
What's your thread count?

Benjamin Barg bbb2123  - The Heart (Language Guru)

Gabriel Blanco gab2135  - The Muscle (Testing)

Ruchir Khaitan rk2660  - The Brains (Systems Architect)

Amelia Brunner arb2196  - The Boss (Manager)

In recent years, parallel computation hase become a powerful tool for improving performance of
desktop applications. While parallelism is not a novel concept—nondeterministic finite automata
existed long before digital computers—it has become much more relevant to personal computer
users in the past decade because of increasing hardware support for various types of concurrent
program execution.

Parallel computation may be broken down into two rough categories: task-based and data-based
parallelism. Task-based parallelism is characterized by a relatively small number of threads and a
relatively high complexity of such threads, while data-based parallelism requires a relatively large
number of threads performing similar simple computations. Task-based parallelism is particularly
suited to CPU architectures, which are optimized for low-latency computation. Many languages and
APIs serve the task-based domain at fairly high levels of abstraction above the underlying
hardware; examples include POSIX threads, Golang, and OpenML.

Conversely, GPUs are intrinsically better than CPUs at performing relatively simple operations
across large data sets in parallel, i.e. data parallelism. By focusing on high throughput, high latency
operations, and including hardware support for thousands of threads and efficient thread context
switching, GPUs are able to perform massive amounts of computation across independent chunks
of data much faster than could CPUs, and they scale much better than CPUs as data size grows.
The GPU multiprocessing paradigm is thus both fundamentally different than that of CPUs, and is
more applicable to "embarassingly parallel" problems.

Language Proposal: Sheets

September 24th 2014

COMS W4115 - Programming Languages and Translators

Motivation



However, GPU programming is currently an extremely low-level exercise. Two main languages exist
for GPU programming: CUDA (Nvidia's propreitary GPU API) and OpenCL (an open-source, cross-
platform language for heterogenous hardware programming). We have chosen not to use CUDA
because it is not open-source, and it lacks extensibility to other hardware. Conversely, OpenCL
offers support for a wide variety of GPUs, and conforms to our open-source philosophy.

Our primary target with Sheets is the programmer who wants to take advantage of the performance
benefits of mass parallelism (specifically the large performance benefits of GPU execution for
programs operating on large data sets) but who is unfamiliar with hardware specifics and the details
of concurrent programming and does not need all the optimization features provided by OpenCL.
We believe that there is a rich class of problems that, while not approaching the scale of massively
parallel computation frameworks, would still enjoy the performance gains offered by parallel
computation on a desktop GPU.

a high-level language for manipulation of large data sets that takes advantage of GPU
parallelism
provide simple abstractions of common classes of massively parallelized GPU computation
compile into OpenCL to support multiple GPU architectures

You don't need to know what's going on underneath the Sheets

single and multi-dimensional array primitives
map  and filter  operations implemented in underlying OpenCL library

GPU-backed support for common matrix and vector operations
import  and write  primitives for reading and writing large data files, supporting multiple

binary encodings

Sheets makes parallel computation on a GPU more accesible by abstracting away the features
already found in OpenCL. The ideal user of our language is the programmer who wants to do
simple operations on large data sets and therefore wants the benefits of GPU processing, but who
doesn't want to worry about the extra level of complexity involved with GPU threading. Since
familiarity and ease of use is a priority in our project goals, we are modelling the aesthetic of our
language on both Python and C. Python's use of white space for dilineation makes it easier to read
and write code; however, we are choosing not to implement Python's inferred data types because
this would introduce unnecessary ambiguity when marshalling arguments for GPU computation. For

Summary of Goals

Domain Features

Language Design



the primitives, we are using a lot of the same data types as in C, and since OpenCL is based on

C99, this will make porting our language down easier. With our syntax focused on ease of use,

we've also added a few language features to aid with parallelizing large-scale array operations,

which are outlined in more detail below.

int
long
float
double
char

int[]            // Int Arrays
long[]           // Long Arrays
float[]          // Float Arrays
double[]         // Float Arrays
char[]           // Char Arrays (Strings)
bit[]            // Bit Arrays, useful for bit masks

Code Samples

Primitive Declarations

Sample operations to be automatically parallelized



/* all mathematical operations applied to entire arrays

 * can be thought of as 'embarassingly parallelizable,'

 * so in Sheets, we parallelize them automatically:

 */

/* Math operations */

array3 = array1 * array2       // multiplication

array3 = array1 / array2       // division

array3 = array1 + array2       // addition

array3 = array1 - array2       // subtraction

array3 = array1 ^ array2       // power

array3 = -array1               // negation

array3 = array1++              // increment all values

array3 = array1--              // decrement all values

/* Array-specific operations */

array3 = array1                // copying

array3 = 'array1               // reversing

array3 = array1 ** array2      // matrix multiplication

/* Bit-level operations */

array3 = array1 AND array2     // 'and' operator

array3 = array1 OR  array2     // 'or' operator

array3 = array1 XOR array2     // 'xor' operator

array3 = array1 NOR array2     // 'nor' operator

/* Bitshifting to be applied to all values in array */

array3 = array1 << 1           // left shift

array3 = array1 >> 1           // right shift

Use Case: Audio Mixing



/* 

 * When mixing two audio tracks in float32 format, you have to

 * scale so that the values remain between (-1, 1). Simple addition

 * would lead to clipping audio.

 * 

 * SHEETS automatically parallelizes the scalar multiplication operation

 * as well as the array addition using the GPU.

 */

void main:

    float[] audio1 = import('file1.wav', 'float32')

    float[] audio2 = import('file2.wav', 'float32')

    audio1 = audio1 * .5

    audio2 = audio2 * .5

    float[] mixed_audio = audio1 + audio2

    write('file3.wav', mixed_audio)


