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Combinational Circuits

Combinational circuits are stateless.

Their output is a function only of the current input.
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Overview: Enabler

An enabler has two inputs:

» data: can be several bits, but 1 bit examples for now
» enable/disable: 1 bit on/off switch

When enabled, the circuit’s output is its input data. When
disabled, the output is 0.

ENABLE ENABLE

X——IDATA OUTPUT|——X X——DATA OUTPUT|——>0

When enabled When disabled



Enabler Implementation

Note abbreviated truth table: input, A, listed in output column
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In both cases, output is enabled when EN = 1, but they
handle the disabled (EN = 0) cases differently.







Overview: Decoder

A decoder takes a k — bit input and produces 2¥ single-bit
outputs.

The input determines which output will be 1, all others 0.
This representation is called one-hot encoding.
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1:2 Decoder

The smallest decoder: one bit input, two bit outputs




2:4 Decoder
Decoder outputs are simply minterms. Those values can be
constructed as a flat schematic (manageable at small sizes)
or hierarchically, as below.
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3:8 Decoder

Applying hierarchical design again, the 2:4 DEC helps
construct a 3:8 DEC.
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Implementing a function with a decoder

E.g., F=AC + BC
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Warning: Easy, but not a minimal circuit.



Encoders and Decoders
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Priority Encoder

An encoder designed to accept any input bit pattern.
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Overview: Multiplexer (or Mux)
A mux has a k — bit selector input and 2% data inputs (multi
or single bit).

It outputs a single data output, which has the value of one
of the data inputs, according to the selector.
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2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.
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2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this
size.
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2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this

size.
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4:1 Mux Circuit

ENs EN, EN; ENg
2:4 DEC
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Muxing Wider Values (Overview)

ENs EN, EN; ENg
2:4 DEC
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Muxing Wider Values (Components)
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Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from 2k
outputs.

E.g. F = BC + AC
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Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from 2k
outputs.

E.g. F = BC + AC

A B C F
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Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?
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Can we use a smaller MUX?




Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?




Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?




Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?
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Instead of feeding just 0 or 1 into the mux, as in Version 1,
one can remove a bit from the select, and feed it into the
data ports along with the constant.






Overview: Shifters

A shifter shifts the inputs bits to the left or to the right.
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There are various types of shifters.

» Barrel: Selector bits indicate (in binary) how far to the

left to shift the input.

» L/R with enable: Two control bits (upper enables, lower

indicates direction).

In either case, bits may “roll out” or “wraparound”



Example: Barrel Shifter with Wraparound
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Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210/ \3210/ \3210/ \3210/

OUT; ouT, ouT, ouT,



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210 \3210 \3210 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,



Implementation of Barrel Shifter with Wraparound
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to select correct one.

INs IN, IN; INo

\3210 \3210 \3210 \3210

CNTL;, CNTLo

OUT; ouT, ouT, ouT,



Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo

\3210 \3210 \32
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Implementation of Barrel Shifter with Wraparound
(Part 2)

Main idea: wire up all possible shift amounts and use muxes
to select correct one.

INs IN, IN; INo
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Computation Always Takes Time
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741500

There is a delay between
inputs and outputs, due to:

- Limited currents charging
capacitance

- The speed of light

10ns



The Simplest Timing Model

< - » Each gate has its own
propagation delay t,.

In 1 » When an i.nput changes,
any changing outputs do

\7— so after t,,.
Out » Wire delay is zero.




A More Realistic Timing Model

It is difficult to manufacture
t two gates with the same
p(max)
- - delay; better to treat delay as
arange.

tp(min)

»

» Each gate has a minimum
and maximum
propagation delay ty(min)

In — and tp(max)-

» Outputs may start

Oout /// changing after t, (i) and
stablize no later than

A

To(min)-



Critical Paths and Short Paths

How slow can this be?



Critical Paths and Short Paths
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How slow can this be?

The critical path has the longest possible delay.

tp(max) = tp(max7 AND) + tp(max7 OR) + tp(max, AND)



Critical Paths and Short Paths
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How fast can this be?

The shortest path has the least possible delay.

tp(min) = {p(min, AND)



Glitches

A glitch is when a single change in input values can cause

multiple output changes.
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Glitches may occur when there are multiple paths of
different length from input / to output O.



Glitches

A glitch is when a single change in input values can cause

multiple output changes.
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Glitches may occur when there are multiple paths of
different length from input / to output O.



Glitches

A glitch is when a single change in input values can cause
multiple output changes.
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Glitches may occur when there are multiple paths of
different length from input / to output O.



Glitches

A glitch is when a single change in input values can cause
multiple output changes.
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Glitches may occur when there are multiple paths of
different length from input / to output O.



Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost
of a few extra gates).

17000
L

C{

)
: )



Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost
of a few extra gates).
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Arithmetic: Addition

Adding two one-bit numbers: A and B

Produces a two-bit result: C and S (carry and sum)
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Full Adder

In general, due to a possible carry in, you need to add three
bits:
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A Four-Bit Ripple-Carry Adder
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A Two’'s Complement Adder/Subtractor

To subtract B from A, add A and —B.
Neat trick: carry in takes care of the +1 operation.
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Overflow in Two's-Complement Representation

When is the result too positive or too negative?

+ | =2 -1 0 1
10
10
2| 410
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10 1
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01 10
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400 400 400
10 11 00
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1 10 1 00 01
+01 401 401 +01
11 00 01 10



Overflow in Two's-Complement Representation

When is the result too positive or too negative?

+ -2 —1 0 1
10
D +1g The result does not fit
00 X when the top two carry
bits differ.
10 1
1 10 11 A, An_q
+11 +11 l B, an—1
01X 10 | v
00 00 00 -
10 11 00
01 oo +00 400 ! v
10 11 00 Sn Sn—1
00 1 00 01 D Overflow
: 10 11 00 01
+01 +01 +01 +01
11 00 01 10X




Ripple-Carry Adders are Slow

The depth of a
circuit is the
number of
gateson a
critical path.

: : &)Di This four-bit
adder has a
depth of 8.

. - ,ZL‘LD“ s n-bit

ripple-carry
adders have a

D . depth of 2n.




Carry Generate and Propagate

The carry chain is the slow part of an adder; carry-lookahead
adders reduce its depth using the following trick:

A For bit /,

olof1]0 Cii1 = AB +AC+B(

C{ o |1](1] = AB; + Ci(Ai + B))
—— = G+ CGP;
B

K-map for the Generate G; = A;B; sets carry-out
carry-out regardless of carry-in.
function of a full

Propagate P; = A; + B; copies carry-in to

adder
carry-out.



Carry Lookahead Adder

Expand the carry functions into sum-of-products form:

Ciy1

G

G

G
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G,‘ + C,'P,'

Go + CoPo

G+ G Py

G + (Go + CoPo)P1

G + GoPq + CoPoP;

G, + GPy

Gy + (G1 + GoP1 + CoPoP1)P2

Gz + G1P; + GoP1P; + CoPoP1P;

G3 + G3P3

G3 + (G2 + G1P2 + GoP1 P2 + CoPoP1P2)Ps3

G3 + G2P3 + G1P2P3 + GoP1P2P3 + CoPoP1P2P3



The 74283 Binary Carry-Lookahead Adder

(From National Semiconductor)

Carry outihasi+ 1
product terms, largest
of which has i + 1
literals.

If wide gates don’t slow
down, delay is
independent of number
of bits.

More realistic: if limited
to two-input gates,
depth is O(log, n).
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