
RAPID Language Reference Manual

Ben Edelstein, Brian Shin, Brendon Fish, Dan Schlosser, Nate Brennand

1

Table of Contents

RAPID Language Reference Manual
1. Introduction

1.1 Why RAPID?
1.2 RAPID Programs

2. Types
2.1 Static Typing
2.2 Primitive Types

null
Booleans
Integers
Floating Point Numbers
Strings

2.3 Non-Primitive Types
List
Dictionary
Object
json
Errors

Stacking
Predefined Responses

Functions

2.4 Casting
Integers and Floats
Booleans

3. Lexical Conventions
3.1 Identifiers
3.2 Keywords
3.3 Literals

Integer literals
Float literals
String literals
Boolean literals
List literals
Dictionary literals

3.4 Comments
3.5 Operators

4. Database Backing

2

4.1 Classes
Instance Methods
Instantiation

4.2 Deletion
json

4.3 Querying

5. Functions
5.1 Declaration
5.2 Unsafe Functions

6. Routing
6.1 Declaring Routes
6.2 Path context

Classes
Namespaces
Parameters

7. Syntax
7.1 Program Structure
7.2 Expressions

Constants
Identifiers
Binary Operators
Parenthesized Expressions

7.3 Statements
Assignments
Declarations

Variable Declaration
Function Declaration
Route Declaration
Class Declaration
Namespace or Parameter Declaration

Function call
Control flow

If
If-else
Else-if
Switch

While loops
For loops
Return statements

3

8. Built-in Functions
8.1 length()
8.2 range()
8.3 Output Functions

Print Functions

8.4 Logging Functions

9. Standard Library
9.1 string

string.is_empty()
string.substring()
Get (c = string[i])
Set (string[i] = s)
Iterate (c in string)
Slice (string[i:j])

9.2 list
list.is_empty()
list.append()
list.pop()
list.push()
list.concat()
list.reverse()
list.copy()
Get (list[i])
Set (list[i] = j)
Iterate (j in list)
Slice (list[i:j])

9.3 dict
dict.is_empty()
dict.has_key()
dict.insert()
dict.remove()
dict.keys()
dict.values()
Get (dict[k])
Set (dict[k] = v)
Iterate (j in dict)

9.4 error
error.message
error.code
error.name

10. Program Execution

4

10.1 Flags

5

1. Introduction

With increased demand in the public and private sector for cloud-connected mobile and web applications has
come a rising need for web servers to maintain state across multiple devices and users. Development of web
servers is complex, however. Building a web server using modern web server packages requires learning a
server-side programming language, and then integrating a web server package and implementing required
methods. Furthermore, local testing and development of these servers is excessively complex, as they have
numerous dependencies and are difficult to build.

RAPID is a programming language intended specifically for the rapid development of modern web APIs. Using
RAPID, developers can quickly build a database-backed REST API server that guarantees JSON shapes in responses.
RAPID is object oriented and database-backed, meaning that classes represent an SQL table, and upon
instantiation objects are automatically saved in the database. This abstracts away much of the boiler plate code
that developers typically write when building an API server.

1.1 Why RAPID?

The name RAPID represents the goal of the language: making API server development quick. Also, it’s a recursive
acronym for RAPID Application Programmer Interface Dialect.

1.2 RAPID Programs

There are two types of RAPID programs, servers and scripts. If a program contains an HTTP method, it is a server,
otherwise it is a script. (See more in later sections).

6

2. Types

2.1 Static Typing

RAPID is a statically typed language; variables must be explicitly typed upon declaration. Variables can be cast to
other types (see Casting).

2.2 Primitive Types

null

In RAPID, the null keyword represents an uninitialized value. Any type in rapid may take on null if it hasn’t
been initialized, or otherwise doesn’t exist.

Booleans

Boolean values are defined by the true and false keywords. Because they are their own type, non-boolean
values must be cast to boolean in order to be used in logical expressions.

For example:

!(3+5)? // valid RAPID

!(3+5) // not valid RAPID

The ? is a an operator on all primitive types that evaluates to the “truthiness” of that value.

Integers

Integers are preceded by the type int , and represent an 8 byte, signed integer. Integers can be declared and
initialized later, or initialized inline. Uninitialized integers are null.

int i // null
int i = 5 // 5

Integers are copied by value.

