

DSP Jockey
Language Reference Manual

COMS W4115 Programming Languages and Translators
Professor Stephen Edwards

Brian Bourn (bab2177), Abhinav Mishra (anm2147), Addisu Petros (aep2157), Vanshil Shah (vs2409)

1

Table of Contents

Introduction……….……….……….……….……….……….……….……….……….3

Lexical Elements...…….……….……….……….……….……….……….……….……3
Comments
Identifiers
Keywords
Constants
Separators
Whitespace
Operators

Data Types……….……….……….……….……….……….……….……….……..…..5
Basic Types
Builtin Types

Expressions and Operators……….……….……….…..……….……….……………....6
Variables
Parenthesized expressions
Binary Operator Expressions
Logical Operators
Arithmetic Operators
Comparison/relational Operators
Function Expressions

Statements……….……….……….……….……….……….……….……….……….....8
Conditional Statements
Assignment Statements

Functions……….……….……….……….……….……….……….………….………….9
Function Declarations
Function Definitions
Calling Functions

Programming Structure and Scope……….……….……….……….…………………….11
Program Structure
Scope

Sample Programs……….……….……….……….……….……….………...…………....13

2

Introduction

The purpose of DSPJockey is to provide a language that makes it easy for programmers to express
signal processing algorithms. We are aiming to provide the tools necessary to conveniently manipulate
signals. To facilitate this, we include a functional programming-like syntax that allows easy definition of
recursive functions that manipulate signals. In addition to this, our language also has a notion of global
time which corresponds to the current time in the stream that we are processing. Since many DSP
algorithms involve time manipulations, we feel that the time parameter makes it very intuitive to
express algorithms. We have included some code samples at the end to show how natural it is to
express signals and to pass them through filters to get output signals.

Lexical Elements

Comments

DSPJockey allows for single-line and multiline comments, similar to C-style comments.

singleline comment:
//this is a singleline comment

multiline comment:
/* this is
multiline comment
*/

Identifiers
Identifiers are used to identify variables and functions. Each identifier can contain a combination of digits,
letters, and the underscore character, although the identifier must start with a letter. Letters can be
lowercase and/or uppercase ASCII characters. Digits are the ASCII characters 0-9. DSPJockey is case
sensitive.

Keywords
Keywords are specific identifiers that the language uses to denote certain types or objects. They cannot
be overloaded.

Keyword: Meaning/Description:

let used to declare a new variable

dec used to declare a new mathematical function

int data type that represents an integer

float data type that represents a floating point number

if, else, elseif specify conditional statement

3

Signal keyword used to declare a new signal stream

print used to print information to standard out

to used to specify a range (from a to b)

bool data type that represents a Boolean value

true, false used to denote boolean keyword true, false

sum is the keyword to denote the summation

return return a value

char data type that represents a character

array data type that represents a list of values

Constants

Constants are either the Boolean types true and false or just a plain sequence of digits.

For example 1.241, 1, and true are all constants.

Separators

The comma character (,) is used to separate tokens in a list or tokens in the arguments to a function.

dec lowpass_filter(orig_signal, dt, rc) {
/* code */

}
The semicolon (;) character is used to separate statements in a block of code.

statement 1;
statement 2;

Whitespace

Whitespace is represented by tab and blank characters. Whitespace is ignored by the compiler and is

only used to separate lexical tokens from each other.

Operators

Operators are given in detail under the Expressions and Operators section.

4

Data Types

Basic Types

DSPJockey has five basic data types Integer, Float, Boolean, Char and Array. these data types can be

used without reservation or import of an outside library in any part of a DSPJockey Program. These

types can also be used to build objects or libraries.

integer A 32 bit number which represents only whole real numbers. (default Signed, can be
declared as Unsigned)

float A 32-bit Allows for the representation of numbers with fractional parts.

boolean A single bit data type used for true false statements. 1 for true 0 for false

char 8 bit datatype designated mostly for holding character Information for ASCII
conversion

array A standard list, style array which can be used to collect any of the four previous types
of data

Builtin Types

Additionally DSPJockey has one special data type called stream, which is used to represent an

ongoing signal. A Stream has many of the same aspects as a standard array, however it differs in that it

is constantly updated and only allows access to the previous 512 samples. additionally the current value

of the signal is always stored in the array at index t or the current time. previous samples are accessed

by subtracting an integer value from t. for example

stream signal;
s1 = signal[t];
s2 = signal[t1];

in this case s1 would be set to the value of the current sample of the signal while s2 would be set to

the value of the previous sample.

