CSEE 4840 Embedded System Design
Project Design

NUNY: Ninja University in the City of New York

Kshitij Bhardwaj, Van Bui, Vinti, and Kuangya Zhai
{kb2673, vb2363, vv2236, kz2219}Q@columbia.edu

I. Project Introduction

In this project, we will design and implement a Fruit Ninja like video game on the FPGA. Fruit
Ninja is a popular video game where the player slices fruit using their finger(s) on the touch
screen. The theme of our game will be based on undergraduate/graduate school life so that
rather than slicing fruit, the object of the game will be to slice assignments, exams, qualifiers,

advisor meetings, paper deadlines, thesis writing, food (like pizza), coffee, books, etc. The game

will generate several moving objects on the screen and the player will destroy objects using an
on screen blade or sword controlled by a wiimote controller.

NUNY will have three levels to the game representing each stage of higher education (i.e.
bachelors, masters, and doctorate). Each level will have different program requirements and
students are required to complete their bachelors degree before moving on to their masters
degree and so on. The student will have to earn a minimum GPA and pass any other program
requirements to achieve a particular degree. There will be several objects appearing and
disappearing from the screen and the player will have to slice certain objects in order to increase
their GPA score or complete some program requirement. There will also be objects that the
player should not slice as it could either lower their GPA or will hurt their chances to graduate.
There will be a three strikes rule, so that if the player slices an object that represents for example
cheating, than that will be one strike against them. The entire game is won when the player
completes their doctorate degree.

Il. Software and Hardware Components

The major components in our design includes the game logic, video display, audio, and wiimote
controller.

Wiimote Controller

I
| l
| Bluetooth |
UsSB G -
AT HD = s R SDRAM
Wiimotel Controller | y Logic
I protocol i = —
|
P d
L 4 L 4
HPS
rF 3
v
Avalon Bus
L 4 L 4
Sprite Controller Audio Controller
v v
VGA Controller Audio Codec
VGAoutl 1 Audioline out

Figure 1. High level software and hardware desigh components
Game logic controller (Software)

Game logic will be implemented in software using C programming language. The key functions
of the game logic controller are to control the generation of sprites (graphics), read location of
Wii pointer through the Wiimote controller, generate appropriate audio when required during the
game by interacting with the audio controller and finally implement the actual game logic, its
rules and compute the player's GPA, based on how many program requirements he/she has
fulfilled (or sliced!). Each of the above functions are implemented as a submodule of the game
logic controller. As shown in the figure below, there are 4 submodules, which are described in
more detail next.

GAME LOGIC CONTROLLER

) Sprite
Wii Locat

- nrocator | x | Game Rules Submodule | " Generator -
Submodule type

From Y Submodule To Sprite
Wiimote - -
Controller
Controller
‘Seiect_audio
Audio Generator
Submodule
To Audio Controller
Figure 2. Game Logic Controller block diagram
1. Game rules: This is the main submodule of the game logic controller and it interfaces

with all the other submodules, instructing them what to do and when based on the rules
of the game. For example, to create the screen where a player selects a program (Phd,
MS, or undergrad), the game rules submodule tells the sprite generator submodule to
generate sprites such as “MS” / "PhD” etc. It also tells the audio generator to interact with
the audio controller to generate the background music for this opening screen.

This submodule is responsible for the dynamic behavior of the game and keeps updating
the screen according to the game being played. It also implements the logic to determine
the speed of the various sprites on the screen. It calculates the final GPA of the user by
mapping the no. of program requirement sprites he/she has sliced to an actual GPA
score for the whole semester.

Sprite Generator: Based on the game logic, this submodule generates the X and Y
coordinates of the different sprites that need to be displayed on the screen. These X and
Y coordinates for each sprite are stored in memory (using iowrite calls), which gets

3

updated according to the actual game logic. This memory is accessed by the sprite
controller through the address bits, which then displays the necessary sprites on the
screen.

