The Pumpkin Programming Language

Joshua Boggs (jjb2175, Testing), Christopher Evans (cme2126, Architecture),
Gabriela Melchior (gdm2118, Manager), Clement Robbins (cjr2151, Language)

September 25, 2014

1 Introduction

The Pumpkin programming language is a lite-functional language, which allows for coding flexibility and
concise syntax. This language focuses on easily modeling a complex system of function calls. The lan-
guage would make it easy to model game-theory problems, as well as resolving theoretical and fantanstical
rule-sets.

2 Syntax

2.1 Comments

Multi-line comments are written C-style.

/%

2 The slash and asterisk mark the beginning
3 and end of a multi—line comment.

*/

Single line comments are symbolized by two forward slash characters.

// Slashes mark the beginning of a single line comment.

2.2 Variables

Data Types

e Integer: declared Int
Float: declared Float
Double: declared Double

e String: declared String
e Boolean: declared Bool
e Unit: declared Unit

Immutable variables are declared with the 'val’ keyword. They cannot be reassigned.

N

w N

~

o0

N}

// Follows form val name: val = value
val aNumber: Int = 5
aNumber = 10

// Throws compile error: Cannot reassign ’val’ declaration

val aNumber = aNumber + 5
// Throws compile error: Assignment on val cannot use a recursive assignment

val aNumber = 10 // No error thrown on redeclaration of a variable
Mutable data types are declared with the 'var’ keyword.
var aNumber: Int = 10

aNumber = 5 // No error

Ideally, with an implementation of Hindley—Milner type inference, basic declarations of types should be
unneccesary.

2.3 Conditionals

Logic expressions:

!True = False // = True
not True = False // => True
False is False // => True
True is False // => False
True is not False // => True
True and True // => True
True or False // => True
not True // = False

Logical Operators:

and // Logical and
or // Logical or

3 not // Logical negation

w o

2.4 Basic Data Types

2.5 N-tuples

Tuples are a basic immutable data structure that holds an ordered set of elements.

Unlike Lists or Maps, the elements with a tuple can be of any type and do not need to follow a consistent
type declaration.

Tuples are most useful when a function may wish to return more than a single piece of information, or
more commonly used as part of function nesting with 'pipe ins’ and ’pipe outs’.

The following symbol scheme will be used to access consecutive elements of a tuple: $0, $1, $2,
$n-1.
val t = (1, ”hello”, "world”, 5)

t |> (x: Tuple = if ((x30 + x$3) % 2 = 0) println ("#{x$1} #{x%$2}”)) // Prints ”hello
world”;

//Alternatively
t o[> {
(x: Int, a: String, b: String, y: Int = if ((x +y) % 2 = 0) println ("#{a} #{b}”))

// Prints ”hello world”;

[T SO R R

2.5.1 Lists

Lists replace arrays as the basic iterable data structure. Lists are zero-indexed and immutable, so that
all operations create new copies of the list. Lists accept any type but must have a consistent type across
all elements.

Lists should also support basic List.head and List.tail features, as well as be able to be pattern matched
in the follwing form: head :: tail.

The empty List also has a special type that can be used in pattern matching and other usefull circum-
stances called Nil

//Normal construction

val myList: List[Int] = List (1, 2, 3, 4)
// ’::7 is an operation that creates a new list by appending the element to the head
val newList = 10 :: myList // => List (10, 1, 2, 3, 4)

// You can use square—bracket ”array” syntax as a shortcut for list creation
val arrayList = [1, 2, 3, 4] // => List[Int]|: List(1,2,3,4)

myList match {
case X ! Xs =>
println (?Head: #{x}”)
case Nil =
println (”Empty List”)

2.5.2 Maps

Maps act as a basic Key:Value data structure that is staticly typed on both Key and Value. Maps
are unordered and no guarantee can be made on the ordering of contents. Keys can be only primative
types.

// Key—value pairs are inserted in the form of tuples

val myMap — Map((”x” , 77y77) , (naw , ”b”) , (ntw , 77s77))

// There is also a shorthand for creating maps as followed:
val anotherMap — Map(nxvv > 77y777 "a? —> wbw’ NEY s, Ngn

val fetchedVal = myMap(”x”); // = 7y”

/*
You can get a List of keys and values from the map. However, nothing is guaranteed on
the ordering of this returned List

*/
val keys = myMap. keys ()
val values = myMap. values ()

2.6 Functions

Functions can be defined with the def key word. The types must be specified.
def funcName(parameter: type): returnType = {}
// You can use ’def’ to declare variables

// But unlinke ’var’ and ’val’ you do not know the value of ’'x’ until it is used
def x: Int =5

For example:

1 // value is determined when x is evaluated in an expression
> def x: Boolean = even (2)

+ val x = even(2) // value is determined at compile time

Anonymous functions are also allowed for flow control.

1 (variableName: dataType => code): returnType

2.7 Function Nesting

The symbols | > and < | can be used to chain nested function calls, the expression on the bar side
is evaluated first. All arithmetic operators are applied before evaluating left to right, and parentheses
are respected as in traditional order of operations. All expressions on the call side of the flow must be
functions.