7

int a = 1
int b = a
a = 2
printf("%d, %d", a, b) // 2 1

Floating Point Numbers

Floating point numbers are preceded by the type float , and represent IEEE-754 64-bit floating-point numbers..
They can be declared and initialized later, or initialized inline.

float i // null
float j = 3.14 // 3.14

Strings

Strings in RAPID are mutable, and declared with the string type, and have the default value of the empty string.
String literals are declared using double quotes, and special characters may be escaped using the \ character.
Strings may be indexed using square brackets. Because there is no Character type in RAPID, single characters are
strings of length 1. Multiline strings may be declared using triple double quotes. Newlines are preserved and quotes
do not need to be escaped, but they may not be nested. Strings are pass by value.

string s // null
string character = "c" // c
string s = "He is \"Batman\"" // He called himself "Batman"
string c = s[0] // H
string multi = """
Did you hear?

He calls himself "Batman".
""" // multi[0] => "\n"

2.3 Non-Primitive Types

List

The list type is a zero-indexed array that expands to fit it’s contents. The type of the contents must be provided
within angle brackets in the type signature. RAPID list literals may be declared using square brackets, and values
may be accessed or set using square brackets. Uninitialized lists default to the empty list. Lists are pass by
reference.

8

/* List declaration */

list< /* type */ > /* id */ = [
 /* expression */,
 /* expression */,
 ...
 /* expression */
]

list<int> empty // []
list<int> numbers = [1,2,3,42]
numbers[3] // 42
numbers[1] = 5 // [1,5,3,42]

Dictionary

The dict type is similar to an object, but it’s key set is mutable. The type of the key and value must be provided
within angle brackets in the type signature. Only primitive types may be used as keys. Keys may be added, set, and
accessed using square brackets. RAPID dict literals may be declared as comma-separated key:value pairs
surrounded by braces. Uninitialized dictionaries default to the empty dictionary. Dictionaries are pass by reference.

/* Dictionary declaration */

dict< /* type */ , /* type */ > /* id */ = {
 /* expression:string */ : /* expression */,
 /* expression:string */ : /* expression */,
 ...
 /* expression:string */ : /* expression */
}

dict<string, int> empty // {}
dict<string, int> ages = {"Alice":3, "Bob":5}
ages["Alice"] // 3
ages["Bob"] = 4 // {"Alice":3, "Bob":4}
ages["Caroline"] = 7 // {"Alice":3, "Bob":4, "Caroline":7}

Object

The object type is a generic, non-primitive, dictionary-backed type that has attributes for instance variables and
functions. Accessing instance variables or functions can be done with dot notation. Objects may not be declared
anonymously; they must be declared as instances of classes. Objects have immutable key sets, so variables and
functions may not be added or removed, although their values may be changed. For more on classes and
instantiation, see Classes.

9

json

The json type is shares qualities of a dictionary and of an Object. Every json type is directly connected to an
Object class that is user-defined. They have keys and values like dictionaries, but have the strict requirements of
shape like objects do. Every property of a class is a mandatory key on the corresponding json object, and
properties that have default values on objects have default values in json . Unlike objects, however, json objects
do not have methods associated with them, and instances do not represent rows in the database. Each class
declaration defines an Object type and a json object type, and only json objects that are associated with
classes may be instantiated.

For example, if we previously defined a User object with three instance variables username , full_name , and
password (all strings), then we may declare a json User like so:

/* JSON Object initialization */

json< /* id:classname */ > /* id */ = json< /* id:classname */ >(
 key = /* expression */,
 key = /* expression */,
 ...
 key = /* expression */
)

json<User> steve = json<User>(
 username="sedwards",
 full_name="Stephen Edwards",
 password="easypeasy"
)

Errors

Errors in RAPID are not thrown and caught, rather they are returned directly by unsafe functions (see Functions).
Errors contain a string message, which can be dot-accessed, an integer error code that conforms with the HTTP/1.1
standard, and an optional string name.

For example, to declare a custom error:

error e = error(message="There was an error with that Request.",
 code=400,
 name="RequestError")

Unsafe operations return an error as the last return value:

dict<string, int> d = {"foo": 4, "bar": 5}

10

int val, error e = d["baz"]
if (!e?) {
 printf("%d\n", e.code) // 500
 printf("%s\n", e.message) // Key error when accessing "baz" on `d`.
 printf("%s\n", e.name) // KeyError
}

Many standard library classes and builtin objects define errors pertinent to their functions, to which an error
instance may be compared.

dict<string, int> d = {"foo": 4, "bar": 5}
int val, error e = d["baz"]
if (!e?) {
 printf("%s", e == dict.KeyError) // true
}

Stacking

Unsafe functions (like list and dictionary access) may exist in the same expression. If unsafe functions return
successfully, the error that is returned is consumed (ignored), and the return value is taken. If an unsafe function
returns an error, the expression evaluation short-circuits, and the value of the expression is null and the error that is
returned by the failed function call.

