EZMath Reference Manual

Yi Wang Piaoyang Cui
yw2580@ columbia.edu pc2618@ columbia.edu
Shangjin Zhang Zhejiao Chen
522425 @ columbia.edu z¢c2291 @columbia.edu
Contents
1 Preface
2 Lexical Elements
2.1 Identifiers . . . . . . . .. e
2.2 Keywords . . . . . . . . e e
2.3 Constants . . . . . . . ... e e e
2.3.1 Integer Constants . . . . . . . . . ...
2.3.2 Real Number Constants . . . . . . . . . .. . ... . ... .. .....
2.3.3 Matrix Constants . . . . . . . . . .. e e e e e e e
2.4 OPeratorS . . . . . . v v e e e e e e e e e e e e e e
24.1 Basic Arithmetic Operators . . . . . . . ... ... ... .. ... ....
2.4.2 Matrix Operators . . . . . . . . . v i e e e e e e e e
243 Formula Operators . . . . . . . . .. .. .. .
244 Logical Operators . . . . . . . . . . .. i
2.4.5 Built-in Operations . . . . . . . . . . . . . .
2.5 Separators . . . . ... .o e e e e e e e
2.6 WhiteSpaces . . . . . . . . e e
3 Data Types
3.1 Double . . . . . . e e
3.2 Formula . . . . . . . . . e
3.2.1 Formula Definitions . . . . . . . . . . ... . ... . . ... .. .....
322 Formula Parameters . . . . . . . . . . . . . . . ... ...
3.2.3 Formula Return Value . . . . . . .. . ... . ... ... .........
324 Calling Formula . . . . . . ... ... . . L
3.2.5 Formula Evaluation . . . ... ... ... ... .. ... ........
3.2.6 Recursive Formula . . . . . . . . . . . . . .. ... ...
3.2.7 Piecewise Formula . . . ... . ... ... . ... ... . .......
3.2.8 Nested Formula . . . . . ... ... .. ... ... ... .........
3.3 Matrix . . . . . o e e
3.3.1 Matrix Definition . . . . . . . . . . . . ...
3.3.2 Matrix Operations . . . . . . . . . . . o e e e

4 Variables



Logical Expressions 6

Comments 6
Input Program Structure and Scope 6
7.1 Program Structure . . . . . . . . .. L L 6
7.2 SCOPE . . v o e 7
Output Program Structure and Scope 7
8.1 Program Structure . . . . . . . .. oL 7
8.2 SCOPe . . . e 7
Sample Program and Report 8
9.1 Sample.tex and output PDF . . . . . . . ... .. ... ... ... 8
9.2 eSUlt.CPp . . . ¢ o o e 11
9.3 ] 070) 4 P01 O 14

9.4 report.pdf . . .. 14



1. Preface

Complex mathematical operations and representations are always highly demanded for scientific pro-
gramming. When creating topnotch academic papers, IZIEX, a markup language to typeset document, is
often used to prettify mathematical expressions and the overall layout. By adopting syntax from I&TEX,
user can easily type complicated mathematical equations for calculation purpose. Thus, we propose a
new programming language called EZMath written completely in IETEX syntax.

The targeted usage of this language can be described in the following scenario which is also illustrated in
Figure 1: A topnotch mathematic paper involving a substantial amount of complicated math expressions
and functions along with text is written in I&[EX syntax(paper.tex in Figure 1), thus it can be compiled
by KIEX compiler to a beautifully and smoothly typed pdf file(paper.pdf). Additionally, taking in the
same source file paper.tex, compile it through the EZMath compiler, the output file is a C++ source
file(paper.cpp) which can further be compiled be a C++ compiler and generates an executable file. The
C++ source file translates every valid formula defination into a function while the main() function directs
a complete report of the EZMath compiling process to an output file report.tex which is in I£TEX syntax.
The report.tex can be compiled by I&IEX compiler to report.pdf.

l LaTeX Compiler

paper.tex paper.pdf
EZMath Compiler paper.cpp C++ Compiler Executable
Run
report.pdf LaTeX Compiler report.tex

Figure 1. Relationships



2. Lexical Elements

This chapter describes the lexical elements that make up EZMath source code after preprocessing. These
elements are called tokens. There are five types of tokens: identifiers, keywords, constants, operators, and
separators. White space, sometimes required to separate tokens, is also described in this chapter.

2.1. Identifiers

An identifier is a sequence of letters and digits; the first character must be alphabetic. Upper and lower
case letters are considered different. Characters besides letters and digits are not allowed in identifiers,
including underscore (_) and hyphen (-).

