
PDDLyte
A Partial Implementation of The Planning Domain

Definition Language

John Martin Jr.
jdm2213@columbia.edu

February 11, 2014

Abstract

The PDDLyte language, whose name derives from the Planning Domain
Definition Language (PDDL)[1], is a symbolic, specification language used
to formulate and solve planning problems. Similarly to PDDL, problems are
specified with an initial state, a goal description, and a domain on which to
plan over. From there, PPDLyte uses causal reasoning to deduce solutions.
Provided a solution exists, it will be output as a sequence of actions mapping
the initial state to the goal state(s). The PDDLyte language is limited in
comparison to its predecessor, in that it will only support classical planning
problems for a single agent: finite, fully-observable, deterministic, static envi-
ronment descriptions. PDDLyte is also distinguished in the way it is compiled.

Current PDDL implementations use CLISP-based interpreters to verify
the solutions [1]. For most applications, this is where the life of PDDL ends.
The PDDLyte implementation will go further and be compiled to C code,
then to X86 assembly. With this design, the high-level reasoning of PDDLyte
solutions will be amenable to systems-level C code interfaces.

Background: Planning

Automated planning is a branch of artificial intelligence that helps characterize intelligent
behavior. Plans are explicitly deliberated in a process that chooses prearranged actions to
achieve an objective. A planning problem asks if a goal description can be achieved from
its initial state. In classical planning, actions are assumed to be finite sets of operators
that transition a system from one state to another; hence a solution to this problem is a
sequence, {Ai}, of actions [4]. Every plausible system state can be represented as vertices
on a graph, and transitions that connect these states represent edges. In this framework,
finding a solution is reduced to searching the state-space graph for a path that connects
the initial state to the final state. Let’s take a closer look at how this is done with the
PDDLyte language.

i



ii

Example program: Pacman

Pacman, with his ever-present, unperceptive objective to feed himself, can certainly benefit
from automated planning. In this simple example, Pacman’s goal, G, is to eat the bananas
located in the third square; he originates in the first square, s0. Pacman may move in any
direction, provided it is between two adjacent squares, and he occupies the starting square.

s0 s1 G

With this small amount of information, the planning problem can be formulated with
a triple: P = (s0, G,A). Where the set of accessible actions, A, are quickly realized as
the only two available moves: move forward, or remain still. This makes planning graph
simple to visualize.

s0 s1 G

When problems and their corresponding domains are specified formally in PDDLyte,
graphs like these will be generated and transversed for solutions. If a solution is available
– which is guaranteed to be discerned from the completeness of the search algorithm –
then it will be returned, as shown in the example code.

(define (domain pman)
(: predicates
(adj ?square-1 ?square-2)
(at ?what ?square)

)

(: action move
:parameters (?who ?from ?to)
:precondition (and (adj ?from ?to)

(at ?who ?from))
:effect (and (not (at ?who ?from))

(at ?who ?to))
)

)

(define (problem pman_prob)



Motivation iii

(: domain pman)
(: objects
sq_11 sq_12 sq_13
pacman
banana

)

(:init
(adj sq_11 sq_12) (adj sq_12 sq_11)
(adj sq_12 sq_13) (adj sq_13 sq_12)

(at banana sq_13)
(at pacman sq_11)

)

(:goal (and (at pacman sq_13)
(at banana sq_13))

)
)

; the optimal plan consists of two moves
;---------------------------------------
; (move pacman sq_11 sq_12)
; (move pacman sq_12 sq_13)

Motivation

Beyond Pacman, myriads of planning problems beckon for description. What set of
actions should a person take when driving to work? What operations are required to
route secure network traffic around China? Capturing the high-level reason needed to
formulate these problems is only achievable with the proper class of language.

Historically, symbolic languages have shown to be amenable to the generality of plan-
ning problems. It is for this reason that PDDLyte is chosen to be symbolic. Moreover,
the underpinning of computational symbolism seems sophisticated and appealing to create.

Hopefully the PDDLyte language can serve a purpose in the planning community. Perhaps
those in academia will find comfort in a familiar syntax and run PDDLyte for instructional
purposes. Those in the commercial realm may initially balk at the language’s extensibility,
but eventually discover uses for it in simulation or operations. Draw your own conclusions
as you read further.



iv

PDDLyte Pipeline

A planning domain and problem will be described in a .pdly file. The compiler will first
translate the plan into C code – opening up the opportunity for interfacing with other
systems-level software. From there, the code can be compiled into a machine language
executable using standard processing.

.pdly file PDDLyte
Compiler GCC

Assembler{Ai} = .plan file

.c file

.o file

Lexicon

The syntax in PDDLyte derives from PDDL. The components of each language focus
around the classical-planning representation of STRIPS, which itself is a restricted, state-
transition system Σ = (S,A, γ) over a function-free, first-order language L. Further
details of this language’s mathematical identity will be described in the final report. If
your curiosity find this unsatisfying, see [2] for a functional and set-theoretic description
of PDDL, or e-mail the author.