dict<string, list<int>> d = {"foo": [4,5], "bar": [1,2,3]}
int val, error e = d["foo"][2] // List index out of bounds...
printf("%d", val) // null
printf("%s", e.name) // IndexError
printf("%t", e == list.IndexError) // true

val, e = d["baz"][0] // No such key, short circuit
printf("%d", val) // null
printf("%s", e.name) // KeyError
printf("%t", e == dict.KeyError) // true

More generally, if a subexpression of an expression is unsafe, it is presumed to be successful and the return value of
the subexpression is used in the evaluation of the larger expression, unless the unsafe expression evaluates to an
error, in which case evaluation of the large expression short-circuits, and the value of the large expression is
null, /* sub-expression's error */ .

Predefined Responses

Unsafe functions may also choose to return an predefined response, which is an predefined literal that will be cast
to a generic error object at compile time.
See Functions for more details.

All predefined errors exist in the root scope and are named according to their status code, e<code> .

11

e404 is the error, error("Not Found", 404, "NotFound") (message, code, name).
All the below errors are predefined as such.

Response Message Code Name

e100 Continue 100 Continue

e200 OK 200 OK

e201 Created 201 Created

e301 Moved Permanently 301 MovedPermanently

e302 Found 302 Found

e304 Not Modified 304 NotModified

e400 Bad Request 400 BadRequest

e401 Unauthorized 401 Unauthorized

e403 Forbidden 403 Forbidden

e404 Not Found 404 NotFound

e405 Method Not Allowed 405 MethodNotAllowed

e410 Gone 410 Gone

e413 Request Entity Too Large 413 RequestEntityTooLarge

e414 Request-URI Too Long 414 RequestURITooLong

e417 Expectation Failed 417 ExpectationFailed

e500 Internal Server Error 500 InternalServerError

e501 Not Implemented 501 NotImplemented

e502 Bad Gateway 502 BadGateway

e503 Service Unavailable 503 ServiceUnavailable

e504 Gateway Timeout 504 GatewayTimeout

Functions

Functions are first class objects, and may be passed around as variables (see Functions)

12

2.4 Casting

Integers and Floats

Casting between float and int can be done using the float() and int() keyword functions. Floats are floored
when they are cast to int. Additionally, integers are cast to floats if floats and integers are used together in a binary
operator.

float f = 7.5
int i = 3
float f = float(i) // f == 3.0
int i = int(f) // i == 7

Booleans

Any value may be cast to boolean using the ? operator.

See the following table for the result of using the ? operator on various types:

Type true false Comments

boolean true? false? Booleans retain their value

int 1? , -1? 0? 0 is false , other ints are true

float 1.0? , -1.0? 0.0? 0.0 is false , other floats are true

null - null? null is false

list [0]? , [false]? []? Empty lists are false

dict {"key":false}? {}? Empty dicts are false

json json<Obj>()? - JSON objects are true

object Obj()? - Objects are true

13

3. Lexical Conventions

3.1 Identifiers

Identifiers must start with a letter or an underscore, followed by any combination of letters, numbers, and
underscores.

Valid Identifiers:

abc , abc_def , a___1 , __a__ , _1 , ABC

Invalid Identifiers:

123 , abc-def , 1abc , ab\ cd

3.2 Keywords

The following identifiers are keywords in RAPID, and are reserved. They can not be used for any other purpose.

if , else , for , in , while , switch , case , default , fallthrough , http , func , json , class ,
namespace , param , true , false , new , optional , unsafe , instance

3.3 Literals

Integer literals

Integer literals may be declared using digits.

int x = 5

Float literals

Float literals are declared as an integer part, a decimal point, and a fraction part, all of which are mandatory. The
integer part may not start with a zero, unless it is only a zero (for floats less than 1.0), in which case it is still

14

required. There may not be any whitespace between these three parts.

// Valid float literals:
float x = 15.0
float y = 0.25

// Invalid float literals:
float z = .5
float w = 10.
float v = 1 . 4

String literals

String literals are declared using double quotes. Special characters may be declared using the \ escape character.

string a = "hello"
string b = " \"world\"\n"

Boolean literals

Boolean literals are declared using the true and false keywords.

boolean t = true
boolean f = false

List literals

List literals may be declared between square brackets, with comma-separated values.

list<int> a = [1,2,3,4]
list<string> b = ["hello", "world"]

Dictionary literals

Dictionary literals may be declared as comma-separated key value pairs between braces, with a colon separating
the key and value. Whitespace is ignored.

dict<string, int> a = {"hello": 4, "world": 5}
dict<string, ing> b = {

15

 "a": 42,
 "b": 27
}

3.4 Comments

There are two types of comments in RAPID: single line comments, and block comments. Single line comments are
preceded by // and block comments begin with /* and end with */

