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Original proposal 

¨  We had initially proposed to make a Ball Balancer 
Mario Party game 

¨  Milestones were designed to implement the whole 
game 

¨  A 3D plate with a ball on it, was to be balanced by 
the player using a PS3 controller 

 



Actual Implementation 

¨  …. Well, then we decided to concentrate on the 
most difficult part of the game, and make sure we 
got that right - which is the 3D Rendering part, 
which includes a Shader module and z-buffering 

¨  Using the combination of both software and 
hardware, our project can render any object of your 
choice in 3-D, and it can dance/’blink’ (you’ll know 
why later) to the whims of the PS3 controller!  



Verification of Design 

¨  For proof of concept, we wrote the entire 3D 
Render module in Python 

¨  The mathematics involved in the project was tested 
and verified 

¨  The aim was to translate this functionality in an 
equivalent hardware-software interface on the 
Sockit board 

¨  This was fundamental for building our project 



Blender module sample 
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Software Overview 

¨  Blender program 
¤  Blender is used to draw the 3D model of our choice on 

software. It generates the vertices of all the triangles that make 
up the model 

¨  Matrix Transformation 
¤  The mathematical calculation of the model that takes angles as 

inputs, and transforms them into vertices 
¨  PS3 Controller 

¤  Interface the controller, and map the input from the controller to 
appropriate angles that are fed into the Matrix Transformation 
module 

¨  Software interfacing 
¤  Software driver to communicate with the hardware 
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Hardware Overview 

¨  3D Rendering of the model 
¤ Shader module 
Takes the transformed 2D coordinates, and communicated 
with the VGA module to print the object on screen 
¤ Z-buffering 
Fine tuning the object seen on screen, by considering the 
Z-axis, and how it affects an object when it rotates 

¨  VGA Module – Rasterization and display 
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Problems faced 

¨  Screen refresh 
¨  Fixed-point, signed arithmetic in FPGA 
¨  Z-buffer implementation due to resolution 
¨  Limited memory resources, difficult to get DDR3 

working 
¨  Coloring of the triangle in the 3D model 
¨  A race against the clock 



Lessons Learnt 

¨  Plan well in advance 
¨  We ran into quite a few issues with the external 

memory. On-chip registers are much easier to 
implement, but difficult to optimize. Thank god for 
MegaFunction 

¨  Compiling on FPGA is time consuming. We’ve never 
appreciated ModelSim more for making our lives so 
much easier 

¨  Software prototyping was invaluable 
¨  Priorities change as project progresses 
¨  Get help from other groups! We tried doing everything 

on our own, but could have benefited from others’ work 


