Ninja University
IN THE CITY OF NEW YORK

Kshitij Bhardwaj kb2673
Van Bui vb2363
Vinti Vinti vw2236

Kuangya Zhai kz2219

Overview

e Wiimote controlled object slicing game on SoCKit board

e Motivated by Fruit Ninja game

e Storyline: To become a Ninja, you must be very diligent and
fulfill program requirements by slicing your assignments,
exams, write your thesis, etc

e Strategy to become a Ninja
o Slice objects to increase your score
o Avoid slicing an F object
o Slice objects before they disappear from the screen

Image Preprocessing

Images for stationary and moving objects
Generate a memory initialization file for each image
Single-port ROM memory blocks

o
o
o
e 12-bit index color, i.e. 4096 colors

Audio Preprocessing

Background music and sound effects

Ogg Vorbis decoding - conversion to MIF format
Single-port ROM memory blocks

Sampling rate: 44100 Hz

Quantization bits: 16 bits

Edit audio files for length, channels, and sampling rate

Hardware Design

From
Wiimotc:

Wiimote Controller

Bluetooth
HID
protocol

usB
Controller

Avalon Bus

Sprite Controller

Audio Controller

VGA Controller

Audio Codec

VGA out 1

l Audioline out

VGA DISPLAY MODULES

50 MHz clock

MCwZOrpP <k

16§ bits

Ctrl signals

VGA
CONTROLLER

VGA_CTRL

!

ROM BLOCKS

Laddr PSS

12 bi]s

\—

_/

> VGA_CLK
xrow yr,ow# |
RGB
CONTROLLER
24 bits VGA_R,
771> VGA_G,
VGA_B

RGB Controller

Sprite selection and movement controlled by software
Hardware generates images

Line buffer write operation

Priority encoder for sprites

Line Buffer Write Operation

STATE

. DECODER
2 bits

— <pRITE DATA FETCH —»
—A&-l —> FROMROM —>
R ADDRESS PRIORITY
3 bits| \oroCE BLOCKS _, LNE

__, ENCODER
—
yra
77 " CLK

Sprite coordinates
32 bits

4, Score 8 bits T
77

' ,, Lives Ieﬂ)Tbits
Y4 i

e Two line buffers used for reading and writing
e \Write at alternate rows

Sprite selection logic

Sprite selection and position based on control input
(on/off flag and coordinates) from game logic.

Flag checking, calculation of address, data fetching
done using combinational logic, in parallel for all layers
(to ensure no timing issues).

Priority encoder used for selecting the pixel to be written
into line buffer.

Writing into line buffer using sequential logic at 25MHz
clock frequency.

Used combinational logic to simplify design, other
options could be pipelining/ interleaving.

List of Sprites

Block Number of | Size of Images | Total ROM size
Sprites (pixels) (bytes)

Numbers |10 32x32 61440

Lives 1 32x32 1536

Ninja 3 64x64 18432

Weather 3 64x64 18432

Slicing 6 64x64 36864

Objects

Level 3 64x64 18432

Selection

Try Again |1 64x64 6144

Diploma 1 64x64 6144

NYC 3 200x160 144000

Skyline

Pass/Fail |2 64x64 96000

Total 33 401.28 KB

Audio Controller: Major Components

e Audio Data
o Audio Samples stored in ROM blocks

e Audio Codec Configuration Interface
o Configure audio codec SSM2603

e Digital Audio Interface

o Send audio samples from ROM to audio codec at
audio clock rate

Audio Controller: Block Diagram

Ref

W Audio clock

Digital Audio Interface

Audio

samples | 0 Audio

. ROM Codec

. Blocks Interface

Oge file SSM 2603

Control Audio Codec
from Avalon bus Configuration Audio Codec
Parameters Configuration

Interface

Audio ROM blocks

e Two sounds converted from ogg file format

to mifs:

o city.mif : Background music
o sword.mif: Ninja striking an object sound

e Both sounds stored in ROM blocks

o city: 16 bit samples, 16537 words
o sword: 16 bit samples, 22049 words
o total size: 77 KB

Audio Codec Configuration Interface

e Uses |2C protocol to configure 16 9-bit
registers in audio codec SSM 2603

e Configured parameters include
o Volume (0 db)
o Mode (slave)
o Sampling rate (44.1 khz)
o Power on/off

Audio Codec Interface

e Operates at audio clock (11.3 Mhz)

e Implemented as Shift registers that send
audio samples to audio codec

e Two clocks derived from audio clock

o Channel clock: Time multiplexed, send sample on
one channel (left or right) at a time
o Bit clock: send a bit of each sample

Audio Codec Interface: Operation

=z 1/fs

LEFT CHANNEL RIGHT CHANNEL

RECLRC/
PBLRC

« [[UUUUUUUUTUuuuuu

RECDAT/ 1 2 3 4 N X X 1 2 3
PBDAT

X =DON'T CARE.

Kernel Device Driver Modules

e \/GA device driver

o loctl calls to write positions (x,y) of sprites, scores,

remaining lives, select screens, select levels
o VGA peripheral memory: 4-bit address, 16-bit words

e Audio device driver

o loctl calls to control (on/off) of sword sound
o Audio peripheral memory: 1-bit address, 16-bit word
o Can be easily extended to control other sounds...

Debugging Methods

e System console scripts to test hardware

o Audio sound
o Sprites display

e Modelsim
e Modular design coding

Wiimote Controller

e Peripherals
o wiimote, infrared sensor light, bluetooth USB dongle
e Software
o Libwiimote (C-library)
o Linux Device Driver: BlueZ, libwiimote-dev
e Recognize the infrared source on the screen
e C(Cast the screen size from 1784 x 1272 to 640 x 480
e Vibrate when cutting the bomb

Game Logic

e Implemented in the software world by C

e |nteraction between user and hardware
o User: bluetooth dongle connected to USB
o Hardware: VGA and audio device driver

e Do the computation and control the game...
o |nput: infrared source position from wiimote

o Output: current screen, position of sprites, ninja,
enabling the sound and vibration, score, life...

Experiences and Issues

Wiimote connection takes longer than expected
Codesign by contract in the favor of the hardware
Interfacing with audio codec were the most difficult
Audio buffers and interrupts

Limited on-chip memory space

Lessons Learned

Architecture design of SoCKit board

Software and hardware co-design

Collaborative coding

Time management

SoCKit tutorials by Howard Mao were very helpful
Simple implementation first, then optimize as needed

Demo

