corgi

Language Reference Manual
COMS W4115

Philippe-Guillaume Losembe (pvi2109)
Alisha Sindhwani (as4312)
Melissa O’Sullivan (mko2110)
Justin Zhao (jxz2101)

October 27, 2014

Chapter 1: Introduction

corgi is a language centered on music translation, generation, and analysis. It will be able to read
in a MusicXML file which are both standardized digital file formats for interpreting music and
translate the files into the appropriate data structures. Similarly, a user will be able to generate
music directly through the implementation of our musical data structures. These data structures
will allow our language to quantitatively analyze and find patterns in music that would be difficult
to do manually.

Why is it called corgi?
According to wikipedia:

Corgis are very active and energetic. They have a strong desire to please and
should receive both physical and mental exercise regularly. They should be
socialized early on because they tend to be shy and cautious with strangers and
other dogs. They have a tendency to be very vocal, and for this reason make
good alarm dogs. They are typically good with children, but due to their herding
behavior, may nip at their heels during play.

So... yeah!

Chapter 2: Types and Type Declaration

Type Declaration
Data is expressed in explicitly declared types similar to Java.

Primitive Types

Character
A character in corgi is a primitive type denoted by the keyword char. A char is declared
as such:

char ¢ = ‘c¢’;

Integer
Much like Java, an integer in corgi is a primitive type denoted by the keyword int and
representing values ranging from 0 to 2*32-1. An int is declared by:

int 1 = 7;

Non-Primitive Types

String

A String is an array of chars. For example a String can be declared by:
String str = “music”;

Fractions

A fraction is reduced division of two integers. It's type declaration is denoted by the
keyword frac and each value definition begins with the character ‘<’, followed by the
numerator of the fraction, separated by the denominator of the fraction by a /" and ending
with the character >’. For example a fraction can be declared as:

frac £ = <3>;

Duration
Duration is fraction that meets the constraint that the numerator is less than the
denominator. It is used to represent the length of a chord and can be either declared
directly or cast from a fraction as shown:

duration d = <¥3>;

fraction £ = <33>;

duration fd = duration(f);

Pitch
Pitch is defined by an integer. It is declared using the keyword pitch, for example:
pitch p = 4;

e Rhythm

Rhythm refers to a sequential list of durations. It is declared using the keyword rhythm as

shown:

duration d =
rhythm r

e Chord

;
= [d,d,d];

A chord is a sequential list of (pitch, duration) tuples. A chord can be declared using the
keyword chord as follows:

pitch pl =

pitch p2
duration
duration
chord c

e Track

4;

= 5;

dl = <(4>;

d2 = <s>;
[(pl,dl), (pl,d2),

(p2, d2)1;

A track is a sequential list of chords which can be declared using the keyword track. For

example:

pitch pl
pitch p2
duration
duration
chord cl
chord c2
track t

e Composition

= 4;

= 5;

dl = <4>;

dz2 = <s>;

= [(pl,d1l), (pl,d2), (p2, d2)];

= [(pl,dl), (pl,d2), (p2, d2), (p2, dl)];
[cl, c2, c2];

A composition is a sequential collection of tracks. A composition can be declared using
the keyword composition as follows:

pitch pl
pitch p2
duration
duration
chord cl
chord c2

track tl =

track t2

composition

= 4;

= 5;

dl = <(4>;

dz2 = <s>;

= [(pl,dl), (pl,d2), (p2, d2)1;

= [(pl,dl), (pl,d2), (p2, d2), (p2, dl)];
[cl, c2, c2];

= [cl, cl];
x = [tl, t2, tl];

Chapter 3: Lexical Conventions

In corgi, a token is a string of one or more characters consisting of letters, digits, or
underscores. corgi has 5 kinds of tokens:

Identifiers
Keywords
Constants
Operators
Newlines

Identifiers

The first character must be a letter and identifiers are case sensitive. The letters are the ASCII
characters a-z and A-Z. Digits are the ASCII characters 0-9.

letter — [‘a-Z ‘A-Z)]
digit — [0’-'9]

underscore — *
identifier — letter (letter | digit | underscore) *

Keywords

The following identifiers are strictly reserved for use as keywords:

Keywords Description

int standard 32-bit integer

frac two integers that represent a fraction

duration wrapper around fraction

pitch wrapper around integer, this can also be
instantiated as 'C+4'

rhythm a collection of durations

chord a collection of pitch duration tuples

track a sequential list of chords

composition a collection of tracks

True / False Boolean constants

Literals

if / elif / else

Conditional expressions

random generate random numbers

print Print information to stdout

main Declaration of the main program
return specifies a return statement.

Strings will be a list of characters in corgi. Declaring string literals in corgi is fine, but will be
immediately converted to a list of characters. Defining a string literal is simply done with a
sequence of one or more characters enclosed by single quotes. The only special escape
characters are:

Punctuation

Escaped Description
\ single quote
\n new line
\t tab
Punctuation Use Example

list element separator,
function parameters

array = [1, 2, 3]

I

list delimiter, list access

array[0] = 3

()

delimiter

conditional parameter
delimiter, function parameter

if (array[0] == 3)

{}

statement list delimiter

if (array[0] == 3) { /* work */}

string literal delimiter

s = “what\'s up?”

end of statement

array = [1, 2, 3];

Comments

Comments are super useful and corgi supports comments in two flavors.