// This is a single line comment

/*
This is a multi-line
comment
/* They may be nested */
*/

3.5 Operators

Operator Use Associativity

+ Addition left

* Multiplication left

/ Division left

- Subtraction left

% Modulus left

= Assignment non-associative

== Equal to non-associative

!= Not equal to non-associative

> Greater than non-associative

< Less than non-associative

>= Greater than or equal to non-associative

16

Operator Use Associativity

<= Less than or equal to non-associative

17

4. Database Backing

4.1 Classes

RAPID classes are backed by a PostgreSQL database.
Classes are defined using the class keyword, and represent an SQL table.
Instance variables (variables declared directly within the class block) represent columns for the table.
Instances of a class represent rows in SQL.
By default, columns are not nullable, but this may be overwritten using the optional keyword.
If the assignment syntax is used, a default value will be given.

class /* id */ {
 /* declaration */
 /* declaration */
 ...
 /* declaration */
}

Take the following example:

class User {
 string username
 optional string full_name
 int age = 18
 string password
}

In this example, the “User” table has four columns: username , full_name , age , and password . The
full_name column may be omitted in the instantiation, and if age is omitted, it will take the value 18 .

Instance Methods

Instances of objects may have methods that operate on their instances variables. Using the instance keyword, a
block may be created in which instance methods may be defined:

class /* id:classname */ {
 instance /* id:selfname */ {
 /* declaration */
 /* declaration */
 ...
 /* declaration */

18

 }
}

The identifier specified after the instance keyword will represent the instance in all functions defined inside the
instance block.

Instance methods may not be http routes. The . is syntactic sugar for calling instance methods.

For example:

class User {
 string first_name
 string last_name

 instance my {
 func get_full_name() string {
 return my.first_name + " " + my.last_name
 }
 }
}

User obama = User(first_name="Barrak", last_name="Obama")
printf("%s", obama.get_full_name()) // Barrak Obama

Instantiation

New instances of a class may be declared using the new keyword.
The new keyword is followed by the name of the class and a pair of parenthesis, in which a JSON User literal
(described more in-depth in the next section) may be passed to declare instance variables.
Once a user defined object is created, it will be database backed.
Any changes to the object will trigger an update to the database backed copy.
Every object will have an ID attribute generated (this is a reserved attribute that cannot be used).
This is a unique identifier to the object.

User bob = new User(
 username="burgerbob",
 full_name="Bob Belcher",
 password="burgersrock",
 age=42
)

4.2 Deletion

19

All objects have an instance method, delete() , defined that will delete the database record.
There is no return value for the delete call.

json

Defining the “User” class defines a User type, as well as a json<User> type. The json<User> type has the
same keys and value types as the User class, and may be declared in dictionary literal syntax.

json<User> bob_json = json<User>(
 username="burgerbob",
 full_name="Bob Belcher",
 password="burgersrock",
 age=42
)

This json<User> object does not represent a row in the database, and will be deallocated when it leaves scope.

It may be passed into an instantiation statement for a User object, to be persisted:

User bob, error e = new User(bob_json)

4.3 Querying

Objects may be queried from the database using the get function, which is automatically defined on all classes.
get is an unsafe function which will return a list of objects as well as an error.

The following example queries all User objects from the database:

Tweet[] tweets = Tweet.get()

A optional filter parameter can be set to limit the responses returned by Get().
The filter value shoudld be a dictionary of attributes and values.
Any non-existant attributes in the dictionary will be logged as an warning and ignored.

// returns all tweets by burgerbob.
Tweet[] tweets, error e = Tweet.get(filter={
 username="burgerbob"
})

A optional ID parameter can be set to return a single Object.
This can be combined with filter if desired.

20

In the case that the object is not found, the returned object will be null and the error will be a non-null value.

// returns all tweets by burgerbob.
Tweet t, error e = Tweet.get(ID="123abc")

21

5. Functions

5.1 Declaration

Functions in RAPID are first-class objects, but may not be declared anonymously. Functions are declared using the
func keyword. The arguments (within parenthesis), return type (after the parenthesis, but before the braces), and

the body of the function (within the braces) must be declared explicitly. Return types may include multiple types
separated by commas, or may be omitted for void functions.

Return values are specified using the return keyword, which must be followed by an expression to be returned
for functions that have declared return types. If the return type is omitted, the function is void, an the result of
calling it may not be assigned to a value. Void functions may use the return keyword by itself to exit prematurely
from the function.

Unsafe functions may not be void, because they must return errors.

return /* expression */

The arguments must be in order namespace arguments, then formal arguments.

