COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

Contents

w

1 Introduction

2 Lexical Conventions
2.1 Line Terminators e e e e
2.2 Comments e
2.3 Whitespace
2.4 Identifiers L
2.5 Data Types o e
2.5.1 Atomic Data Types
2.5.2 Compound Data Types
2.6 Constants e
2.6.1 NumericInt e
2.6.2 Numeric Floats
2.6.3 String Literals
2.6.4 Booleans
2.6.5 Listso
2.6.6 Hashmaps
2.7 Keywords L
2.8 Operatorso
2.8.1 Mathematical
2.8.2 Boolean
2.8.3 Logical
2.9 Separators e e
2.10 Scope Rules
2.11 Selectors
2.11.1 Rootlevel e
2.11.2 Any position
2.11.3 Chaining e
2114 Arrayso
2.11.5 Parents e e
2.11.6 Children
2.11.7 Specific Depths
2.11.8 Restrictions e e
2.12 Function Definitions

ENEEN BEN e e i oo o> B er RN G) BG W) B W) B G) SEG) S G2 SW) ST ST ST O O U GO G GUI VY

3 Syntax
3.1 EXpressions e e
3.1.1 Constant
3.1.2 Variable
3.1.3 (expression)
3.1.4 logical-expressiono o
3.1.5 selector-expression e e
3.1.6 compound|[selector-expression]o
3.1.7 identifier(expression-list-opt)o oL
3.1.8 expression * expressiono ..
3.1.9 expression / expression

© 00 GO 0 00 CO 0 00 3 I

COMS4115 JL Reference Manual

Sam Shelley, Yongqgiang Tan, Rob Wallace

3.1.10 expression + expression . .
3.1.11 expression - expression . . .
3.1.12 Ivalue
3.2 Statements
3.2.1 Expression Statement . . .
3.2.2 Compound Statement . . .
3.2.3 Conditional Statement . . .
3.2.4 For Statement
3.2.5 Return Statement
3.2.6 Break Statement
3.2.7 Continue Statement

4 Examples
4.1 Convert an array to a keyed map .
4.2 Combine differently structured json

O © © © © ©

10
10
10
10
10

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

1 Introduction

JSON is a standard used to primarily transmit structured data between a server and a web
application in a human-readable format. JSON parsers have been built for nearly every
language and allow the data to be translated to a data structure. The data format has
become incredibly popular and is used by many of the world’s most popular websites for
access to their data, both externally and internally. Unfortunately though, there does not
exist a language specifically focused on quickly accessing and manipulating structured JSON
objects. Many other languages require creating complex class definitions, or abstractions to
facilitate JSON use.

As JSON has become the predominant format for transmitting data structures and arrays on
many major APIs, the usefulness of a simple domain specific language drove the development
of this project. A common workflow for API data interaction involves a series of steps and
procedures sometimes spanning several scripting languages. As a first step, there is an initial
call to the API in which JSON formatted objects are returned. Then the JSON objects string
format is parsed into several objects. Finally, various manipulations and aggregations are
performed depending on the task at hand.

JL (JSON Language) facilitates programming at each of the above steps, with particular
emphasis on enabling navigation and item specification within a JSON objects structure.
While maintaining the original JSON objects hierarchy, the language allows the hashmap
structure inherit in JSON objects to be easily accessed and manipulated through simple
statements or functions.

2 Lexical Conventions

2.1 Line Terminators

@,

Expressions are terminated with a semi-colon,*;

2.2 Comments

Comments begin with the characters /* and end with the characters */ and may span
multiple lines. Comments do not nest inside one another.

2.3 Whitespace

Spaces, tabs, line terminators, and comments are all considered whitespace, and are ignored,
except for tokenization.

2.4 Identifiers

An identifier is defined as sequence of letter and numbers of any length, starting with a
letter.

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

2.5 Data Types
Data types can either be atomic or compound. Types are dynamically assigned during

runtime, but combinations between types will be cast automatically, and throw a casting
error if impermissible.

