
!!!!!!!!!!!
State Machine Generator Language Reference Manual

COMS W4115 !
Oliver Zhou

ohz2101 !
March 13, 2014 !!

Page � of �1 8

Contents

!
1. Introduction

2. Program

3. Execution Results

4. Lexical Conventions

 Commenting Code

 Keywords

 Boolean Logic

 Loops

 Constants

 Simulated Action

5. Syntax

 Machine Definition and Instantiation

 Signals

 States

 Actions

6. Program Execution 

Page � of �2 8

1 Introduction !
The State Machine Generator Language, or SMGL, is a programming language focused on
facilitating development utilizing finite state machines. !
Finite state machines, or FSM, are powerful mathematical models that can simulate and solve
nearly any type of problem in a clear and understandable way. There are many areas of study in
this area, and are considered part of the field of Automata Theory. !
Using only high level statements, SMGL allows for anyone to quickly and easily create a
simulation of a state machine without worrying about implementation details. The State Machine
Generator Language is designed to facilitate rapid simulation and prototyping of the logic of
state machines, and can be used to test the logic of your system. !
2 Program
 
A program in SMGL is a file consisting of several major sections. The first section will define the
signals involved with the input and output to the state machines. The second section will define
the various states in the state machine to be tested. The third section can define the actions and
inputs to the state machine, or optionally be left blank if further low level of modification of the
resulting C is desired without the C providing any simulated output. !
3 Execution Results !
The result of the execution of a SMGL program would be a C file that represents the state
machine defined in SMGL. The optional actions portion of a SMGL program also allow for rapid
testing and viewing of the state machine being designed in SMGL if the C file is compiled and
executed. !!

Page � of �3 8

4 Lexical Conventions !
Commenting Code
Comments are delineated as everything between the string “//” and the new line character,
effectively meaning that the double backslash prevents the remainder of the line from being
read.
 // commented out
STATE: run_test_idle(TMS) // this text is commented out
{
….
} !
Keywords
Identifiers reserved by the language !
CTRL_IN and CTRL_OUT, short for control, is used to define an input variable that
controls the transitions from state to state, and to control the output at each state. Can be
declared only with upper case characters

SIGNALS, used to create a section to pre-define all of the inputs and outputs that
the state machine will be using boolean style logic that translates well to the systems that we
are replicating. More complex things such as values can be represented by a combination of
boolean values. !
STATES, used to create a section to define all states of the state machine being created !
ACTIONS, used to define a section that allows for simulating
 
DEFAULT_STATE, used to define the starting state !
VERBOSE, used to generate more verbose outputs in the C generated !
In addition to those above, there is a selection of keywords used in loops and boolean logic
operations that are reserved. !
Boolean operation operators
These are used to perform boolean logic
Table 1. Boolean Operators !

Table 2. Other symbols reserved for use by SMGL
Operator Name Symbol Example

Page � of �4 8

Operator Name Symbol Example

Logical negation ! !x is used when we want to
match x = 0

Logical AND && a&&b will expect both a and b to
match up

Logical OR || a or b will get a positive result

!!
Loop keywords
Used to control the program structure, the main type of structure will be the if loop behaves like
many other programming languages. The if loop is used during definition of states as well.
Given an input, the if loop will determine the next state, and if nothing happens, the current state
will remain on that state. !
Table 3. Loop keywords !

!!
Constants !
In SMGL, constants will be in the form of booleans, which will be represented by 0 and 1, with 0
being false, and 1 being true. !
Simulated Actions
 
In the actions portion of a SMGL program, the actions of the various states are defined in array
format. All inputs need to have a matching number of input states, in the form of 0, 1, or X (don’t
care).
Example:
input_signal_1 = [0,0,0,1];
input_signal_2 = [1,X,1,0]; 

State define start : statename: is used at the
beginning to define a state

Parathesis! () Used for order of operations

standard closing statement ; The semicolon lets the parser
know the definition has ended for
a loop etc

Operator Name Symbol Example

if if if (!x) next_state;!
The if statement will keep

else else else after the semicolon of the if
statement will give another
opportunity for branching

Page � of �5 8

4. Syntax

!
Figure 1 Example of Turnstile state machine (source: Wikipedia)
This figure is used to assist in demonstrating the syntax of a program !
Machine Definition and Instantiation !
Signals are defined first in its own group in a bracketed segment after the keyword SIGNALS is
called. All signals are expected to be boolean style and will be used in both controlling state
transitions and used in determining the actions performed at each state. !
SIGNALS 
{
 CTRL_IN Y
 CTRL_OUT X  
} !
Example fitting the example machine
SIGNALS
{
 CTRL_IN COIN; //Coin detection
 CTRL_IN PUSH; //Push gate Detection
 CTRL_OUT LOCK; //True being locked, false being unlocked
} !
States are then defined next. Each state will be declared with lower case characters for
differentiation from the signals. Each state is required to have one if statement to determine
action for state to state transitions. An else statement is used if the state does not loop back into
itself. All state definitions will fall under the brackets of the overall STATES keyword.
STATES
{
locked:
 if (coin) unlocked; 
 //push is ignored because it does not affect the locked gate

Page � of �6 8

unlocked:
 if(push) locked;
 //after a push, the gate is locked
 //coins are not needed to unlock the gate
} !
The final section is separated by the ACTIONS keyword. This is where the chain of inputs to the
state would be put in, which would also be simulated in the resulting C code after execution of
the program. Starting default state needs to be defined here.
 
ACTIONS  
{
 //DEFAULT_STATE needs to be defined
 DEFAULT_STATE = locked;
 //actions happen here
 coin=[0,0,0,0,1,0]
 push=[X,X,X,X,X,1]
 VERBOSE;
} !!

Page � of �7 8

6. Program Execution !
The program file will be in an ASCII based file with the file ending of .smgl.
The file after it compiles will then be a C file that simulates the structures defined in the .smgl
file. !
If the ACTIONS portion of the program is defined properly, then code will also be generated in C
that will print out the state of the state machine after the inputted signals are given to the
program. !
i.e., based on the state machine in Figure 1, if the following code !
 coin=[0,0,0,0,1,0];
 push=[X,X,X,X,X,1] ; !
is provided in the .smgl file, the C program, when compiled and executed, will print out the
resulting status. !
 Current State : Locked

If certain flags are set, all state transitions and the state of each signal can be printed
 …. //earlier state printouts
 Current State : Locked
 Coin = 1
 Push = X
 Current State : Unlocked
 Coin = 0
 Push = 1
 Current State : Locked

Page � of �8 8

