overview)

2:4 DEC
EN3 EN2 EN1 EN0

I3

I2

I1

I0

S1 S0

O



Muxing Wider Values (Components)

X3X2X1X0

EN

Y3Y2Y1Y0

X3X2X1X0

Y0
Y1
Y2
Y3

Z3Z2Z1Z0



Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from 2k

outputs.

E.g., F = BC + AC

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

00
10
20
31
41
50
61
71

A B C

F



Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from 2k

outputs.

E.g., F = BC + AC

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

00
10
20
31
41
50
61
71

A B C

F



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C
1 0 C
1 1 1

0
1
2
3

BA

F

0
C

1



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C
1 0 C
1 1 1

0
1
2
3

BA

F

0
C

1



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C
1 0 C
1 1 1

0
1
2
3

BA

F

0
C

1



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C
1 0 C
1 1 1

0
1
2
3

BA

F

0
C

1



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C
1 0 C
1 1 1

0
1
2
3

BA

F

0
C

1

Instead of feeding just 0 or 1 into the mux, as in Version 1,
one can remove a bit from the select, and feed it into the

data ports along with the constant.



Shifters



Overview: Shifters
A shifter shifts the inputs bits to the left or to the right.

SHIFTER

IN

OUT

CNTL

n

n

k

There are various types of shifters.

I Barrel: Selector bits indicate (in binary) how far to the
left to shift the input.

I L/R with enable: Two control bits (upper enables, lower
indicates direction).

In either case, bits may “roll out” or “wraparound”



Example: Barrel Shifter with Wraparound

SHIFTER

11001010

01010110

011

8

8

3



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1, CNTL0



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1, CNTL0



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1, CNTL0



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1, CNTL0



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1, CNTL0



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1, CNTL0



Circuit Timing



Computation Always Takes Time

74LS00

There is a delay between
inputs and outputs, due to:

· Limited currents charging
capacitance

· The speed of light



The Simplest Timing Model

tp

In

Out

I Each gate has its own
propagation delay tp.

I When an input changes,
any changing outputs do
so after tp.

I Wire delay is zero.



A More Realistic Timing Model

tp(max)

tp(min)

In

Out

It is difficult to manufacture
two gates with the same
delay; better to treat delay as
a range.

I Each gate has a minimum
and maximum
propagation delay tp(min)
and tp(max).

I Outputs may start
changing after tp(min) and
stablize no later than
tp(min).



Critical Paths and Short Paths

A
B

C

D
Y

How slow can this be?



Critical Paths and Short Paths

A
B

C

D
Y

How slow can this be?

The critical path has the longest possible delay.

tp(max) = tp(max, AND) + tp(max, OR) + tp(max, AND)



Critical Paths and Short Paths

A
B

C

D
Y

How fast can this be?

The shortest path has the least possible delay.

tp(min) = tp(min, AND)



Glitches

A glitch is when a single change in input values can cause
multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.



Glitches

A glitch is when a single change in input values can cause
multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.



Glitches

A glitch is when a single change in input values can cause
multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.



Glitches

A glitch is when a single change in input values can cause
multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.



Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost
of a few extra gates).

1 0 0 0
1 1 1 0

B

A

C

A

B

C

F



Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost
of a few extra gates).

1 0 0 0
1 1 1 0

B

A

C

A

B

C

F



Arithmetic Circuits



Arithmetic: Addition

Adding two one-bit numbers: A and B

Produces a two-bit result: C and S (carry and sum)

A B C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A
B

C

S

Half Adder



Full Adder
In general, due to a possible carry in, you need to add three
bits:

CiAB Co S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A
B

Ci

Co

S

S

Co

Ci
A
B



A Four-Bit Ripple-Carry Adder

FA CiCo

A B

S

FA

S0

A0 B0

FA

S1

A1 B1

FA

S2

A2 B2

FA

S3

A3 B3

0

S4



A Two’s Complement Adder/Subtractor

To subtract B from A, add A and −B.
Neat trick: carry in takes care of the +1 operation.

FA

S0

B0A0

FA

S1

B1A1

FA

S2

B2A2

FA

S3

B3A3

S4

SUBTRACT/ADD



Overflow in Two’s-Complement Representation

When is the result too positive or too negative?
+ −2 −1 0 1

−2

10
10

+10
00

%

−1

10
10

+11
01

%

11
11

+11
10

0

00
10

+00
10

00
11

+00
11

00
00

+00
00

1

00
10

+01
11

11
11

+01
00

00
00

+01
01

01
01

+01
10

%

The result does not fit
when the top two carry
bits differ.

An
Bn

An−1
Bn−1

Sn Sn−1

Overflow

· · ·



Overflow in Two’s-Complement Representation

When is the result too positive or too negative?
+ −2 −1 0 1

−2

10
10

+10
00%

−1

10
10

+11
01%

11
11

+11
10

0

00
10

+00
10

00
11

+00
11

00
00

+00
00

1

00
10

+01
11

11
11

+01
00

00
00

+01
01

01
01

+01
10%

The result does not fit
when the top two carry
bits differ.

An
Bn

An−1
Bn−1

Sn Sn−1

Overflow

· · ·



Ripple-Carry Adders are Slow

S0

A0

B0

S1

A1

B1

S2

A2

B2

S3

A3

B3

C0

C4

The depth of a
circuit is the
number of
gates on a
critical path.

This four-bit
adder has a
depth of 8.

n-bit
ripple-carry
adders have a
depth of 2n.



Carry Generate and Propagate

The carry chain is the slow part of an adder; carry-lookahead
adders reduce its depth using the following trick:

0 0 1 0

0 1 1 1

A

B

C

K-map for the
carry-out
function of a full
adder

For bit i,

Ci+1 = AiBi + AiCi + BiCi
= AiBi + Ci(Ai + Bi)

= Gi + CiPi

Generate Gi = AiBi sets carry-out
regardless of carry-in.

Propagate Pi = Ai + Bi copies carry-in to
carry-out.



Carry Lookahead Adder
Expand the carry functions into sum-of-products form:

Ci+1 = Gi + CiPi

C1 = G0 + C0P0

C2 = G1 + C1P1

= G1 + (G0 + C0P0)P1

= G1 + G0P1 + C0P0P1

C3 = G2 + C2P2

= G2 + (G1 + G0P1 + C0P0P1)P2

= G2 + G1P2 + G0P1P2 + C0P0P1P2

C4 = G3 + C3P3

= G3 + (G2 + G1P2 + G0P1P2 + C0P0P1P2)P3

= G3 + G2P3 + G1P2P3 + G0P1P2P3 + C0P0P1P2P3



The 74283 Binary Carry-Lookahead Adder
(From National Semiconductor)

11

12

B4

A4

15

14

B3

A3

2

3

B2

A2

6

5

B1

A1

C0
7

Σ1

Σ2

Σ3

Σ4

C4
9

10

13

1

4

Carry out i has i + 1
product terms, largest
of which has i + 1
literals.

If wide gates don’t slow
down, delay is
independent of number
of bits.

More realistic: if limited
to two-input gates,
depth is O(log2 n).


	Basic Combinational Circuits
	Enabler
	Encoders and Decoders
	Multiplexers
	Shifters

	Circuit Timing
	Critical and Shortest Paths
	Glitches

	Arithmetic Circuits
	Ripple Carry Adder
	Adder/Subtractor
	Carry Lookahead Adder