Comment Symbols | Description Example
I* * Multiline comments I
This
is
a
comment
*/
I Single-line comment /[This is a comment
Operators

An operator is a token that specifies an operation on at least one operand and yields some

result.
compositio
int frac duration pitch rhythm chord track n
=" assignment |assignment [assignment [assignment |assignment [assignment |assignment [assignment
adds the
"+ addition addition addition pitch values
subtracts the
" subtraction subtraction subtraction pitch values
multiplies two
e multiplication [multiplication |multiplication | pitch values
" division division division
1] accessor accessor accessor accessor
compare compare compare compare
> value value duration duration
compare compare compare compare
< value value duration duration
check
"==" | check equality | check equality | check equality | equality

check

"I=" | check equality | check equality | check equality | equality
invoke invoke invoke
method method method
increment
"++" |increment increment increment pitch value
decrement
- decrement decrement decrement pitch value

Operator precedence from greatest to least precedence:

[

“++H “w__»

Gk “/” “%”

“lll “w

“<” “>17 “<=!7 “>=!7

Chapter 4: Syntax

Program Structure
A program in corgi is made up of one or more valid statements. A Program begins in a main
function which needs to be defined for any statements to be executed.

Expressions
In corgi, an expression is made up of variables, operators, and method calls. An expression
must evaluate to a value of one of corgi’s data types. An expression is evaluated from left to right
as shown:

10 - 2 - 3 - 4 //evaluates to 1

Variables
A variable refers to a data type. They type and value of a variable is declared and initialized with
the type keyword, variable name, and value in a single line as follows:
int a = 4;
For type specific examples refer to Chapter 2.

Binary Operators

Binary operators can connect variables to create composite expressions. These
operators are of the form.

X operator x //with x representing an expression
Types of Binary Operators include:

e Arithmetic operators such as addition (+), subtraction (-), multiplication(*), division (/),
and modulus (%). The expressions acting as operands for an arithmetic operator must
be both the same type and that type must be int, frac, or duration. The resulting value of
the expression composed of two expressions of the same type is a value of that type.

e Relational operators such as less than (<), greater than (>), equal (==), or not equal
('=) require operands to be of the same type and of types including int, frac, duration,
pitch, or rhythm. The result of a relational operator invoked on two operands of the same
type is an integer equal to 0O, if the expression evaluates to false or 1 otherwise.

The Role of Parentheses

Parentheses may guide the order of operations on expressions as the expression inside a set of
parentheses must be evaluated before that expression can be evaluated with respect to other
operators. The surrounding of a set of parentheses around an expression does not change the
subexpressions value.

Statements

A statement is an instruction to be executed. An expression on its own is not a valid statement,
with the exception of a function call. It is either a single instruction that ends in a ‘;’ or begins a list
of statements contained between curly braces ({ }). There are four types of statements in corgi:

Assignment

An expression’s value can be assignment to a variable with this statement.
int a = 4;
int b = a + 1;

Function Creation
Functions can be created much in the style of C functions. The method header includes
the return type, function name, and parameters. The return type can be omitted in the
case of a function that does not return a value, but the function must return the type
declared in the header. This is a function with no parameters which returns a chord:
chord functionl () {
chord ¢ = [(1, <1/2>)1;
return c;
}
a function with no return value and two parameters:
function?2 (chord ¢, int i) {

Return Statement
Return statements are specified

Function Calls
A function call consists of the function's name followed by its parameters in parentheses
and surrounded by commas. The parameters and the function call itself are expressions
whose type are determined from a previous function definition. The function call's value is
the function's return value. Functions can be called with no parameters but the
parentheses cannot be omitted.

chord ¢ = functionl ()

function2(c, 2);
A function call can be used as a stand alone statement but its return value will be lost if it
is not assigned to a variable.

Control Statements
o forloop
A for statement takes two assignment statements and a Boolean expression and
executes its statement list until its condition evaluates to False, the first

Scope

assignment is executed when the for statement is encountered and the second
one after each iteration of the loop:
for (assignmentl; condition; assignment2) {

}
while loop
A while statement takes a Boolean expression and executes its statement list
until the expression evaluates to False:
while (condition) {

}
if elif else
An if else statement takes a Boolean expression and executes one statement list
if its value is True and the other statement list otherwise:
if (condition) { // condition is not 0

} else { // condition is 0

if else statements can be chained to test several conditions with elif:

if (conditionl) {

} elié.(condition2) {
} elié.(condition3) {
} elsé.{

Block scoping

A block is a list of statements enclosed between two braces. Blocks can be nested and have
their own local variables. A variable is only accessible in the block in which it was defined and
blocks inside this one.

= 5;

int vy = x + 1;
x =y + 1;

(x > 5) { // This is true

y = 0; // This is not allowed, y has no type or value

Function scoping
Functions only have access to variables in their parameter list and local variables declared
inside the function.

Chapter 5: Standard Library
import()

Usage:
composition ¢ = import("filepath/test.xml");

By using the import function, one can read in a music xml file from the file system into a
composition variable.

export()

Usage:
export (c, “filepath/masterpiece.xml”);

By using the export function, one can export a composition “c” of theirs to a music xml file for
further processing and alteration.

print()
Usage:

print (‘Hello, World!’);
print (‘Hello, World!’);

By using the print function, one can print to either stdout or to a file. The parameter must be of
type string which will be written to standard out.
list.add()

We can add elements to a list. The parameter passed in must be of the same type as the list
elements.

list.remove()

We can remove elements to a list. The parameter passed in must be of type int.
// start with 1-5
myCollection = [1,2,3,4,5];

// let’s add 6
myCollection.add(6); // [1,2,3,4,5,61;

// then we can take away the element at index 3
myCollection.remove(3); //[1,2,3,5,6];

