Columbia Defense Video Game

Design for CSEE 4840 Project

Team Members:

Chao Li(cl3169)
Zhefeng Xu(zx2152)
Yang Bai(yb2310)

Tianlei Zhou(tz2212)

March, 2014

1. Project Introduction :

In this project, we plan to design and implement a tower defense game called “Columbia Defense”,
which is based on Columbia University campus. The user can make the strategy, set up various
defensers in the pathway in order to kill the enemies and protect our Columbia campus. The attackers
include people from other Ivy league universities and the defenders are undergraduate, MS, PHD, TAs,
Professors of Columbia University. All of the defenders have different kinds of features and attack
techniques and furthermore in the bonus system, killing the attackers will make some money for the user,
which can be used to upgrade our defender. The upgraded defenders have more powerful weapons and
abilities. In the screen, we have 5 parellel pathways towards our campus and we should build our
defenders on each path to accomplish the goal of protection. Once one of them is occupied by the
attackers, our game will be over. The use can choose to play again and exit. As the user pass the
elementary level of our game, next higher level will be available, where there are more powerful
attackers.

There are some key points of this project with which we need to handle carefully. First is the VGA
display, because there are lots of different attackers, defenders, special effects and campus background.
We need to rewrite the driver and use different methods to solve the static and dynamic figures, such as
sprite. Second key point is the algorithm issue. For both the attackers and the defenders, we need to set
them walking along the designed pathways, the different behavior and movement when they attack or
are attacked. For the defense facilities, what’s more, we need to design different characteristics
according to upgrading. And how many times that our defenders can destory different attackers.

2. Implement details

<A4>. VGA Display:

In our project , we are going to show the following elements:

1. Background including the map of the game, the location we set our defender, the path towards our
campus, etc.

2. Six different defenders and four different attackers and each has different appearance.

3. Different attacking, hitting and moving effect for attackers and defenders.

4. The game money system and defenders selection part should be shown on the specific part of the
screen.

To realize the background and the appearance of the attackers and defenders, we will store these
elements as fixed figures in the SRAM on the borad. And for realizing the attacking action and the effect
of being hitted dynamically, we plan to prepare 3 to 4 figures for a certian action and display all the
dynamic actions by refreshing the sprite frames frequently.

Consider that the total screen is 640x480 pixels, and we will set 5 paths towards the campus and each
paths will have 9 squares for setting up defenders and for attackers going through. So that it is
reasonable to set each squares as 60*80 pixels and 55*90 pixels for defenders and attackers for a bit
sense of 3-Dimension. In the whole game, the game information such as the amount of money occupies
a sprite. We assume that the effects of defender being hitted are the same so we only need each sprite
for the generation of each defender. And it is more complicated for attackers because we need one

more sprite for different motions after they being hitted(such as be killed or stuned to stop moving). We
will set the attacking effect as the top level and then the attackers, following the defenders and the last to
be the background and the game information.

. Audio Controller:
1. Background Audition:

Since this time the capacity of the SRAM is fairly enough for us, so it is reasonable for us store the
music files in he SRAM in the Sockit board rather than store in SD-card. Thus this time the SD-card
drive program file can be well omitted.

2. Game Sound Effect:

we would look for some proper short audio files, once there comes a request(namely, some
behavior of the heros in the game), the corresponding short audio will be triggerred and play for one
time.

For this case, we have to consider that once there come two requests at the same time(a new requet
comes before the ongoing one finishes), we would have to play two audio files concurrently. It is just a
similar case if more than 3 requests occur concurrently. Therefore, mutilple-track player will be
required.

<C>. External Equipments:

For this project, we will mainly use the mouse as our first choice to do the basic operation, such as
selecting different kinds of defenders.

As we designed above, we have 5 paths with 45 set up locations in total and there are six different

kinds of defenders. Furthermore, we may have some other functional buttons such as upgrade, pause.

So there will be appoximately 55 tiles in total on the paths. When moving the mouse, there will be a cute
pointer icon moving correspondingly with the mouse. And according to the position of the tip pixel of
the pointer, we can decide which tile the mouse is cover on. In that case, once the CPU recognizes the
input signal of a left click, the system will realize its corresponding function.

3. Block Diagram & Interface Implementation:

Workstation

i

Avalon Bus
SRAM Audior udi Drive f
File udio rive for
Interface Drive Cialelin: Peripheral
Audio VGA Mouse & Other
SRAM Output Output Peripheral Device
INTERFACES:

As is shown in the above diagram, hardware-to-hardware blocks is rare in our system design, that is,
almost all the interconnect between blocks are via ports with corresponding commincation protocals.
Thus, we are supposed to pay more attention on protcal design rather than puring low-level device

timing design.

<A>.VGA output:

The board includes a 15-pin D-SUB connector for VGA output. The VGA synchronization signals are
provided directly from the Cyclone V SoC FPGA, and the Analog Devices ADV7123 triple 10-bit

high-speed video DAC (only the higher 8-bits are used) is used to produce the analog data signals (red,
green, and blue). It could support the SXGA standard (1280*1024) with a bandwidth of 100MHz. The
following figure gives the associated schematic.