5

Expressions and Operators

Here, we describe the syntax of expressions within our language. A given expression is a sequence of

operands and operators that evaluate to some value. Expressions in DSPJockey are evaluated left to

right. However, this does not supersede the precedence of operators.

Variables

A variable is an expression whose type and value is the same as the type of the expression that it has

been designated to.

Constants

A constant is an expression whose type can be assigned to some boolean, string or number (float or

integer).

Parenthesized expressions

Parenthesis are used to clearly depict and modify operator precedence. Other than that, a

parenthesized expression will have the same type as a non-parenthesized expression.

Binary Operator Expressions

A binary operator expression is an expression that can be formed using a binary operator on two

individual expressions. Such a complex expression will have the form given by expression1

binary_operator expression2, where binary_operator can be a logical, arithmetic or relational operator.

Logical Operators

Operator Description

&& Conjunction

|| Disjunction

We have two logical operators, && and ||, which are used to do a logical operation on a given input. The

inputs specified to a logical operator must evaluate to a boolean and as such the result of a logical

operation is also a boolean. Where conflict may arise, the logical && operator has precedence over ||

6

Arithmetic Operators

Operator Description

/ division operator

* multiplication operator

+ additive operator

- subtraction operator

The input operands specified to an arithmetic operator must be numbers. The result of the arithmetic

expressions will be the number obtained by applying the arithmetic operation on the operands. Where

conflict may arise, the precedence of the operators is as specified in the table above - from highest

precedence to lowest.

Comparison/relational Operators

Operator Description

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

The inputs to a comparison operator should be of the same type to enable comparison. The return of

such a relational expression will be a boolean value determined by evaluating the expression. All

relational operators have the same precedence in an expression.

Array Index Operator

We use [] to index into an array or a signal and access the value at the specified location.

Function Expressions

Expressions relating to the creation and calling of functions are detailed under the section Functions.

7

Statements

A statement does not have a specific value and type. Instead, a statement is typically used for its side

effects. The following are types of statements in DSPJockey.

Conditional Statements

These types of statements can take on of the following forms:

if (expression) statement

if (expression) statement else statement2

if (expression) statement elseif (expression) statement2 else
statement3

For any of the cases above, the expressions must be items that evaluate to give a boolean. In the first

form, if the boolean expression is true, then the statement is executed. Otherwise, the statement is

ignored. In the second form, if the expression evaluates to true, then the first statement is executed.

Otherwise, statement2 shall be executed. For the last form, we have a series of if ...elseif sequences.

The statement associated with the first expression that evaluates to true will be executed. if none of the

expressions are true, then the statement under the last else shall be executed.

Assignment Statements

An assignment statement uses the operator = to form assignment statements. Such statements will have

the format lvalue = expression , where the value of the expression is evaluated and stored in lvalue.

Return Statements

These statements use the return keyword to return a value. The keyword is used in conjunction with an

expression as follows:

return expression;

Function Call Statements

Statements associated with function calls are detailed under the section Functions.

8

Functions

In our language, we have two different notions of functions. One of them, in the mathematical sense is a
function which takes an input value, performs some mathematical operations on it and returns the value
of the operation. The other type of functions are functions like in traditional languages that are a way to
separate programming logic. From here, they will be referred to as mathematical functions and logical
functions.

Function Declarations

To declare a mathematical function, we start with the keyword dec, which lets the compiler know that
we will be performing mathematical operations with the input values and that this will be a recursive
function. Here is a simple declaration of a low pass filter function

dec lowpass_filter(orig_signal, dt, rc) {...}
or more generally,

functiondefinition:
 dec functiondeclarator functionbody

where
functiondeclarator:
 declarator (input_signal, parameterlistopt)

parameterlist:
 identifier
 identifier, parameterlist

The logical functions are declared as below:

functiondefinition:
 typespecifieropt functiondeclarator functionbody

where
functiondeclarator:
 declarator (parameterlistopt)

parameterlist:
 identifier
 identifier, parameterlist

Function Definitions
Again, the type of function definition depends on the type of function that we are trying to write. For
mathematical functions, the function structure should follow a roughly equation-like syntax with the
beginning lines of the function doing intermediate calculations and the last line modifying the signal we
want to operate on.

9

functionbody:
 { statementlist signalassignment }

Having the signal on the last line also enforces the return value of functions of type dec, which is the
signal type.

