JO - JSON Object Language

Reference Manual

Team

[ { "Name" : "Abhinav Bajaj", "UNI" : "ab3900", "Role" : "System Architect" },
{ "Name" : "Arpit Gupta", "UNI" : "ag3418", "Role" : "Language Guru" },
{ "Name" : "Chase Larson", "UNI" : "col2107", "Role" : "Manager" },

{ "Name" : "Sriharsha Gundappa", "UNI" : "sg3163", "Role" : "Verification & Validation" } ]



1. INtroduction « « « « o o e e oeoeseocsccssscssocsssosssssssossssssssssscsssscscscs 4

2. Lexical Convention .....coeeeeeeceocccscssocscssscssssssossssosssssssssssoss D

2.1 COMIMEILS ...eivieiie ettt ettt s et st et e e s et et e e sae e e reesae e e st e sme e eareesmeesaneenneesaneesreesaneens 5
2.2 TOKEIS ..ttt st sttt ettt nae e e r e e e n e re e s neenreesareens 5
22,1 TACRLIfIEFS ...ttt sttt ettt et 5
2.2.2 KE@YWOFS ...ttt ettt sttt 5
2.2.3 LEE@FALS ettt ettt ettt ettt sttt e ettt e e bn e e e bt e e eaneeean 6
2.2.4 INEWIIRES ..ottt ettt ettt et e e e ettt e sttt e ettt e ettt e et e et e e e bneeeaneeeans 6
2.2.5 WRILESPACE ......eooueeeeieiieeeeeeteeee ettt ettt et sttt ettt 6
3. Types and TypeInference .......cceeeeeeeeeeeeesecssococsocosacsssononss 7
3.1 PIIMIEIVE TYPES..uriitiiiiiiiieitietee ettt ettt et sttt e r e s et e bt e s ar e b e e saneenreesaneenreesaneens 7
3010 BOOICANS ...ttt ettt ettt ettt e ettt s et e ettt e ettt e ettt e et e e e bt e e eaneeeans 7
3oL, 2 INUIDOES ..ottt ettt ettt ettt et e e ettt e sttt e ettt e ettt e ettt e ettt e e bneeeaneeean 7
BeL 3 SIFIRG oottt ettt 7
BULiA INULL ...ttt ettt ettt 7
3.2 NON-PriMItIVE TYPES .eveereiiiiiiieiiieiee ettt ettt s e sn e e esneesreesaneens 7
200 LEST oottt ettt ettt e e 7
322 JSON ..o ettt ettt 8

33 TypelInference . ...oueeeeeeeeeeeeoeeeseesssesssossssscsssssssssssssssss 8

4OPEratoOrs oo ooeeeeseeeesesssosesssesssosssssessssssssesssssssssssssssss 9

4.1 TYPE OF OPEIALOTS ...ttt ettt sttt et s et esae e e r e s e e e sn e sme e ereesmeesaneesneesaneesreesaneens 9
4. 1.1 ODJECE OPEFALOTS ...ttt e ettt ettt nne et naneeneenane s 9
4.1.2 MAthematiCAl OPEFAIOFS ........c...coeueerceieeieeeiieiieeteecteeee ettt ettt ettt ettt 10
4. 1.3 SIFING OPCFALOFS ...ttt ettt ettt snt et e st et e s 10
4. 1.4 LOGICAL OPOFALOFS ...ttt ettt ettt 10
4.1.5 MemBErSHiD OPEFALOFS .........ocoeeeeeiaiieieeeiieeteeet ettt ettt 10

4.2 OPerator PrECEAGINCE .......ccueiiiiiiiiiiieee ettt e st 11

S.EXPressions ....eeeeeeeeeeeesoeecseessscsssossssscsssossssscsssssssses 12

5.1 Function DEClaration ........cocuiieiieiiiiiiieiie ettt 12

5.2 FUNCHON Call ..ottt st sen e e e e ne e saneenees 13

6.5tatements . ....ciiiiiiiiiiiiiietttticttetttcccctesttscccccnssscaoss 14

6.1 ASSIZNMENt STALEMENT .....veiiiiiiiieiiierieeee ettt s s esene e b e sen e e neesaneenees 14

6.2 EXPIession StAtBIMENL. .......coiuiiiriiiiiitierie ettt ettt e sr e sn e e n e sane e sr e saneene e e enees 14

6.3 If...€18€. .. STALBIMEIL ..c..eiiiiiiiiiiiieiie e st 14

6.4 FOT STALEIMENL .....eiiiiiiiiiiii e 15

7.SCOpe © © © 0 0 0000060000000 0000000000000 000000000000000000000000000000o0 16