The X and Y coordinates for the moving sprites will be determined based on the current
time step, velocity in the x and y direction, gravity, and the initial x and y coordinate
positions.

x(t) = x_velocity * time + x_init
y(t) = -%2 * gravity * time”2 + y_velocity * time +y_init

Wii Locator: Game logic controller interacts with the Wii controller to determine the
location where the Wiimote is pointing. The Wii locator submodule also interacts with the
game rules submodule (which then talks to the sprite generator) to select the appropriate
sprite based on the Wii location. For example, if the X,Y coordinates obtained from the
Wii controller (which are the coordinates of the sword) are within the dimensions of a
sprite (say the homework sprite) then the homework sprite needs to be updated to a new
sprite which shows a sliced homework. A more simpler example will be the movement of
sword, which is displaying a sword sprite at the exact position where the Wii is pointing.

Audio Generator: Various audio sounds that need to be generated throughout the game
(background music, slicing sounds, etc.) are encoded inside the audio generator

submodule. Based on the game logic, this submodule tells the audio controller to

generate the appropriate sound while the game is being played. For example, if the player
successfully completes a level, the game logic will tell the audio controller to play the

graduation music.

VIDEO DISPLAY CONTROLLER

ROM SPRITE
BLOCKS CONTROLLER

VGA
CONTROLLER

hcount, vcount

L —

Address
<
BACKGROUND TILES Pixel
—atr——>
Address
SCORE SPRITES

Address

OBJECT SPRITES p,xe|
Address

NINJA SPRITE Plxel

VGA Control

Si?nals ll:

Plxel

RGB

Input from Game
logic module (x,y
coordinates of

AVALON BUS

Figure 3. Video display controller block diagram

Video Display controller

The video display controller will have two submodules, the VGA Controller and the Sprite
Controller. For the VGA Controller, we will be using the module from lab3 as a starting point. The
Sprite controller will be implemented using two line buffers.

1. VGA Controller: This module will generate the VGA signals and also the hcount and
vcount values that will be needed.

2. Sprite Controller: The sprite controller will send the RGB values of each pixel
(depending on the current hcount and vcount value) to the VGA Controller. The inputs for

the sprite controller will be the following:

e Hcount and Vcount (current position of the pixel)

e XandY coordinates of the Ninja
e Xand Y coordinates of the object sprites

The game will consist of 4 layers. The order of the layers will be following:

The background layer will have the lowest priority
the score display layer comes next
the object layer will be next and will have 6 to 8 sub layers, depending on the
difficulty level of the game
e The topmost layer will be the ninja and it will have highest priority

Figure 4. VGA Display Layers

The sprite controller submodule will get inputs from the game logic controller specifying
the position of the sprites on the screen. It will have two line buffers of size 640 (for each
pixel in a line of the VGA screen). At a given time, it will write the value of each pixel in this
line buffer and read out the other line buffer to the VGA Controller. The read out will be at
a clock frequency of 256MHz i.e. the VGA_CLK and for writing into the redundant line
buffer, the 50MHz clock will be used.

Line Buffer Write Operation: The sprite controller will check the priority flags assigned
to each of the layers and sublayers for each pixel in a line and then depending on the
highest priority layer, fetch the corresponding sprite pixel. It will then check if the pixel is
transparent or not and if not, write it into the line buffer, at the specific hcount position. To
do this, we will have 1600 clock cycles per line.

Calculate ROM
address

Store in Line
Buffer

Check priority
flags

Fetch fetch

 Transparent?

Check next

priority flag

Figure 5. Flow chart for the line buffer write operation

Memory Budget:

Block Number of Sprites | Pixel size Size(per block ROM)
Background ~10 (.approx) 32x32 3.072KB

Score ~10 32x32 3.072KB

Objects 8+8 32x32 49KB

Ninja 4 32x32 12KB

Total = 67 KB (approx)
Each pixel is represented using 24 bits (8 bits each for R G B).