Declaring two identifiers with the same literal or changing the definition of a previously declared identifiers
is not allowed. Compiler should report error on such attempts.

2.2. Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

e The natural logarithm approximately equals to 2.718281828.
PI 7 approximately equal to 3.1415926536.

Please follow other keywords in I£TEX reference manual.

2.3. Constants

There’re several kinds of constants, as fllows:

2.3.1. Integer Constants. An integer constant is a sequence of digits. An integer is taken to be octal if
it begins with 0, decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively.

2.3.2. Real Number Constants. Real Number constants are numerical literals in the code. The type of
the constants is double floating-point number. A number constant consists of an integer part, a decimal
part, a fraction part, an e or E, an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of digits. Either the integer part, or the fraction part (not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing. Some examples:

15 15. 0.5e-15 3e+2 2 1es

2.3.3. Matrix Constants. Matrix constants are matrix literals in the code. The type of the elements of
the matrix is number constant (defined in Section 3.3). Matrix constant is initialized by ETEX matrix
gramimer.

\begin{bmatrix}...\end{bmatrix}

Array is a special kind of matrix. Some examples:



5.2 12 3
[10.5 20.2 30.5] |6.1 45 6
73] |7 89

2.4. Operators

2.4.1. Basic Arithmetic Operators. EZMath supports plus, minus, multiply and divide (+, -, *, /) as
basic arithmetic operators. These operations follow the conventions in languages like C and Java. Basic
arithmetic operators can be applied between double-typed variables or number constants. The result will
be a double-type value.

2.4.2. Matrix Operators. Details see in section 3.3.2.

2.4.3. Formula Operators. EZMath supports plus, minus, multiply and divide (+, -, *, /) as formula
operators. These operations follow the conventions in languages like C and Java. Formula operators can
be applied between two formulas. The result will be a formula-type value.

2.4.4. Logical Operators. EZMath supports the following logical operator: larger, less than, equal, larger
or equal, less or equall, inequal (>, <, =, >, <, #). Logical operators can be used in conditions of
piecewise formulas and logical expressions.

2.4.5. Built-in Operations. EZMath supports a subset of I&[EX’s original math symbols, including:

arccos cos csc  exp min
sinh  arcsin cosh g In

arctan cot log sec  tan
coth max sin  tanh

2.5. Separators

A separator separates tokens. White space (see next section) is a separator, but it is not a token. The
other separators are all single-character tokens themselves:

() L&\
2.6. WhiteSpaces

White space is the collective term used for several characters: the space character, the tab character, the
newline character, the vertical tab character, and the form-feed character. White space is ignored (outside
of string and character constants), and is therefore optional, except when it is used to separate tokens.

3. Data Types
3.1. Double

The Double type represents real numbers, such as 3.14 or 0.01. The precision is 64-bit floating-point.



3.2. Formula

A formula is a procedure of computations upon given parameters. It’s essentially the same as the function
in C or Java language. Since EZMath compiler only operates on text between two $$, whenever defining
or calling a formula, embed the whole statement inside two $$.

3.2.1. Formula Definitions. A formula definition contains a name (identifier), a pair of parentheses, and
an optional list of parameters in the parentheses, an equal sign, and an expression, from left to right
order. The expression cannot contain any identifiers other than the paramters. Some examples:

$$g () = 3%%
$$f(x) = \sin {x}$$
$$f(a, b) = \sin {a + b} $$

3.2.2. Formula Parameters. A formula can either has no parameters or has any number of parameters
of double type. The naming rules of parameters is the same as identifers, except we can have parameters
have the same name, as long as they appear in different definitions.

3.2.3. Formula Return Value. A formula always returns a double type value.

3.2.4. Calling Formula. A formula can be called as follows:

$Sg()$S
$SE(x())SS
$$£(8.0, 3)8$%

In the second example above, x() is a formula which returns a double value.

3.2.5. Formula Evaluation. In the main() function inside the output code of the EZMath compiler, if
the user explicitly calls a formula with valid argument, e.g, f(5), which means inexplicitly the number
of arguments is correct and each argument is of type double, then the main() function will print out the
returned value of type double. Otherwise, a specialized function will handle the error appropriately.

3.2.6. Recursive Formula. A formula represents a function, thus it’s intuitive to support recursive
formula. The usage of a recursive formula is illustrated as follows:

$9
f(x) =2 « £(x/2);
$9

However, we should also use piecewise formula to define the termination conditions for recursive for-
mulas.