8.BUilt-inFunctiOHS © 0.0 0000000000000 00000000000000000000000000000000000 17

Bl REAA.... ettt e n e s n e e esaneeas 17
Below is the file contents of file “path/to/fIle.tXt” .....c.cooviiiiiiriieiie e 17
B2 PIINE ittt et e a e et enr e e et e n e sn e e e san e e reesaneen 17



B TYPESIIUCE ..ttt et et s e st e s e s et e s ae e s e e e s b e e san e enn e e san e e reesaneenreesaneens 18
B0 JOMM ettt e e e h e e et e n e e sn e r e e san e e reenaneens 18
8.0 MNAKESIIINEZ .. .veiiieiiieeee ettt st et e sr e st r e sa e n e sn e s e reesaneens 18



1. Introduction

JSON or JavaScript Object Notation is an open standard format that uses human-readable text to transmit
data objects consisting of attribute—value pairs. It is used as lightweight data interchange format to
transmit data between a server and web application. JSON is also emerging as a preferred format in
“NoSQL” databases. While languages like Python and Java have libraries to handle JSON data, they are
not a native aspect of the language. JSON is presently a data format, rather than something fundamental
to the language, like the object of an object oriented language, or the function of a functional language.
With rise of trends in Big Data, Internet of Things, No-SQL databases, we believe that our language can
be provide a platform for building applications for these technologies with ease.

JO is simple yet powerful language to handle and manipulate JSON data. The language will treat JSON
object as first class citizens and provide built-in functions that operate on these objects. These basic
functions can be used to define complex libraries and applications like merging JSON, finding diff in
JSON, SQL like queries on JSON objects. Our language attempts to facilitate any data operations by
handling a lot of the business logic of handling JSON and their manipulations under the hood, and
allowing the programmer to use JSON in a more native and intuitive way.



2. Lexical Convention

2.1 Comments

The characters /* introduce a multi-line comment, which terminates with the characters */. Multi-line
comments cannot be nested within multi-line comments. Single line comments are also written in the
same way as multi-line comments, with /* and */ appearing on the same line.

/* single line comments look like this */
/* this 1is
how a multiple

line comment looks like */

/* this however
/* does not */

works */

2.2 Tokens
A token is a string of ASCII characters that is always at least 1 character long. There are different types of
tokens in JO. These are described below.

2.2.1 Identifiers
An identifier consists of a letter followed by other letters, digits and underscores. The letters
are the ASCII characters a-z and A-Z. Digits are ASCII characters 0-9. The language is case
sensitive.

letter — [‘a’-‘z” ‘A’-‘Z’]

digit — [*0’-9’]

underscore —

identifier — letter (letter | digit | underscore)*

2.2.2 Keywords
Keywords are identifiers reserved by the language. Thus, they are not available for re-definition or

overloading by users.

Keyword Description

Number, String, Bool, Json, List Data types

True, False, Null Literals

for, if , else, elsif , end statement constructs

func, return function declaration constructs
print type typestruct join read makeString in-built functions




2.2.3 Literals
Literals are expressions with fixed value. In the language there is capability for String, Number, Bool
literals

digit — [°0°-°9’]
decimal — *.’

String Literal — (.)+

Number Literal — (digit)+ (decimal)? (digit)+

Bool Literal — True | False

2.2.4 Newlines

"EOL" is taken as a newline character.

2.2.5 Whitespace
Whitespace consists of any sequence of blank and tab characters. Whitespace is used to separate tokens
and format programs. The compiler ignores all whitespace. As a result, indentations are insignificant.



3. Types and Type Inference

3.1 Primitive Types

There are four types of primitives in JO language. These are Bool, Number, String and Null.

3.1.1 Booleans
Bool type can either carry a value of true or false. Booleans are considered their own type, meaning that
an expression that uses a boolean operator and a non-boolean variable will cause an error. For example -

a = true

If (a && 10) will cause error.

3.1.2 Numbers

A Number in JO is a double- precision floating-point format storing numbers in 64 bits, where the
number (the fraction) is stored in bits 0 to 51, the exponent in bits 52 to 62, and the sign in bit 63:1.7E +/-
308 (15 digits). All numeric types will be stored as Number in JO. Hence, Number contains decimal part
by default.

