
3D RENDERING IN FPGA
Earvin, Gautham, Garvit and Annjana CSEE 4840

Spring 2014

Original proposal

¨  We had initially proposed to make a Ball Balancer
Mario Party game

¨  Milestones were designed to implement the whole
game

¨  A 3D plate with a ball on it, was to be balanced by
the player using a PS3 controller

Actual Implementation

¨  …. Well, then we decided to concentrate on the
most difficult part of the game, and make sure we
got that right - which is the 3D Rendering part,
which includes a Shader module and z-buffering

¨  Using the combination of both software and
hardware, our project can render any object of your
choice in 3-D, and it can dance/’blink’ (you’ll know
why later) to the whims of the PS3 controller!

Verification of Design

¨  For proof of concept, we wrote the entire 3D
Render module in Python

¨  The mathematics involved in the project was tested
and verified

¨  The aim was to translate this functionality in an
equivalent hardware-software interface on the
Sockit board

¨  This was fundamental for building our project

Blender module sample

3D Rendering Design Flow

Raw vertices Matrix
Transformation

2D
Coordinates Shader module

& Z-buffering

Pixels

VGA Module

Display on
screen

VGA
Signals

Frame buffer

3D
Render

System Overview

ARM
Matrix

Transformation
Input

Controller

AVALON BUS

Frame
Buffer

VGA
Controller Z buffering Rasterization

Software

Hardware

Software Overview

¨  Blender program
¤  Blender is used to draw the 3D model of our choice on

software. It generates the vertices of all the triangles that make
up the model

¨  Matrix Transformation
¤  The mathematical calculation of the model that takes angles as

inputs, and transforms them into vertices
¨  PS3 Controller

¤  Interface the controller, and map the input from the controller to
appropriate angles that are fed into the Matrix Transformation
module

¨  Software interfacing
¤  Software driver to communicate with the hardware

Flow of Software

Interface with Hardware
module

Feed the initial vertices to
the Matrix Transformation

Module

Blender program to draw
the object of choice, and
parse the vertices using a

Python Script

Transforming 3D coordinates
to 2D coordinates

Input from Controller, to
determine angle of rotation

Input to this module

Matrix Transformation

Controller module

PS3
Controller

Python script
0-255

Translation

angles

C program

Device
Driver

Matrix
Pipeline

To Avalon bus

Hardware Overview

¨  3D Rendering of the model
¤ Shader module
Takes the transformed 2D coordinates, and communicated
with the VGA module to print the object on screen
¤ Z-buffering
Fine tuning the object seen on screen, by considering the
Z-axis, and how it affects an object when it rotates

¨  VGA Module – Rasterization and display

Shader module & Z-buffering

Start trigger
Vertex x
Vertex y
Vertex z

Posedge(clk)
SORT

based on y
Calculate
Gradient Interpolation

Draw Line Put pixel
VGA Signals VGA

Module

Color picker (2 bit)

Problems faced

¨  Screen refresh
¨  Fixed-point, signed arithmetic in FPGA
¨  Z-buffer implementation due to resolution
¨  Limited memory resources, difficult to get DDR3

working
¨  Coloring of the triangle in the 3D model
¨  A race against the clock

Lessons Learnt

¨  Plan well in advance
¨  We ran into quite a few issues with the external

memory. On-chip registers are much easier to
implement, but difficult to optimize. Thank god for
MegaFunction

¨  Compiling on FPGA is time consuming. We’ve never
appreciated ModelSim more for making our lives so
much easier

¨  Software prototyping was invaluable
¨  Priorities change as project progresses
¨  Get help from other groups! We tried doing everything

on our own, but could have benefited from others’ work