3.2.7. Piecewise Formula. EZMath also supports piecewise formulas. The usage of a nested formula is
illustrated as follows:

$$
f(x) = \begin{cases} f(x-1)x*x & x>0 \\
1 & x=0
\end{cases}
$$

As shown above, we use \\to seperate cases. And in a particular case, we use & to seperate expression
and condition.

3.2.8. Nested Formula. Nested formula means referencing another formula in the definition of a formula.
The formula being referenced must be defined earlier. The usage of a nested formula is illustrated as
follows:

$S

g(x) = x + 1
f(x) = g(x) » 2
$S

3.3. Matrix

Matrix is supported following the I£TEX convetion.

\begin{bmatrix}...\end{bmatrix}

3.3.1. Matrix Definition. A matrix definition consists of information regarding the matrix’s name, value
if possible.

matrix m;

or

O O W

1 2
matrix m = 4 5
7 8

3.3.2. Matrix Operations. EZMath supports plus, minus, multiply and transpose (+, -, *, ’, .*) as matrix
operators. Operands can be matrix-type variables or matrix constants. Plus, minus and multiply can be
applied between two matrices, but the sizes of the operands must agree on the requirements of matrix’s
operation. Transpose can be applied on a single matrix. The result of matrix operators will be a matrix-type
value.

Operator Definition Example
+ matrix add A+B
- matrix minus A-B
* matrix multiply A*B
* multiply the corresponding elements | A .* B
’ matrix transpose A




4. Variables

Variables in EZMath should be defined in

$5...88,
e.g.
$$ a = 2 S$s

By default, any variable defined is of type Double for the ease of arithmetic calucations.

5. Logical Expressions

Logical expressions are supported in IZTEX as following:
3% +4% =5
EZMath compiler will report true for this logical expression.
a4+ b =¢?

EZMath compiler will check if a, b, ¢ are defined and assigned values. If not, it will report error in
report.tex. Otherwise, it will check if the equality satisfies. If it does, it will report true in report.tex, false
otherwise.

a<b

EZMath compiler will check if a, b are defined and assigned values. If not, it will report error in report.tex.
Otherwise, it will check if the inequality satisfies. If it does, it will report true in report.tex, false otherwise.

If the elements of an logical expression are all constants, EZMath will remember this logical expression
and validate its correctness in report.tex.

If any of the elements is an identifier, it must be defined and assigned earlier. The compared values from
left and right hand side of the logical operator are of type double only. Matrix is not allowed in any kind
of logical expression. If an invalid logical expression is encountered, the EZMath compiler will report
the error in report.tex.

6. Comments

In accordance with the I£TEX syntax for comments, everything after the % character until the end of the
line are comments and are ignored by EZMath compiler.

7. Input Program Structure and Scope

7.1. Program Structure

The input file of EZMath should be a I&TgX file. The compiler of EZMath only operates on statements
between the first $$ encountered and the second $$ encountered. It ignores all other text outside the
scope of what mentioned just now.



Users who want to display only I&TEX math statements can use \[ and \] instead. Statements between \ |
and \| will be compiled by I5TEX compiler but will be ignored by EZMath compiler.

To sum up, EZMath Compiler will detect following statements:

1) Logical Expressions
2) Definition of Formulas
3) Calling of Formulas
4) Definition of Variables
5) Matrix Operations

7.2. Scope

All symbols defined in input program are global values.

8. Output Program Structure and Scope

8.1. Program Structure

Basically, EZMath will output a .cpp file corresponding to the input IATgX file. The C++ program contains
several math functions and one main functions. Math functions correspond to each formula defined in the
XX program, the main function is used to calculate and express the expression in the I£TEX program.

Compile the .cpp ouput file will further generate a IZIEX file. The I£TEX file is a report of the declarations
and computations for the original input file. It will contain:

1) The basic information about the original input (title, arthors, etc)

2) All user defined variables and matrices

3) The validations of logical expressions

4) The declarations of formulas and

5) The literals and results of the computations, following the corresponding index (line number) in
original input.

See the sample output for reference.

8.2. Scope

By default, the output program’s math functions are globally visible.



9. Sample Program and Report
9.1. Sample.tex and output PDF

\documentclass[twocolumn] {article}
\usepackage [utf8] {inputenc}
\usepackage{amsmath}

\title{Pythagorean Triples}
\author{EzZMath Team}
\date{October 2014}

\setlength{\parindent} {Opt}
\begin{document}

\maketitle

\thispagestyle{empty}

\section{Introduction}

A "Pythagorean Triple" 1is a set of positive integers, x, y and z
that fits the rule:

\[x"2 + yv°2 = z"2\]

Example: The smallest Pythagorean Triple is 3, 4 and 5.