3.1.3 String

A string is a sequence of characters surrounded by double quotes

(X

3.1.4 Null
null is an empty data type. For example -

a = null

3.2 Non-Primitive Types
There are two types of non-primitive types or complex data types in JO Language. They are explained
below -

3.2.1 List

List is an ordered data type of primitive or complex data types. So a list can contain another list as one of
its element along with JSON type as element and other Primitive types as elements in the list. Lists are
enclosed in []. For example

["apple", 45, {"name":"harris"} ]



3.2.2 JSON
JSON or JavaScript Object Notation is an open standard format that uses human-readable text to transmit
data objects consisting of attribute—value pairs. JSON is declared within curly braces {}.

For example -

{
"Name": { "First":"Arpit", "Last":"Gupta" },

"School": "Columbia",
"Age": 22,
"Courses": [ "PLT", "ML" ]

}

3.3 Type Inference

Data types in JO are expressed using a finite and well-defined set of data types. However when writing a
JO program, the data types are not explicitly declared. In this sense JO is type-inferred language as
opposed to dynamically typed language.



4.0perators

4.1 Type of Operators

4.1.1 Object Operators

Operator | Description
+ Concatenation, works on any data type arguments, returns list
Example
1. 5+2=[5,2]
2. [5,2]+3=]5,2,3]
3. JsonA + JsonB = [JsonA, JsonB]
- Usage : 4 - B, works when 4 is a Json or List
Removes attributes from A which matches with B
Valid Data types -
e Json- Json
* Json - String
e List- List
* List - String
e List-Json
e List - Number
Example
1. { {“name”: {first:chase, last:larson}}, {subject : “plt”}, marks : [2,3,4] }- {
“name”: {first:chase, last:larson}, marks: [2,3,4]} = { subject : “plt”}
2. { “name”: {first:chase, last:larson}, subject : “plt”} - { “name”: {first:abhinav,
last:larson} } = { “name”: {first:chase, last:larson}, subject : “plt”}
3. { {*name”: {first:chase, last:larson}}, marks: [2,3]} - "name" = {marks: [2,3]}
4. ["able", "barista", "carrie"] - ["barista", "carrie"] = ["able"]
["able", "barista", "carrie"] - "barista" = ["able", "carrie"]
Il 1. [] access values for attributes. only work on JSON objects
* a=jsonl[‘Name’], returns the value at the attribute.
* jsonl[‘Name’] = ‘Arpit’ , stores value ‘Arpit’ for attribute ‘Name’
2. [] - constructs a new list
== Compare two same data types. Returns true if their values match else false
1= Compare two same data types. Returns false if their values match else true
= Assignment Operator
c Calls function on an object
{} Constructs a Json object




4.1.2 Mathematical Operators

All Mathematical Operators are only valid for Type Number.

Operator Description Example

++ Addition 2 ++ 2 results in 4
- Subtraction 2 -- 2 results in 0

iy Multiplication 2 ** 2 results in 4

/! Division 2 // 2 resultsin 1

> Greater Than 2 > 1 results in true
< Less Than 2 <1 results in false
% % Modulo 7 % 3 results in 1
4.1.3 String Operators

Operator Description Example

++ String concatenation "JS" ++ "ON" results in "JSON"

4.1.4 Logical Operators

All Logical Operators only valid for Data type Bool.

Operator Description Example
&& Logical And if A and B are true, (A && B) is
true

[ Logical Or if A or B are true, (A || B) is true

! Logical Negation if A is false, !A is true

4.1.5 Membership Operators

Operator Description Example

in Results in true if variable is in A in B: results in true if variable
given list A is found in list B.

not in Results in true if variable is not | A not in B: results in true if
in given list variable A is not found in list B

10




4.2 Operator Precedence
Operators are evaluated left to right.

The below sequence of operator is in decreasing order of precedence. The operators on the same line have
same precedence.

008
%%, **, //
++, --

< > <=, >=

== |=

B

&&, 1 ,!
+, -

in, not in

11



5. Expressions

An expression contains at least one operand and zero or more operators that return a value. Operands are
objects such as constants, variables, and functions.

Expressions are evaluated left to right. Parentheses can be used to group sub-expressions, with the
innermost sub-expression being evaluated first. For example -

Q2 ++2)// (3 1) **2)

3 -- 1 is evaluated to 2 first. Then 2 ++ 2 and 2 ** 2 are both evaluated to 4. Finally 4 // 4 is evaluated
resulting in 1.

5.1 Function Declaration
The declaration specifies the name of the function, list of parameters

The func keyword is used signify the declaration of a function. The general form is:

func <function name> (<parameters>)
<function body>
return <arg>

end

The keyword func must be followed by a space, with the function name following. Then the list of
parameters must be on the same line and enclosed by parentheses. The parameters are separated by
commas. Following the closing parentheses, a new line must start before the function body.

