Name: Emad Barsoum COMS W4115
UNI: eb2871 Project Proposal

SIP: Simple Image Processing Language

Vision

Providing a high-level domain-specific language that abstract the complexity of implementing image-
processing algorithms, facilitating writing image based techniques quickly without much plumbing and
making image processing a first class citizen to the language. SIP has some inspiration from functional
programming concept and GPU shading language, however, it is tailored toward image operations.

Motivation

Most of my work involve image processing and computer vision algorithms; and although, there are a lot
of tools, libraries and programming languages that assist in writing image algorithms, most of them
require writing a lot of code in order to implement a simple image task. There are a lot of domain-
specific languages (Matlab, R, SQL, Prolog...etc), commercial and non-commercial, yet there are very few
for image processing even with the increasing need for such language.

Most of the efforts in writing domain-specific language for image processing are geared toward
performance and GPU parallelism, and not easy of use. | am aware of two efforts for such language, one
from MIT and another one from Microsoft, which are Halide' and Neon? respectively. While both Halide®
and Neon? are easier than using C++ or even Matlab for image processing, they still require more code
than the proposed SIP language.

PPOpOSEd Language

Most image processing algorithm boil down to a convolution between a source image and a certain
kernel, such kernel can be a constant matrix or a complex function. Image is a 2D array with height and
width, each element in the image is called pixel that differ in size and meaning depend on the format of
the image.

The primarily goal of SIP, is to be able to perform most image operation without the need to iterate on
each pixel. In order to achieve such goal, the design of SIP was influenced by the concepts and
techniques used in functional languages.

Reserved Keywords

For SIP, we will have the below reserved keywords that cover basic image related types, most of those
types can be swizzle, and accessed element by element. Basically we will support some of the pixel
operation found in pixel or fragment GPU shader.

histogram 1 dimensional histogram, the number of pixels
with the same color.

image Represent an image type, image can have from




one to any number of named channels. Those
named channels will be accessed using SIP syntax
shown in next section.

fun A function that takes a pixel fragment and return a
pixel.

The above is not a comprehensive list, we will support most basic types found in other languages such as
bool, float, int...etc; in addition to some imperative construct such as loop. The above list is for image
specific type.

Image Operation
Let’s look at some basic image operations that show how easy such operations can be done in SIP.

/* Comments in SIP are similar to C\C++*/

image hsvimage; // An HSV image format

//

// Convert from HSV to RGB, using the ‘in’ operator. Red, green, blue, hue, saturation, value are

// named channel that SIP library will treat them as RGB and HSV color space, however, there is no
// restriction on them. Developers can freely add or remove named channels or put whatever value
// in the already predefined names.

//

image rgblmage = hsvimage in (red, green, blue);

/]

// Manually convert each pixel from rgb to a single channel named ‘', and store the result in

// custimage. “rgblmage in rgb” means map the input image to RGB color space, which will be nop
// if rgblmage is already in RGB color space, “rgb for (I:2*r + 4*g + b)” means that each mapped

// pixel in RGB space is provided as argument to the ‘I’ expression and the result for such expression
// will be stored in “custimage”.

/]

image custlmage = rgblmage in (red, green, blue) for {l:2*red + 4*green + blue};

// 2 channels image “Ix”, comma in the expression mean a new expression for a new channel.
// In the below, we have one expression for channel | and another for channel x.

/l

image twoChannels = rgblmage in (red, green, blue) for {l:2*red + 4*green + blue,
x:2.5*%red + 3*green + 0.5*blue};

/]
// Threshold, SIP will support ternary operators.

//
image threshold = rgblmage in (red, green, blue) for {I: ((red + green + blue) / 3) > 128 ? 255 : 0};

//




// Crop, just specify the range for Height and Width in pixels.

/]
image croppedimage = rgblmage[3..57, 34..77];

Let’s move on to a more advance image processing code, histogram is one of the most computed
features for most image algorithms. It is the number of pixels with the same color. In SIP, histogram is a
primitive, as shown below:

histogram hist = hsvimage in (hue); // hist now has the histogram of
// channel h.

Now let’s talk about convolution; convolution, in image processing, is simply for each pixel in the image
we look at its value and its neighbor values, and from those values we perform some operations and
return the final result.

In SIP, convolution will be presented by the operator ‘A’, as shown below:

image blurredimage = rgblmage » blurredKernel;

Operator ‘M takes image in one side and an image with a compile time size on the other side. You can’t
convolve two images read from disk together.

We will have a list of predefined common image kernels; however, we will allow custom kernel
implementation. Custom kernel fall into two categories:

1. Most flexible, the kernel is simply a function that takes 2D arrays of pixels and returns a color.
2. Constant, the kernel is simply 1D array or a 2D matrix —The reason of the 1D array is for kernel
with separable components (i.e. Gaussian...etc).

//

// kernel function is the most flexible option, it takes a pixel as an input and return a pixel as a result.

// The channels in ‘p’ depend on the image in the convolution.

// What the below kernel does, it takes a pixel ‘p’ with the assumption that it has red, green and blue

// named channel (if any channel is missing or all of them, we will put zero in the missing one), then

// return an image with the same red channel, the same green channel, and a zero blue channel.

// “->(red, green, blue)” means that this kernel return the name channels provided in the parenthesis

// in the below case red, green and blue.

/]

fun blur(p) -> (red, green, blue)

{
red = p[0,0].red;
green = p[0,0].green;
blue = 0;

//

// image kernel that can be applied to all channels.




//
image blur=[[111][111][111]];

//

// Image kernel that can be applied for each of the named channel.

//
image blur=r:[[111][2111][21 1 1]], &:[[2 2 1][2 2 2][1 2 1]], b:[[1 1 1][1 1 1][1 1 1]];

For more advance functionality, developers still have the option to go imperative.

Reading and writing image file
To read and write an image from a file, we will borrow C++ stream syntax “<<” for reading and “>>” for
writing.

//
// Reading test.jpg.

//

image readlmage << “c:\Photos\test.jpg”

//
// Writing to result.jpg.

//

resultimage >> ”c:\Photos\result.jpg”

Error handling

As in most languages, there are two types of errors. Compile time error, in which we favor and we will
try to detect most compile time error that we can. Runtime error that can happens for conversion
failure, non-existing channel, and for a lot of other reasons, we will throw an exception in this case.

C inspiration
We will borrow most imperative syntax from C language, due to its familiarity. We will support if\else
statement, while statement, for loop and function.

Runtime

We will compile SIP to a GPU language, some of the options that we have are: CUDA, OpenCL, OpenGL
fragment, Direct3D Compute, or AMP. As the project progress, we will decide which one of the above is
more suitable.

References

1. http://halide-lang.org/
2. http://research.microsoft.com/apps/pubs/default.aspx?id=144767