2.5.1 Atomic Data Types
The atomic data types are:

int, boolean, float, string
2.5.2 Compound Data Types

The compound data types are:

list, hashmap

2.6 Constants
2.6.1 Numeric Int

A numeric int constant is defined as one or more digits. It can be optionally preceded by a
negative sign to delineate a negative integer.

2.6.2 Numeric Floats

A numeric float constant is defined as one or more digits, followed by a decimal point, followed
by one or more digits.

2.6.3 String Literals

A string literal constant is defined as anything inside of a pair of double quotation marks.

2.6.4 Booleans

Booleans are delineated by either a true or false token.

2.6.5 Lists

Lists are styled after JSON lists and can be constructed using: [valuel,value2, ...]. Values
can be any of the built in data types.

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

2.6.6 Hashmaps
Hashmaps are styled after JSON object syntax and can be constructed using: {keyl:valuel,

key2:value2,...}. Keys types are restricted to strings or ints. Values can be any of the built
in data types.

2.7 Keywords

The following identifiers are reserved as keywords, and may not be used:

as break continue do
else elseif for fun
gets if puts return
true false to then

2.8 Operators
2.8.1 Mathematical
The following mathematical operators are allowed:

+7) *7 /
2.8.2 Boolean
The following boolean operators are allowed:

>, < >=, <=, ==, |
2.8.3 Logical
The following logical operators are allowed:
&&, ||
2.9 Separators
The following characters are separators:
{10,

2.10 Scope Rules

A variable is defined when it is first used, and its lifetime ends out of the block in which it
is defined.

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

2.11 Selectors
JL uses selector syntax inspired by XPath to permit quick access to to the value associ-

ated with a given key in objects or arrays. Selectors are delineated using | | at the end of
objects/lists.

2.11.1 Root level
The simplest selector is identified by object[:key]. This selector is an alias of object[:keyl]

which will look only in the root level of the the object return the value associated with the
provided key.

2.11.2 Any position

Using a double colon object[::key| descends to the bottom of an object finding all values with
the listed identifier, returning a list of matching values.

2.11.3 Chaining

Selectors can be chained together like object[:keyl:key2]. This example finds values associ-
ated with key2 in an object that is associated with keyl.

2.11.4 Arrays

Arrays are treated as objects keyed by positive monotonically increasing integers and are
accessed in the same way as objects: array[:int]. Arrays can also be chained if they are
nested, array[:int:int]. They can also be accessed when chaining selectors with objects,
object[:key:int].

2.11.5 Parents
If the value returned by a key is an object or a list, its containing compound constant

is returned. Select parents by including < at the end of the selector like object[:key >|
(otherwise nothing is returned)

2.11.6 Children

If the value returned by a key is an object or a list, the values of its children are returned.
Select children by including > at the end of the selector like object[:key >]

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

2.11.7 Specific Depths
Specific depth targets can be chosen using object|:key{depth_start/depth_endyy}]. In this

case, the selector will return the first value associated with key. “::” can be used to return
all matching values.

2.11.8 Restrictions

Restrictions to selectors are listed within the selector braces and delineated by commas.
object|:key, restriction, ...]. Whenever a selector finds a matching key in the object or array,
it will execute each of the provided restrictions and only include the discovered value if all of
the restrictions evaluate to true. Restrictions can therefore be any valid boolean expression.

Restrictions are executed in the scope of the discovered key. Therefore, selectors can be used
in restrictions.

object[::key,:key2== “Fo00”] selects keys matching key, so long as key?2 is a sibling that has
the value “Foo”.

2.12 Function Definitions

Function are defined as:

fun identifier (parameter-list) statement
where

parameter-list :

€
| identifier
| identi fier, parameter-list

3 Syntax

3.1 Expressions

The following describes the expressions, in decreasing order of priority.

3.1.1 Constant

An int, boolean, float or a string constant is an expression. The value of the expressions is
the constant.

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

3.1.2 Variable

A variable is an expression. The value of the expression is the value of the variable.

Variable — expression

3.1.3 (expression)

An expression enclosed in parentheses is an expression. Parentheses can be used to indicate
precedence.

3.1.4 logical-expression
A logical expression is one or more boolean expression concatenated by && (AND) or ||(OR).