The function body is a series of statements that specifies what the function actually does. It must be on a
new line following the function declaration. The function body must contain a refurn statement.

The return statement is the keyword return followed by the expression to be returned from the function.

For example:

func sum(x, V)
return ( x ++ y)

end

12



5.2 Function Call

You call a function by using its name and supplying any required parameters. If no parameters are
required by the function, the parenthesis is still required.

General Form:
<function name> (<parameters>)

For example:
foo (5, A)

Here the function ‘foo’ is called with the parameters ‘5’ and ‘A’ (here ‘A’ is a variable that has been
declared previously).

13



6. Statements

You write statements to cause action and to control flow within your program.

6.1 Assignment Statement

An assignment statement consists of a modifiable variable name followed by the assignment operator
followed by a valid expression.

9

For example -

myJson = { “name” : “john” }

6.2 Expression Statement
An expression statement executes the specified expression.

For example -
2++3
foo (2, 3)

Expression statements are useful when they have some sort of side effect, such as calling a function or
storing a variable.

6.3 If...else... statement
The if ... else statement is used to execute part of your program only under certain conditions. The general
form is:

if <condition>
<then-statement>

else
<else-statement>

end
or

if <condition>
<then-statement>

end

14



The then-statement is executed if the condition evaluates to true. The else statement is optional, and it
executes only if the condition evaluates to false.

The condition must be on the same line and immediately following the if keyword. The condition must be
a boolean expression.

The then statement must start on a new line following the condition. If an else clause is included, the else
statement must be on its own line and the else statement must be on a new line following the else
keyword.

The entire statement must end with the end keyword.

6.4 For statement
The for statement is used to iterate over list, executing a block of code. The general form is:

for <iterative expression>
<statement>

end

The iterative expression must be of the form:
<variable> in <List>

The statement is executed once for each element in the list. The iterative expression must be on the same
line as the keyword if. The statement must be on a new line following the iterative expression. The
statement must end with the keyword end.

For example -

for x in [1, 2, 3]
y = x ++ 1

end

15



7. Scope

If an object or variable is declared within a function, if-else or a for statement block then it is only visible
within that block. Otherwise, the object or variable is visible across the program.

For example, the following program results in an error:

for x in [1,2,3]

if x> 1

y = X

end

z =Yy
end

The variable y only has scope within the if block, because that is the smallest block within which it is
declared. The NUMBER z cannot be assigned to the NUMBER vy, because the program can’t “see” the y

outside of the if statement.

16



8. Built-in Functions
JO provides utility functions which assists in JSON manipulation. Below are the functions built-in the
language.

8.1 Read

By using the read function one can read file from specified path. This file will be parsed and returned as a
List of Literals. Individual elements in the file have to be comma separated. Each file is parsed into one
List.

input = read(“path/to/file.txt”) /* returns a List */
/* It parses to list of

[5,”7apple”, {“name” :”arpit”, “courses”:[“PLT”,”0S”1}, [3,4,”mike”]] */

Below is the file contents of file “path/to/file.txt”

5,”apple”, {“name”:”arpit”, “courses”:[“PLT”,”0S”1}, [3,4,”mike"”]

8.2 Print

Print function either print to standard output or can write to a file. Each function call prints on a new line.
Print can take any type as input. If the input is a JSON object then the print function outputs a pretty print
of JSON object.

To print to a file, a second parameter for the file path needs to be specified.

/* Printing */
print (“Hello World”)
print (adsonObject)

print (aJsonObject, “path/to/file.txt”)

8.3 Type
Type returns a String of the data type of a variable.

/* find datatype */
type (5) /*returns "Number'"*/

type ({}) /*returns Json */

17



8.4 TypeStruct
This is a utility function built inside JSON. It returns a String containing the data type of the attribute-
values stored in JSON object.

/* Find Json attribute-value data types */

JSON myJSON = { "name": { "first": "chase", "last": "larson" 1},
"age" : 23 }

myJSON.typeStruct () /* returns String of { String : { String:
String, String: String}, String: Number } */

8.5 Join

This is also a utility function built inside JSON. It can be used to combine JSONs having same attribute
(key), say “name” and which have values as JSON containing same attribute (key), say “first”. Function
returns a JSON with the values of JSON combined.

/* JSON Join example */

JSON a = { "name" : { "first" : "chase" } }
JSON b = { "name" : { "first" : "arpit" } }
a.join(b) /* returns { "name" : {"first": ["chase", "arpit"] }} */

8.6 makeString
makeString takes any data type supported in JO as input and returns a String data type.

/* Convert to String */
makeString(5) /* returns “5” */

makeString (adson)

18