Memory requirment for game logic: 36Bytes (9 (8 objects + ninja) x 32 (16 bits each for X and Y
coord)

Audio Controller

The SoCKit board supports 24-bit audio with the Analog Devices SSM2603 audio codec.
SSM2603 has ports for microphone in, line in, and line out. The sampling rate supported is 8
KHz to 96 KHz and is adjustable.

NUNY will support sound for fast movement of the blade, object slicing, appearance of a new
screen objects, game over, and graduation music for when the player passes a level. We will
use 16-bit audio data to generate sound. We will experiment with different sampling rates

starting with the lowest rate of 8 KHz and increase it as necessary for good quality sound.

The hardware components on the board that will support audio in our game includes the HPS
and the SSM2603 audio codec. The HPS will retrieve audio wave files stored in DRAM and
forward the data to the audio controller. The audio controller consists of a FIFO buffer
submodule and the SSM2603 audio codec. The FIFO buffer submodule stores the audio data
and is connected to the SSM2603 DAC. The SSM2603 retrieves audio data from the buffer and
sends it through the audio line out port interface to produce sound. When the music buffer is
empty, the codec will signal to the HPS that the buffer is empty.

HPS b E— DRAM

<
write data address IR
(16) (3]
Sl read address 55M2603
Music G audio
32 x 16 bits | 0=t out

Figure 6. Hardware submodules for audio design

For the audio, we will support sounds that last anywhere between one second to several
seconds long. The sound effects such as the sound of a sliced object, blade swiping, signaling a
new screen object, and game over are expected to last about 1-3 seconds. Assuming the lowest
sampling rate of 8 KHz and 16 bits per sample, the total amount of memory for the sound effects
should be about 128 KB. The audio for the graduation music is expected to last longer, possibly
30 seconds, which would require as much as 480 KB. Sound data will be stored in DDR3
SDRAM on the HPS, which is 1GB in size and is plenty of space to store the audio data.

Wii Controller

There are three devices needed for the Wiimote Controller model: (i) Wiimote, (ii) Bluetooth USB
Dongle, and (iii) Sensor Bar. The sensor bar emits infrared signal when powered and will be
placed in front of the screen. The Bluetooth dongle connects to the SoCKit board through the
USB interface and standard Bluetooth HID protocol, and receives Bluetooth signal sending from
the Wiimote controller. There are two sensors built in the Wiimote: the accelerometer and the
front digital camera. The accelerometer senses the acceleration of the Wiimote and the front
digital camera senses the relative position of the Wiimote to the sensor bar. The Wiimote then
sends the acceleration and position information to the SoCKit board through the Bluetooth USB
dongle.

We will be using BlueZ [1] as the Bluetooth stack to communicate between the Wiimote and
Linux host. libwiimote [2] is a C-library build on BlueZ that provides a simple API for
communicating between the Wiimote and the Linux host. We can get the data of the
accelerometer and ir-sensor of Wiimote by calling functions provided by libwiimote directly and
save huge effort of doing nasty math computations. In this project, we will be using BlueZ and
libwiimote together to make the developing of Wii Controller module easier.

Revised Milestones:
Milestone 1: Initial integration of the audio, video and game logic modules.

Milestone 2: Integrate wii controller code to the existing code base. A “Hello World” version of
the game.

Milestone 3: Implementation of the game with three levels of difficulty. Test that the game
console works properly via simulation and real-time testing.

Reference

[1] BlueZz, “Official Linux Bluetooth protocol stack.” http://www.bluez.org, [Online; accessed
27-March-2014]

[2] libwiimote, “Simple Wiimote Library for Linux.” http:/libwiimote.sourceforge.net, [Online;
accessed 27-March-2014]

http://www.google.com/url?q=http%3A%2F%2Fwww.bluez.org&sa=D&sntz=1&usg=AFQjCNF0MVvBEA_m-Om-DQ8lDuaqYJSD-A
http://www.google.com/url?q=http%3A%2F%2Flibwiimote.sourceforge.net&sa=D&sntz=1&usg=AFQjCNHX3yiArzAV2abrXH2RLqFl6R_VHA