For example:

1 val a: Int = 3;
a |> (x: Int = x + 1): Int // Returns 4;

N

NOTE: The function calls funcName(x), | > funcName() and funcName() < | are semantically the
same, but resolve differently with different precedence.
More examples of control flow:

1 b |> (x: Int = x + 1): Int |> even

The above expression gets executed as follows:
1. Evaluate expression b: Int => 3.

2. Left-to-right: pipe into expr2, an anonymous function which takes one argument (an Int), adds 1
to it and returns a new Int.

3. Pipe result into even(), which is a function that takes an Int and returns a Boolean.

4. No more pipes, left-to-right is done, return boolean value.

1 even <| (b |> (x: Int => x + 1): Int)
The above expression gets executed as follows:
1. Evaluate expression even: (x: Int => Boolean).
. Pipe left, so look for return of Int from exrp?2.
. Expr2 evaluates to another pipe in parenthesis, so break it down and start left-to-right.

2

3

4. Evaluate expression b: Int => 3.

5. Pipe right into anonymous function that returns an Int.
6

. Going back to original Expr2, we have the return of Int, we can now pipe it back into Exprl which
is (Int => Boolean) ’even’ function.

7. After evaluating there are no more pipes or operations, return boolean.

1 even <| b [> (x: Int = x + 1)

The above returns type error, since exprl is evaluated into ’even < | b’ and expr2 is '(x: Int => x +
1)’. Since, without parenthesis, evaluation is left to right, this expression throws a type error.

N}

g W N R

~

®

g W N R

w =

2.8 Composing Functions

The << and >> operators can be used to call a fuction with the return type of another. For exam-
ple:

(f << g) <] x or x |> (f << g) // is same as f(g(x))
(f > g) <| x or x |[> (f > g) // is same as g(f(x))

NOTE: If at any time the number of arguments for composed functions don’t match/type wrong, compiler
will throw errors.

Another example:

def timesTwo(x: Int):Int = x * 2
def plusOne(x: Int):Int = x + 1

def plusOneTimesTwo(x: Int): Int = x |> (plusOne << timesTwo)
def timesTwoPlusOne(x: Int): Int x |> (timesTwo << plusOne)

plusOneTimesTwo (9) // => 20
timesTwoPlusOne (9) // => 19

2.9 Pattern Matching

The language also should have the capacity to do pattern matching

val a: Int =5
val b: String = a match {

| x:Int if (x < 0) => ”Negative”

| x:Int if (x is 5) => ”Five”

| - => ”Another Number” // Exhaustive case match
}

2.10 Escape Characters & String interpolation

We will use the same escape characters as Java, i.e. \n for the newline character. Additionally, the hash
character #’ must be escaped.

The language also allows for the following style of string interpolation (like Ruby):

// using #{Expression} will evaluate everything within the curly brace
val name: String = ”Jack”
val x: String = ”There are #{1 + 4} apples, #{name}” // => ”There are 5 apples, Jack”

2.11 Algebraic Data Types

Immutable data-holding objects depend exclusively on their constructor arguments. This functional con-
cept allows us to use a compact initialization syntax and decompose them using pattern matching.

/#*% Below is an example of a prefix notation adder that evalues a single addition
or multiplication at a time

*k [
//Base types act cannot be instantiated
base type Expr

alg Lit(num: Int) extends Expr
alg Binop(operator: String, left: Expr, right: Expr) extends Expr

def eval(expr: Expr): Int = {
expr match {

N

| Lit(n) => n

| Binop(”+”, 1, r) = eval(l) + eval(r)
| BinOp(”*”, 1, r) => eval(l) * eval(r)
| - => 0 // If doesn’t match

}
val onePlusTwo = Binop (”+”, Lit (1), Lit(2))

eval (onePlusTwo) // => 3: Int

3 Example Programs

3.1 Calculating GCD

def ged(a: Int, b: Int): Int = {
b match {
| 0 = a
| - = ged(b, a % b)

3.2 Pre-Order Tree Traversal

type Tree(1ft: Tree, rght: Tree, value: int)

def makeTree(value: Int): Tree = {
if (value < 15)
Tree (makeTree(value + 1), makeTree(value + 1), value)
else

Tree(Nil, Nil, value)

}
def merge(l1: List[Int], 12: List[Int]) = {
11 match {
| Nil = 12
| head :: tail => head :: (tail, 12 |> merge)
| - => List()
}
}

def preOrder(t): List[Int]{
t match {
| Nil = List ()
|- = {
t.value :: (preOrder(t.1ft), preOrder(t.right) |> merge)
}
}

t = makeTree (0)
preOrder(t)

3.3 Fantasy Game

Actor(level: Int, hp: Int, defense: Int, attack: Int)

var dragon = Actor (20, 200, 20, 30)
var person = Actor(5, 50, 1, 10)

def attack(pl: Actor, p2:actor): Unit = {
var rand = random ()
rand match {
case rand > .5 =>

p2.hp —= (pl.attack — p2.defensexrand) * rand * pl.level / p2.level

11 case - => Unit

12 }

13 }

14

15 def battle(pl: Actor, p2: Actor): Unit = {
16 while not pl.hp = 0 and not p2.hp {
17 (pl, p2) |> attack

18 (p2, pl) |> attack

19

20 }