VGA_R[T

0]

AITERA) VGA_BIT

BLVCARTO
Cyclone™Vv _YGACLE
VGA_SYNC_N
VGA_BLANK N

ua

VGA DAC | VGA G

ADVT123

VGA_VS

J10

VGA_HS

.Audio output:

The board provides high-quality 24-bit audio via the Analog Devices SSM2603 audio CODEC
(Encoder/Decoder). This chip supports microphone-in, line-in, and line-out ports, with a sample rate
adjustable from 8 kHz to 96 kHz. The SSM2603 is controlled via a serial 12C bus interface, which is
connected to pins on the Cyclone V SoC FPGA. A schematic diagram of the audio circuitry is shown in
the following figure.

ug
. A A | MCLK/XTI
WA et @
= »| PBDAT

L

f t! ! i f D gf E AUD_DACLRCK
h | A — » FBLRC
® AUD_ADCDAT Line In ﬁ 15

a. & &

RECDAT
cyc’on e@V AUD_ADCLRCK | - o
SoC’ SOyl muTe Line Out
AUD SCLK | e, @ IJ?
A AUD_SDAT >l SDIN

<C>.SRAM interface:

The board supports 1GB of DDR3 SDRAM comprising of two x16 bit DDR3 devices on FPGA
side. The DDR3 devices shipped with this board are running at 400MHz if the hard external
memory interface is enabled, and at 300MHz if the hard external memory interface if not enabled.
The following figure shows the connections between the DDR3 and Cyclone V SoC FPGA.

Datax16
n >| DDR3 Device
A =4
L] Address & Command
Cycione®™V
SoC .
< Datax16 > DDR3 Device
<D>.Peripheral Device:

The board provides USB interfaces using the SMSC USB3300 controller. A SMSC USB3300
device in a 32-pin QFN package device is used to interface to a single Type AB Micro-USB
connector. This device supports UTMI+ Low Pin Interface (ULPI) to communicate to USB 2.0
controller in HPS. As defined by OTG mode, the PHY can operate in Host or Device modes. When

operating in Host mode, the interface will supply the power to the device through the Micro-USB
interface. The following figure shows the schematic diagram of the USB circuitry.

HPS. USE_DATA[7..0) USE CPEN USB VELS
1 A0 » DATA.0] CPEN ———m——— s EN out
USE EXTVBUS
m 3 M USB CLKIWT CLEOUT EXTVELS M FALLT N
v USE VBLUS - :
A, HPS USE NXT . — TP EE Ve
Cyclonet™Vv HPS_USE_DIR - op L 58D
SoC 1 L
5§ USH STP N 0 g USE_DP
HPS RESET D [4258.00

RST_n MR_n US8IZ00
HPS_RESET n Micrg USE AB Connecior
ADMB11

4. Algorithm:

Here we want to briefly introduce our idea about the implementation algorithm of the behavior

control of every attacker and defender, including attack behavior, attacked behavior and upgrade
behavior.

As for the attackers, they have two behaviors: move, attack and die. When the attackers appear at the
beginning of the path, they will follow the designed path at the initial speed and move forward normally.
When they are blocked by our defenders, they begin to attack and at last clear the defenders and all the
attackers have the same behavior. However, when they are killed by our defenders, it will die and
disappear gradually, which can be implemented by setting a counter for an attacker and Every time the
attackers are attacked again, refresh the counter and zero means the attacker disappearing. The above

is similar for the defenders.

For the defenders, there are two behaviors: attack, upgrading and die. Every defender has its own
attack range, such as 100 pixels, 200 pixels. Once the attacker is built, the boundary is fixed. So if there
are any attackers entering this boundary, the defender will attack. Similar with drawing a line, we can
calculate the relative position according to the x and y coordinates of the attacker and the defender. But
here we plan to use special effect of small circle instead of the line. The defender will follow the first
attacker coming into its attack range until the attacker gets out of the boundary or dies. Then the tower
will turn to attack the second one. This behavior can be implemented by numbering every attacker in the
range from 1 to n, and once the first attacker goes far away or dies, every number decrease by 1, and
the tower always attacks the number 1 attacker. Different defenders have different attack methods, such
as decceleration, explosion, ordinary attack.

The other behavior is upgrading. Every tower can be upgraded to achieve stronger power and larger
attack range.

5. Milestones:

Milestone 1 : (Apr 1)
Design and display the structure of game map on the screen: pixel positions and graphic design.
Design different models in the game: different university guards and attackers.

Milestone 2: (Apr 15)

Work on and implement the character behavior with mouse and hardware configuration.
Build the sound effect, the bonus and upgrading system.

Achieve code and build the basic level of game.

Milestone 3: (Apr 29)

Achieve changing and building different levels.
Finish coding software and hardware configuration.
Testing and debugging the game.