[unsafe] func /* id */ (/* namespace args */ /* formal args */) {
 // statements
}

For example:

func sum(int a, int b) int {
 return a + b
}

Or:

func printInt(int a) {
 printf("%d", a)
}

5.2 Unsafe Functions

If a function performs actions that may be unsafe, it must be preceded by the keyword unsafe . Unsafe functions

22

return unsafe expressions, which is denoted by the presence of an error -typed second value that is returned.

unsafe func access(dict<string, int> d, string key) int {
 int val, error error = d[key]
 return val, error
}

Notice that the return type remains int , although an error is also returned. For more on unsafe expressions, see
Expressions.

Unsafe functions may also return a error, which are integer literals that will be cast to a generic error object at
compile time. See Status Code Definitions for a complete list of error codes that may be declared as anonymous
errors.

/* Default dict accessing:
 * If there is a KeyError, return 0 with a 400 Not Found error
 */
unsafe func access(dict<string, int> d, string key) int {
 int val, error error = d[key]
 if (error == dict.KeyError) {
 return 0, e400
 }
 return val, e200
}

23

6. Routing

One of the core features of RAPID is it’s ability to easily define routes for a REST API server.

6.1 Declaring Routes

Routes may be declared like functions, but substituting the http keyword for the func keyword. Routes specify
a REST API endpoint, it’s parameters, it’s response, and any side effects.

Like functions, routes take namespace arguments, and then other formal arguments. Unlike functions, however,
routes may also take a single request body argument that of a json<Obj> type. It will be read from the request
body and interpreted as JSON.

http /* id */ (/* namespace args */ /* formal args */ /* request body args */) {
 // statements
}

Routes are unsafe by default, and therefore must include error in their return types. This may be an anonymous
error (see Functions).

For example, the following route echos the URL parameter that it is passed.

http echo(string foo) string, error {
 return foo, e200
}

The name of the function will be the name of the route. Therefore, in the preceding example, a GET request to
/echo?foo=Dog will return "Dog" .

6.2 Path context

The endpoint associated with each route is determined by the combination of one or more blocks associated with
it and the name of the route itself. There is a one-to-one mapping from any route to a series of accessors on class
instances.

Classes

Classes provide path context. Class names are put to lowercase, and appended to path context. The following

24

example defines a route named add inside a class called Math .

class Math {
 http add(int a, int b) int {
 return a + b, e200
 }
}

A GET request to /math/add?a=3&b=4 will return 7 .

Similarly, the following code will print 7 :

math = Math()
int sum, error _ = math.add(3,4)
printf("%d", sum)

Namespaces

Sometimes, functions or routes should be grouped together for organization purposes, rather than any functional
purpose. The namespace keyword defines a named block of functions that has the namespace name appended to
the path context for those functions.

/* Namespace declaration */

namespace /* id */ {
 // statements
}

class Math {
 namespace ops {
 http add(int a, int b) int { return a + b, e200 }
 http sub(int a, int b) int { return a - b, e200 }
 }
 namespace convert {
 func ft_to_in(float feet) float { return feet*12, e200 }
 }
}

This defines routes at /math/ops/add and /math/ops/sub , and functions at Math.ops.add ,
Math.ops.sub , and Math.convert.ft_to_in .

A GET request to /math/ops/add?a=3&b=4 will return 7 .

Parameters

25

Variable URL parameters may be defined similar to namespaces, using a named block with the param keyword.
The param keyword is followed by a type and an identifier.

Any function or route defined within a param block must take the parameters defined by the param blocks in
order from inside to out.

param /* type */ /* id */ {
 // statements
}

For example:

class Math {
 param int a {
 param int b {
 http add(int a, int b) int { return a + b, e200 }
 }
 http square(int a) int { return a*a, e200 }
 }
}

A GET request to /math/5/7/add will return 12 , and a GET request to /math/5/square will return 25 . A
GET request to /math/5/7/add?a=4 will return return a 400 HTTP error. The following code snipped will print
12 then 25 :

math = Math()
int sum, error _ = math.add(5,7)
printf("%d", sum)
int sqr, error _ = math.square(5)
printf("%d", sqr)

26

7. Syntax

7.1 Program Structure

A valid RAPID program is a series of valid statements. If the program contains any http blocks, it will be
interpreted as a restful web API, and will run a HTTP web server on localhost:5000 .

7.2 Expressions

Expressions are series of operators and operands that may be evaluated to a value and type. Any subexpressions
are evaluated from left to right, and side effects of evaluations occur by the time the evaluation is complete. Type
checking on operations occur in compile time.