Logical functions are defined in a similar manner but return values are specified with the return keyword
for functions that have a return value.

functionbody:
 { declarationlistopt statementlist }

Calling Functions
To call user-defined mathematical functions in this language, you have to create a new signal to be
assigned to the returned signal from the function. Then, you can just use the assignment operator to
assign the function return value to the new signal.

let new_signal = Signal[]
new_signal = func(original_signal);

To call logical functions, you can just call the function with the parameters that the function requires.

func_name(<function parameters>);

10

Programming Structure and Scope

Program Structure

DSPJockey programs can exist in a single file or across many by importing functions from other files or

libraries through the use of the import function. All programs must be written in files with the extension

“.dspj”. Programs must additionally contain a function named main which is where the program will

begin running. A few basic programs are included in the next section for example purposes

Scope

Variables may be referenced in several different contexts throughout a program, as such DSPJockey

allows for both global and local scopes. Variables must be assigned before they are referenced, for

instance

int x = y+7;
int y = 5;

will not work since y is referenced by x before it is assigned.

A global variable is declared at the beginning of a file and can be referenced and updated by any

program. For example,

/***declaration.dspj**/
int i;

void set_i(){
 i =2;
}

int main(){
 set_i();
 i = 3;
}

The variable i will originally be set to 2 by the set_i function then be set to 3 later in the main function.

A local variable is declared somewhere in a function or a loop and is therefore available only to the

function or loop in which it is declared. For instance,

void set_i(){
 int i;
 i=2;
}

int main(){
 int i;
 i =3;

11

 set_i();
 print i;
}

will return i = 2 since set i only defines an int i within it’s own scope and will not modify main’s variable i.

12

Sample Programs

Our language is based on an implicit time parameter t, used to access and modify our signals. t gives us

access to the current time step in any calculation that we will be doing and to access previous times, we

would subtract integers from t.

/**************Low Pass Filter**************/
// Given an input signal, we would like to output a signal that is low passed
dec lowpass_filter(orig_signal, dt, rc) {

alpha = dt/(rc+dt);
new_signal[t] = alpha * orig_signal[t] + (1alpha) *

new_signal[t1];
}

// Code to read in samples into a stream
int main() {

let sig = Signal[];
let new_signal = Signal[];
sig = stdin;
new_signal = lowpass_filter(sig, 10, 10);
return 0;

}

/***********FIR Filter**************/

where:

● x[n] is the input signal,
● y[n] is the output signal,
● N is the filter order; an Nthorder filter has (N+1) terms on the righthand side
● bi is the value of the impulse response at the i'th instant for 0 ≤ i ≤ N of an Nthorder

FIR filter. If the filter is a direct form FIR filter then bi is also a coefficient of the filter .

let coef_array = Array[size];
dec fir_filter(input_signal, coef_array) {

13

// Setting each sample of the output signal to the sum of the coefficients multiplied by
// the time shifted input array
output_signal[t] = sum i=0 to coef_array.size :

coef_array[i]*input_signal[ti];
}
let output_signal = Signal[];
output_signal = fir_filter(input_signal, coef_array);

/************IIR Filter**************/

where:

● P is the feedforward filter order
● bi are the feedforward filter coefficients
● Q is the feedback filter order
● ai are the feedback filter coefficients
● x[n] is the input signal
● y[n] is the output signal.

dec iir_filter(input_signal, coef_array_a, coef_array_b) {

//here we are taking a sum over the input or output signals and their
//coefficient arrays signal so that we can take the difference for an FIR filter
xsum = sum i=0 to coef_array_a.size : coef_array[i]

*input_signal[ti];
ysum = sum j=1 tp coef_array_b.size : coef_array_b[i]

*output_signa[tj];
//the output of the IIR will subtract ysum (output sum) from xsum (input sum) and then

multiply that difference value by 1 over the first value in the ‘a’ feedback filter coefficient array
output_signal[t] = 1/coef_array_a[0]*(xsum ysum)

}
let coef_array_a = Array[size];
let coef_array_b = Array[size];
let output_signal = Signal[];
output_signal = iir_filter(input_signal, coef_array_a, coef_array_b);

14

/*************Unit step*************/
dec create_unit_step(amplitude, time) {

if t < time
sig[t] = 0;

else
sig[t] = amplitude;

}
let sig = Signal[];
sig = create_unit_step(10, 10);

15