A boolean expression is of the form expression OP expression, where OP can be >, <, >=,
<=, ==, or of the form ! expression.

BooleanExpression — expression LogicalOp expression
3.1.5 selector-expression

The selector expression can be applied to hashmaps or lists to access elements within those
items.

Selector Expression — ((: | ::)keyword|int) + (< | >)?(, Boolean Expression)x
3.1.6 compound selector-expression|

The compound must be a hashmap or list, and the selector-expression must be a valid selector
expression. An error will be thrown if the enclosed expression is not valid.

3.1.7 identifier(expression-list-opt)
The identifier must be the name of a function. A functional call is a primary expression

followed by parentheses containing a possibly empty, comma-separated list of expressions
which constitute the actual arguments to the function.

3.1.8 expression * expression

The * indicates multiplication. Both expression must be of type float. The result has type
float.

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

3.1.9 expression / expression

The / indicates division. Both expression must be of type float. The result has type
float.

3.1.10 expression + expression

The + indicates addition. Both expression must be of type float. The result has type
float.

3.1.11 expression - expression

The - indicates subtraction. Both expression must be of type float. The result has type
float.

3.1.12 lvalue

An lvalue is a variable or expression[:expression] where the first expression is a list and the
second expression is of type float, or expression[:key| where expression is a hashmap.

lvalue — Variable | expression[Selector Expression)

3.2 Statements

3.2.1 Expression Statement

The most simple statement is created by adding a semicolon to the end of an expression.
statement — expression; |{statement-list}

Usually expression statements are assignments or function calls.

3.2.2 Compound Statement

Several statements can be used as a compound statement where one is expected. A compound
statement takes the form: statement-list

where

statement-list:

statement
| statement statement-list

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

3.2.3 Conditional Statement

The two forms of conditional statements are:
if (expression) then statement
if (expression) then statement else statement

The else ambiguity is resolved by connecting an else with the last encountered else less
if.

3.2.4 For Statement

The for statement has the form:

for expressionl to expression2 do statement

3.2.5 Return Statement

A function returns to its caller by means of the return statement, which has the form:
return expression;

A function may have multiple return statements. They do not need to return the same
type.

3.2.6 Break Statement

The statement:
break;

terminates the current loop; control passes to the statement following the terminated state-
ment.

3.2.7 Continue Statement

The statement:
continue;

add 1 to the expressionl and test if it is less than expression2, and if it is, run the body of
the loop.

10

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

4 Examples

4.1 Convert an array to a keyed map

This is a function which takes a json object consisting of a list of objects containing name
keys, and creates a new object which makes the names keys to access the objects. It assumes
that names are unique.

fun makeNameKey(jsonObject) {
objectsWithName = jsonObject [::name<];
result = {};
for i=1 to objectsWithName.length () do {
result = result # {objectsWithName [:i:name]: objectsWithName };
}

return result;

}

input
[
{
name: "John",
from: "New York"
},
{

name :"Bob",
from:"California"

}
]
output
{
"John":{
name: "John",
from: "New York"
},
"Sue": {
name :"Bob",
from:"California"
}
}

4.2 Combine differently structured json

In this example, one data set is stored by seller, and another is stored by product. Our
language allows the quick comparison of the two concepts with the following program, which

11

COMS4115 JL Reference Manual Sam Shelley, Yongqgiang Tan, Rob Wallace

returns a list of the pricing data.

fun comparePricingData () {
pricingDatal = gets(dataSetl)[:: price];
pricingData2 = gets(dataSet2)][:: price, :name==‘Gizmo”|;
return pricingDatal @ pricingData 2;

}

dataSet1
L
{
"product_id": 1232131,
"product_name": "Gizmo",
"sellers": [
{
"name": "Discount Shop",
"price": 1.5
},
{
"name": "Luxury Good",
"price": 2.75
}
]
}
]
dataSet2
L
{"seller_id": 4324,
"name": "Tech Deals",
"products": [
{
"name": "Gizmo",
"price": 1.4
+,
{
"name": "Widget",
"price": 1.75
b
]
3
]
output

[1.5, 2.75, 1.4]

12