Constants

Constants may be string, integer, float, or boolean, dict, list, or JSON object literals. See Lexical Conventions for
more information.

Identifiers

Identifiers could be primitive types, lists, dictionaries, objects, JSON objects, functions, classes, or errors. Identifiers
can be modified, and reused throughout a program.

For example, in the following example, the variable a changes value three times.

class a {} // `a` is a class
func a() void {} // ` ` is a function, the class no longer exists.
int a = 5 // ` ` is an int, the function no longer exists.

Identifiers are tied to the scope that they are declared in. The following example prints 3 , then 5 , then 3 :

int a = 3
if (true) {
 printf("%d", a) // `a` is from the parent scope.
 int a = 5
 printf("%d", a) // `a` is from the local scope.
}

27

printf("%d", a) // the `a` from within the block does not leave it

Binary Operators

Binary operators have two operands, one on the left side, and one on the right.

/* expression */ /* bin-op */ /* expression */

In the case of multiple consecutive binary operations without parenthesis, the association of the binary operator is
followed (see Operators).

Parenthesized Expressions

Parenthesis may be used to alter the order of operand evaluation.

7.3 Statements

Assignments

Assignments have an lvalue , and an expression, separated by an equal sign. Possible lvalue s include
identifiers, accessors (either list, dict, or object), a declaration, or another assignment:

/* lvalue */ = /* expression */

Examples include:

a = b
int i = 7
j = square(i)
k = 5 * b

Declarations

A declaration may be the declaration of a variable, an assignment, or the declaration of a function, route, class,
namespace, or param.

Variable Declaration

28

A variable declaration consists of a type and an id.

/* type */ /* id */

Function Declaration

The declaration of a function is a valid statement (see Functions).

Route Declaration

The declaration of a class is a valid statement (see Routing).

Class Declaration

The declaration of a class is a valid statement (see Classes).

Namespace or Parameter Declaration

The declaration of a namespace or parameter is a valid statement (see Path Context).

Function call

A function call is an identifier of a declared function and a set of parenthesis containing the comma-separated
arguments. There may not be a space between the identifier and the open parenthesis.

my_func(4,5)
int x = add(2, 6, 7)

Control flow

If

If the expression between the parenthesis of an if statement evaluates to true , then the statements within the
body are executed. Note that non-boolean values will not be cast to boolean, and will result in a compile-time error.

if (/* expression */) { /* statements */ }

If-else

An if statement may be immediately followed by an else statement, in which case the block of code within the

29

braces after the else keyword will be executed if the if ’s expression evaluates to false .

if (/* expression */) {
 // statements
}
else {
 // statements
}

Else-if

An if statement may be followed by an else if statement, in which case the the second if statement will be
evaluated if and only if the first if statement evaluates to false . The body of the else if is executed if the
second if statement is evaluated, and evaluates to true . An else if statement may be followed by another
else if statement, or an else statement.

if (/* expression */) {
 // statements
}
else if (/* expression */) {
 // statements
}
...
else if (/* expression */) {
 // statements
}
else {
 // statements
}

Switch

A switch statement includes an expression, which is evaluated and then compared in order to a series of one or
more case expressions. If the expressions are equal, the body of the case statement that matches will be
executed, and then the switch statement will short circuit. The fallthrough keyword may be used to avoid this
short circuit, continuing to compare the switch expression with subsequent case expressions.

The default statement may be included after all case statements, and will be executed if it is reached. This can
be thought of as a case whose expression always equals that of the switch . Observe the syntax below:

switch (/* expression */) {
 case (/* expression */) {
 // statements
 fallthrough
 }

30

 case (/* expression */) {
 // statements
 }
 default {
 // statements
 }
}

While loops

While loops contain an expression and a body. If the expression evaluates to true , the body will be executed.
Afterwards, the expression will be evaluated again, and the process repeats. Like if statements, while
statements must have expressions that evaluate to a boolean in order to compile.

while (/* expression */) {
 // statements
}

For loops

A for loop may be used to iterate over a list . The syntax is:

for (/* type */ /* id */ in /* list expr */) {
 // statements
}

For example:

list<int> my_list = [1,2,3,4,5]
for (int num in my_list) {
 printf("%d ", num)
}
// 1 2 3 4 5

The range() function in the standard library may be used to generate lists of sequential integers.

for (int num in range(1,6)) {
 printf("%d ", num)
}
// 1 2 3 4 5

Return statements

31

A return statement may be used to exit a function, optionally passing the value of an expression as the return
value of the function.

return /* optional expression */

For example:

func int add(int x, int y) int {
 return x + y
}
printf("%d", add(3,4))
// 7

32

8. Built-in Functions

8.1 length()

func length(string s) int
func length(list<T> l) int
func length(dict<T,S> d) int
func length(json<T> j) int

Returns the length of the argument. For strings, this is the number of characters in the string, for lists, this is the
number of elements in the list. For dictionaries, this is the number of keys, for JSON objects, this is the number of
keys.

