Rhythm
Proposal

John Sizemore jcs2213
Cristopher Stauffer cms2231
Lauren Stephanian Ims2221

Yuankai Huo yh2532

Overview:

The Rhythm language provides a programmatic way to easily compose music from solos to
elaborate symphonies through a novel programming language. By modeling a musical score
as a programming language, elements such as tempo, timing, notes, chords, and tracks can
be used to programmatically create, edit, and play musical compositions.

Purpose:

By providing an intuitive music composition programming language, students and
professionals will be able to easily create compositions ranging from simple looping beats to
multi-layered scores. While many music composition packages currently rely on visual or
audio cues to author music, one of our goals is to explore a purely language based approach
to music composition. Rhythm’s marriage of music and programming endeavors to pull the
curtain back on what some other fancy visual editors try to offer and instead provide a simple
programming model. Many modern music composition programs come with steep learning
curves that can discourage or alienate new users; Rhythm attempts to emphasize
accessibility through simplicity to appeal to programmers without strong musical foundations
while still having something to offer for the seasoned musician well versed in music theory.
Additionally, Rhythm could be extended beyond the basic building blocks for creating “hand
written” music by provided methods for procedurally generated content using numerous
music generation algorithms.

Features:

- Primitive definition for notes, chords, measures and tracks
- Primitive implicit attribute definitions for tempo, time signature, and duration
- Primitive composition allowing:
- Measures to be constructed out of notes and chords
- Tracks to be composed of measures
- Songs to be composed of tracks
- Track and measure control techniques such as loops
- Extensibility to support procedurally generated measures and tracks
- Ability to output results that are playable

Syntax:

Primitives:
Type Description
note A simple note played by an instrument. Can
be initialized by a number or by direct
description.
Examples:
note middleC = C4;
note middleC = 261.62;
chord A set of notes associated with one another.

Can be initialized by direct description or a
sum of directly described notes and/or
numbers.

Examples:

chord aMinor = Am;

chord aMinor = A4 | C4 | E4;

chord aMinor = A4 | 261.62 | E4;

measure(time signature, tempo)

A structure describing a sequence of notes
and chords for one measure. Can be used
as a standalone structure for building or
playing songs, or maybe be combined with
the “track” primitive (see below)
Example:
measure(4.4, 80) measureA {

note middleC = C4;

this.B3 = middleC.q;

}

track(measures, time signature, tempo)

Sequence of notes and chords. Must be
specified in terms of length, tempo, time
signature, and the notes/chords within.
Similar to a structure in C. All musical
space assumed to be empty until the
notes/chords specify otherwise; can be
thought of as a blank “canvas” ready to be
filled with the “paint”.
Examples:
track(10, 4.4, 80) trackA {

chord aMinor = A4 | C4 | E4;

this.M3 = measureA,

this.M2.B1 = aMinor.w;

Basic Syntax:

Operator Description

+ Increases a half step from a note/chord.

- Subtracts a half step from a note/chord.

++ Shorthand for increasing by one half step.

-- Shorthand for decreasing by one half step.

* Multiplies a frequency in a note; multiplies
frequency in all notes within a chord.

/ Divides a frequency in a note; divides
frequency in all notes within a chord.

= Variable assignment.

Concatenate notes to chords. Concatenate
measures/tracks to be played
simultaneously.

! Remove notes from chords. Remove
measures/tracks from a measure/track.

{} Indicates the beginning/end of a function,
measure, or track

Used to reference parts of a measure or
track. Measures can reference beats; tracks
can reference beats and measures. Also
references the duration of notes/chords.

O Used to denote priority within compound
statements.

; End of a statement.

Keywords:

Keyword Description

note “note” primitive

chord “chord” primitive

measure “measure” primitive

track “track” primitive

this used inside of a measure or track definition;
refers to the current track/measure begin
modified. Used to denote positions of
notes/chords within a measure or track
definition.

Standard Library Functions:

Function Description

loop(begin, end, track/measure) Loops a measure or a track.

song() The entry point of all Rhythm programs.
Similar to “main” in C.

upOctave(number, Increases the octave of all notes within the

note/chord/measure/track) argument by the number of specified
octaves.

downOctave(number, Decreases the octave of all notes within the

note/chord/measure/track) argument by the number of specified
octaves.

toTimeSig(measure/track,newTimeSig) Modify time signature of a measure/track.

toTempo(measure/track,newTempo) Modify tempo of a measure/track.

Example Code:

/* note definition*/

note middleC = C4;

note eFlat = middleC + 3;
note F = eFlat++;

note c_five = middleC*2;

/* chord definition*/
chord aMinor = A4 | C4 | E4;
chord aMajor = (aMinor ! C4) | Cs4

[* struct definition*/
measure(4.4,80) measureA = {
this.B3 = eFlat.q;

}

/* track definition*/

track(10, 4.4, 80) trackA = {
this.M1 = measureA,;
this.M2.B1 = middleC.w;

measure(4.4, 80) measureB = {

/I assignment

/I increase C by three half steps to become E flat
/I increase eFlat by a half step to become an F

/I increase middle C by an octave

/I concatenation
/I deletion

/I Measure and note referencing.
/I The third beat of the measure is an E flat quarter note.

this.B2 = F.h;
}
this.M3 = measureA | measureB;
}
/* example of song function, similar to “main”in C */
song()
{
/* define Chord, Note, Measure ... */
note x;
note vy,
chord cho 1;
chord cho 2;
measure(4.4, 120) measureA;
measure(4.4, 110) measureB;

track(4.4, 120) track_A;
track(4.4, 120) track_B;
track(4.4, 120) track_C;
track(4.4, 120) track_D;
track(4.4, 120) track_C;
track(4.4, 120) track_C;

/* note initialization */

X =A3;
y =C1;
Z=X+2

k=y-1,

/* add two half steps from note x */
/* reduce one half step from note y */

/* chord initialization */
cho 1=A4|C4|E4|AS, /* Concatenate notes to chord*/
cho 2=cho 1!A3; /* Remove A3 from chord*/

/* measure initialization */
measureA = {
this.B1 = cho_1.q;
this.B3 = cho_2.q;
}

measureB = {
this.B1 = cho_2.w;

}

/* track initialization */
track_A = {
this.M1 = measureA | measureB;

}

/I function play: play two music measures
play(track_A);

/I function loop: repeat 100 times of the track_A
track_B = loop(1, 100, track_A);
play(track_B);

/I function upOctave: Increases the octave
track_C = upOctave(l, track_A);
play(track_C);

/I function upOctave: Decreases the octave
track_D = downOctave(l, track_A);
play(track_D);

/I Modify time signature
track_E = toTimeSig(track_A, 8.8);
play(track_E);

/I Modify tempo
track_F = toTempo(track_A, 200);
play(track_F);