Let’s check it:

$$x = 3, y = 4, z = 5$8

And

$$x"2 + y°2 = z728s

is true.

\section{Properties}

An interesting fact: a Pythagorean Triple always consists of:
\begin{enumerate}

\item all even numbers, or

\item two odd numbers and an even number.

\end{enumerate}

A Pythagorean Triple can never be made up of all odd numbers or two
even numbers and one odd number. This is true because:
\begin{enumerate}

\item The square of an odd number is an odd number and the square
of an even number is an even number.

\item The sum of two even numbers is an even number and the sum
of an odd number and an even number is in odd number.
\end{enumerate}

So, when both a and b are even, c¢ is even too. Similarly when one of
a and b is odd and the other is even, ¢ has to be odd!
\section{Constructing Pythagorean Triples}

It is easy to construct sets of Pythagorean Triples.



When m and n are any two positive integers:

\begin{cases} n"2 — m"2 & n>=m \\
m"2 - n"2 & n<m

$$a (m, n)

\end{cases}

$$

$Sb(m,n) = 2xnxm$$
SSc(m,n) = n"2 + m"2$$

Then a, b, and ¢ form a Pythagorean Triple.

\section{Example}
Here is a example how we construct Pythagorean Triples:

$%a(l,2)ss
$Sb(1,2)$s
$8c(1,2) 89S

\section{Extra}
Factorial is defined as:
$Sf (x) = \begin{cases} f(x-1)xx & x>0 \\
1 & x=0

\end{cases}
$S
We want to evaluate the value of $$Sf(10)5SS$
\end{document }



Pythagorean Triples

EZMath Team

October 2014

1 Introduction

A 7"Pythagorean Triple” is a set of positive integers,
x, y and z that fits the rule:

1’2+y2222

Example: The smallest Pythagorean Triple is 3, 4
and 5.
Let’s check it:

r=3y=4,2=5
And

is true.

2 Properties

An interesting fact: a Pythagorean Triple always con-
sists of:

1. all even numbers, or

2. two odd numbers and an even number.

A Pythagorean Triple can never be made up of all odd
numbers or two even numbers and one odd number.
This is true because:

1. The square of an odd number is an odd number
and the square of an even number is an even
number.

2. The sum of two even numbers is an even num-
ber and the sum of an odd number and an even
number is in odd number.

So, when both a and b are even, c is even too. Sim-
ilarly when one of a and b is odd and the other is
even, ¢ has to be odd!

3 Constructing Pythagorean

Triples

It is easy to construct sets of Pythagorean Triples.
When m and n are any two positive integers:

2

2
n® —m
a(m,n):{ 5 o

n>=m

m- —n n<<m

b(m,n) =2%xnxm
c(m,n) =n*+m?

Then a, b, and ¢ form a Pythagorean Triple.

4 Example

Here is a example how we construct Pythagorean
Triples:

5 Extra
Factorial is defined as:

‘We want to evaluate the value of

f(10)



9.2. result.cpp

/o k

* EZMath

* Fast documentation and compu-related text
* Created by EZMath Compiler v0.1

* %/

#include <iostream>

#include <fstream>

#include <ctime>

using namespace std;

#define NUM_OF _EXPS 4

#define NUM _OF_ VARIABLES 3

#define NUM_OF _ LOGICAIL EXPRESSIONS 1
#define NUM_OF_ FORMULA DEFINITION 4
enum class ErrorType {IllegalParameter};
void Error (ErrorType errorInstance) {

if (errorInstance == ErrorType::IllegalParameter)
cerr << "Error: " << "IllegalParameter" << endl;

double a(double m, double n)
{

if(n >= m)

return n » n — m *x m;
else

return m » m — n * n;

double b (double m, double n)
{

return 2 *x n * m;

double c (double m, double n)
{

return n » n + m * m;

double f (double x)



if(x > 0)
return f(x-1) * x;
if(x == 0)
return 1;
else
Error (ErrorType::IllegalParameter) ;

return -1.0;

const string Title = "Pythagorean Triples";
const string Author = "EZMath Team";

const string Date = "October 2014";

const string variables[NUM_OF_VARIABLES] = {

" n n n n n
X0y Y, 2

}i

const double variablesValue[NUM_OF_VARIABLES] = {
3, 4, 5
bi
const string logicalExpressions[NUM_OF_LOGICAL_EXPRESSIONS] = {