Examples:

length("hello") // 5
length([0,1,2,3]) // 4
length({"a":0, "b":null, "c": False, "d": ""}) // 4

Taking the length of a null value will return null

8.2 range()

func range(int stop) int[]
func range(int start, int stop[, int step=1]) int[]

Returns a list of integers r where r[i] = start + step*i where i>=0 and while r[i] < stop . If start is
omitted, it defaults to 0. If step is omitted, it defaults to 1.

Step may be negative, in which
case r[i] > stop

Examples:

range(5) // [1,2,3,4,5]
range(4,5) // [4]
range(3,7,2) // [3,5]
range(10,4,-2) // [10,8,6]

33

8.3 Output Functions

There are four methods of outputing from the server.
They all accept a format string as the first argument and optional additional arguments for format strings.

Print Functions

printf(String formatStr, [values])

printf does not include a newline at the end of the output.
The output is directed to STDOUT.

8.4 Logging Functions

log.info(String formatStr, [values])

log.warn(String formatStr, [values])

log.error(String formatStr, [values])

All output is preceded by a timestamp.
The logging functions print with a newline at the end.
The output is directed to STDERR.

The method name being called precedes the message in all caps.

log.info("Hello, %s", "world")
// 2009/11/10 23:00:00 INFO: Hello, world

34

9. Standard Library

9.1 string

string.is_empty()

func is_empty() boolean

Returns a boolean value of whether the string on which it is called is of length 0 or null .

Examples:

string a = "dog"
string b = ""

a.is_empty() // false
b.is_empty() // true

string.substring()

unsafe func substring(start, stop) string

Returns the substring of a string at the given indexes. The start and stop indexes are inclusive and exclusive
respectively. Providing improper indexes will cause the function to throw an error (both must be 0 <= i <= length(s))

string a = "catdog"

string sub, error e = a.substring(1,4) // "atd", null
string sub, error e = a.substring(3,99) // null, error
string sub, error e = a.substring(50,99) // null, error

Get (c = string[i])

Strings may be indexed using brackets. Inside the brackets must be a zero-indexed integer. Getting is unsafe, and
returns string, error .

Examples:

35

string a = "catdog"

printf("%s", a[3]) // prints d

Set (string[i] = s)

After indexing, an assignment may occur, to set a value of the list. Setting is unsafe due to the possiblity of index
errors, and returns string, error .

Examples:

string a = "catdog"
a[2], error e = "p"
if (!e?) {
 printf("%s", a)
}
// prints capdog

Iterate (c in string)

Strings may be iterated over in for loops. Each element is returned in order.

Examples:

string a = "catdog"
for (string c in a) {
 printf("%s", c)
}
// prints catdog

Slice (string[i:j])

Strings may be sliced into substrings using slicing with brackets. Slicing is unsafe , and returns string, error .
Note that unlike for list.substring , the second index of a slice may be larger than the length of the string.

string a = "catdog"

a[1:4] // "atd"
a[3:99] // "dog"
a[50:99] // error

36

9.2 list

list.is_empty()

func is_empty() boolean

Returns whether the list on which it is called is empty.

list<int> a = []
list<int> b = [3,4]

a.is_empty() // false
b.is_empty() // true

list.append()

func append(T elem) list<T>

Appends the argument to the end of a list.
The list is returned which allows for chaining of append calls but the function has side effects and does not need
to be used in an assignment.

list<int> a = []

a.append(7) // [7]
a.append(3) // [7,3]

list.pop()

unsafe func pop() T

Removes the last element in a list, and returns it. If the list is empty, an error is returned.

list<int> a = [3,4]

a.pop() // 4
a.pop() // 3
a.pop() // error

37

list.push()

func push(T elem) list<T>

list.concat()

func concat(list<T> l) list<T>

list.reverse()

func reverse() list<T>

Reverses the list on which it is called and returns the reversed list.

list<int> a = [1,2,3,4,5]

a.reverse() // [5,4,3,2,1]

list.copy()

Copies by the list value.

func copy() list<T>

Returns a copy by value of the list on which it is called

list<int> a = [1,2,3,4,5] // [1,2,3,4,5]

Get (list[i])

Lists may be indexed using brackets. Inside the brackets must be a zero-indexed integer. Getting is unsafe, and for a
list<T> returns T, error

Examples:

list<int> a, error E = [1,2,3,4]
printf("%d", a[2])

38

Set (list[i] = j)

After indexing, an assignment may occur, to set a value of the list. Setting is unsafe , and for a list<T> returns
T, error .