Primitive types

Symbols — Extensible data objects with property lists that denote objects.
Objects — Generic datatypes identified with symbols, consisting of one or more character
elements from the ASCII set. Fluent objects must be prefixed with a question mark:
?<var>.
Atoms — An atom is a predicate with a specified number of object arguments. An atom
is said to be grounded when they relate to specific objects with values – not variables.

Structured types

Lists — A set of components separated with spaces and enclosed with parentheses: the
component’s types can be dissimilar. Although lists are included in the specification, they
play a small role in writing PDDLyte programs. Therefore, no list operations will be
provided for users to implement.

Domains

In the context of planning, domains can be thought of as universes. What describes these
universes are states, actions and a means for transitioning. Only a single domain may be
defined per file.



Lexicon v

(define (domain <name >)
(<types_def >)

(<actions_def >)
(<predicates_def >))

Types — Types are symbols that specify objects of the domain. This attribute is an
extension of PDDL, but will be inherently supported with PDDLyte.
Actions — Actions are the operators that transition the system between states. These
are represented as triples, a = (name, precondition, effect), and are the basic elements
of a solution [3]. In PDDL, an action’s name is considered both the unique symbol and a
set of parameters that define the operation. The pre-conditions must be satisfied for the
transition to take place. Furthermore, the effects must be valid according to an active
problem description. If no pre-conditions are specified, then an action is always valid.

(: action <name >
:parameters (<param_def >)
:precondition (<precond_def >)
:effect (<effect_def >))

Parameters are a list of atoms used in the action’s precondition and effect conjunctions.

:parameters (?<name > - <type > ... ?<name_n > - <type_n >)

Preconditions are propositions that must be true for an operator to be applied. This is
expressed as a logical conjunction of literals. Literals are positive or negative atoms.

:precondition (and (<literal >) ...)

Effects describe changes that occur when an action is completed at the successor state.
This is expressed as a logical conjunction of literals. Furthermore, developers should
be mindful to balance the preconditions with the effects; as predicate states are not
automatically negated by transitions.

:effect (and (<literal >) ...)

Predicates — Predicates define relationships between object variables. These can be static
relations that hold from state to state or fluent relations. Each predicate is defined with
a symbolic name and one or more object name-type groups; where the object name is
separated from the type with a dash:

(: predicates (pred ?<name > - <type > t...) ...)

Problems

Problems are triples defined as P = (Σ, s0, G). This inlcudes a domain Σ, an initial state
s0, and a set of ground literals describing the goal condition, G.



vi

(define (problem <name >)
(<domain >)

(<objects_def >)
(<init_state_def >)

(<goal_descrip_def >))

Objects — Objects refer to those used in the problem configuration. This attribute is an
extension of PDDL, but it’s such a common requirement for classical plans that PDDLyte
will inherently support it. Each object is declared with a symbolic name and one or more
object name-type groups; where the object name is separated from the type with a dash:

(: objects ?<name > - <type > ... ?<name_n > - <type_n >))

Initial State — The initial state defines the predicates that are true in the system’s
starting configuration. This can be any valid state within the domain and is written as a
conjunction of ground literals.

(:init (<literal >) ...)

Goal Description — The goal description defines the predicates that are true in the
system’s final configuration. This is a conjunction of grounded literals.

(:goal (<literal >) ...)

Operators

Operators will be specified using prefix notation; where the operator is placed to the left
of its arguments. This convention is adopted from PDDL, which inherits its syntax from
LISP to simplify parsing.

Comments — Comments begin with a semicolon (;) and terminate at the next new line.
Furthermore, they do not nest and may not be composed within comments.

; commentary ends when the line breaks

Atomic Literal Operators

Conjunction — Logical conjunctions are formed with the and predicate:

(and <literal >)

Disjunction — Logical disjunctions are formed with the or predicate:

(or <literal >)

Negation — The value of a logical conjunction of literals is inverted with the not predicate.
The function returns true if its argument is nil, otherwise false.

(not <literal >)



Keywords vii

Keywords

Keyword Description
define instantiates a domain or problem specification
domain domain specification
problem problem specification
:types specifies a list of objects
:action specifies an action
:precondition specifies an action’s preconditions
:effect specifies an action’s effects
:parameters specifies an action’s parameters
:predicates specifies the domain predicates
:objects specifies a problem’s objects
:init specifies a problem’s initial state
:goal specifies a problem’s goal description



Bibliography

[1] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. Pddl — the planning domain definition
language. Technical report, AIPS Planning Competition Committee.

[2] Malik Ghallab, Dana Nau, and Palo Traverso. Automated Planning, Theory and
Practice. Morgan Kaufmann.

[3] Nils J. Nilsson and Richard E. Fikes. Strips: A new approach to the application of
theorm proving to problem solving. Technical report, Artificial Intelligence Group,
Stanford Research Institute.

[4] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Prentice
Hall.

viii


	Background: Planning
	Example program: Pacman
	Motivation
	PDDLyte Pipeline
	Lexicon
	Operators
	Keywords
	Bibliography