X2 + y"2 = z"2"
}i

const bool logicalExpressionsValue [NUM_OF_LOGICAL_EXPRESSIONS] = {
true
bi
const string formulaDefinition [NUM_OF_FORMULA_DEFINITION] = {
a(m,n) = \\begin{cases} n"2 - m"2 & n>=m \\\\ m"2 - n"2 & n<m\\end{cases}",
"b( n) = Zxn*m",
(m, ) = n"2 4+ m"2",
"f(x) = \n\\begin{cases} f(x-1)*x & x>0 \\\\1 & x=0 \\end{cases}"
bi
const string expressions[NUM_OF_EXPS] = {
a(l,2)"

"b( 2ym
c(l,2)",

"f(1 )

bi



/o k

* Main Function

* %/

int main (int argc, char xx argv) {
time_t t = time (0);
struct tm * now = localtime (
ofstream file("result.tex");

&t );

//Begin
file << "\\documentclass{article}\n"
<< "\\usepackage [utf8] {inputenc}\n"
<< "\\usepackage {amsmath}\n"
<< "\\title{Summary of " << Title << "}\n"
<< "\\author{EZMath Compiler}\n"
<< "\\date{"<< (now->tm_year + 1900) << -’
<< (now—>tm_mon + 1) << ’7-7
<<  now->tm_mday
<<"}\n"
<< "\\begin{document}\n"
<< "\\maketitle\n";
//Content
file << "\\sectionx{Variables Definition}\n";
for (int i = 0; i < NUM_OF_VARIABLES; i++) {
file << "$$" << variables[i] << " = " << variablesValue[i] << "$$\n";
}
file << "\\sectionx{Formula Definition}\n";
for (int 1 = 0; i < NUM_OF_FORMULA_DEFINITION; i++) {
file << "$$" << formulaDefinition([i] << "$$S\n";
}
file << "\\section*{Logical Validation}\n";
file << "\\begin{center}\\begin{tabular}{c c}";
for (int i = 0; i < NUM_OF_LOGICAL_EXPRESSIONS - 1; i++) {
file << "$" << logicalExpressions[i] << "$&" << "is " <<
(logicalExpressionsValue[i]?"true":"false") << "\\\\";
}
file << "$" << logicalExpressions[NUM_OF_LOGICAL_EXPRESSIONS-1] << "Sg" <<

"j_S " <<

(logicalExpressionsValue [NUM_OF_LOGICAL_EXPRESSIONS-1]7?"true":"false"

file << "\\sectionx{Formula Evaluation}\n";

double result [NUM_OF_EXPS];
//double[] result =
result[0] = a(l,2);

new double [NUM _OF EXPS];



result[1] = b(l,2);
result[2] = c(1,2);
result [3] ;

I
Fh
—
[
o

~

for (int i = 0; i < NUM_OF_EXPS; i++) {
file << "$$" << expressions[i] << " = " << result[i] << "$$\n";

//End
file << "\\end{document}\n";

file.close();
return O;

9.3. report.tex

\documentclass{article}
\usepackage [ut£8] {inputenc}
\usepackage{amsmath}

\title{Summary of Pythagorean Triples}
\author{EZMath Compiler}
\date{2014-10-26}

\begin{document }

\maketitle

\section*{Variables Definition}

$Sx = 3$$

SSy = 453

$$z = 58S

\section*{Formula Definition}

$$Sa (m,n) = \begin{cases} n"2 — m"2 & n>=m \\ m"2 - n"2 & n<m \end{cases}S$s$
$Sb (m,n) = 2*n*m$$

S$Sc(m,n) = n"2 + m"2$$

S$SSf (x) =

\begin{cases} f(x-1)*x & x>0 \\1 & x=0 \end{cases}$$

\section*{Logical Validation}

\begin{center}\begin{tabular}{c c}$x"2 + y"2 = z72S&is true\end{tabular}\end{cente
\section* {Formula Evaluation}

$Sa(l,2) = 38$

$Sb(1,2) = 4853

$Sc(1,2) = 588

SSf(10) = 3.6288e+065S

\end{document}

9.4. report.pdf



Summary of Pythagorean Triples

EZMath Compiler
2014-10-26

Variables Definition

Logical Validation

22+ =22 s true

Formula Evaluation
a(1,2)
b(1,2)
c(1,2)
£(10) = 3.6288¢ + 06

Il
oroA