Examples:

list<int> a = [1,2,3,4]
a[2], error e = 5
if (!e?) {
 for (int i in a) {
 printf("%d", i)
 }
}
// prints 1254

Iterate (j in list)

Lists may be iterated over in for loops. Each element is returned in order.

Examples:

list<int> a = [1,2,3,4]
for (int i in a) {
 printf("%d", i)
}
// prints 1234

Slice (list[i:j])

Lists may be sliced into sub-lists using slicing with brackets. Slicing is unsafe , and for a list<T> returns
list<T>, error .

list<int> a = [1,2,3,4]
list<int> b, error e = a[2:4]
if (!e?) {
 for (int i in a) {
 printf("%d", i)
 }
}
// prints 234

39

9.3 dict

dict.is_empty()

func is_empty() boolean

Returns a boolean value of whether the dictionary on which it is called is empty.

dict<string, string> d = {"Dog" : "cat"}
dict<string, string> e = {}

d.is_empty() // false
e.is_empty() // true

dict.has_key()

func has_key(T key) boolean

Returns a boolean value corresponding to whether the dictionary on which it is called contains argument as a key.

dict<string, string> d = {"Dog" : "cat"}

d.has_key("Dog") // true
d.has_key("Cow") // false

dict.insert()

func insert(T key, S value)

Inserts the arguments as a key, value pair in the dictionary on which it is called.

dict<string, string> d = {"Dog" : "cat"}

d.insert("Cow" : "Pig") // {"Dog" : "cat", "Cow" : "Pig"}

dict.remove()

40

unsafe func remove(T key)

Removes the value for the key given in the argument from the dictionary on which the function is called.

dict<string, string> d = {"Dog" : "cat", "Cow" : "Pig"}

d.remove("Dog") // {"Cow" : "Pig"}

dict.keys()

func keys() list<T>

Returns a list of all keys in the dictionary on which it is called. The type of the returned list is that of the type of the
keys in the dictionary.

dict<string, string> d = {"Dog" : "cat", "Cow" : "Pig"}

d.keys() // ["Dog", "Cow"]

dict.values()

func values() list<S>

Returns a list of all values for the keyset in the dictonary on which it is called. The type of the returned list is that of
the type of the values in the dictionary.

dict<string, string> d = {"Dog" : "cat", "Cow" : "Pig"}

d.values() // ["Cat", "Pig"]

Get (dict[k])

Lists may be indexed using brackets. Inside the brackets must be a key in the dictionary. Getting is unsafe , and for
a dict<S,T> returns T, error .

Examples:

dict<string, int> d = {"a":1, "b":2}
Int v, error e = d["a"]

41

if (!e?) {
 printf("%d", v)
}
// prints 1

Set (dict[k] = v)

After indexing, an assignment may occur, to set a value of the list. Setting is unsafe , and for a dict<S,T>
returns T , error ..

Examples:

dict<string, int> d = {"a":1, "b":2}
d["a"], error e = 5
if (!e?) {
 printf("%d", d["a"])
}
// prints 5

Iterate (j in dict)

Lists may be iterated over in for loops. Each element is returned in order.

Examples:

dict<string, int> d = {"a":1, "b":2}
for (int k, v in d) {
 printf("%s:%s, ", k, v)
}
// prints a:1, b:2,

9.4 error

error.message

string message

Returns the value of the error message on for the error object on which it is called.

42

error e = error(message="There was an error with that Request.",
 code=400,
 name="RequestError")

e.message // "There was an error with that Request."

error.code

int code

Returns the value of the error message on for the error object on which it is called.

error e = error(message="There was an error with that Request.",
 code=400,
 name="RequestError")

e.code // 400

error.name

string name

Returns the value of the error message on for the error object on which it is called.

error e = error(message="There was an error with that Request.",
 code=400,
 name="RequestError")

e.name // "RequestError"

43

10. Program Execution

RAPID programs compile to a Go executable which is a platform specific binary.
Statements will be executed in order of their declaration.
If a RAPID program contains an http route, then running the executable will start a server on localhost:5000
after all statements are executed.

10.1 Flags

There are several flags to customize the runtime of the app.

-D <pg_url> : a string of “:@/”. This is used to connect to the postgres server
-L <filename> : log output will be appended to the specified file, defaults to server.log
-P <port> : alters the port the service will run on, defaults to 80
-H : prints all the options available
-V : verbosely logs every HTTP request and the return values.

44

