Name: Shant Stepanian

Uni: sps2141

Semester: Summer 2013 CVN

Course: COMS W4115

Assignment: Language Project Proposal

BoredGame Language Project Proposal

Purpose

BoredGame is a language designed to help people create their own games. As the tagline goes,
“if you are bored from your existing board games, create a new one!”

BoredGame will specialize in specifying games based on a two-dimensional board. Among the
features of the language that will help in this goal:

e Defining symbols for players and pieces

e Reading input and printing output

e Flexible input parsing to support various input formats

e Quick setup and access for the 2d board data

Note to professor on features:

There are a few languages features that ideally | would add, but as this is the first shot at a
language, and | want to get something working above all, | wanted to start simple for now

e Supporting maps easily (e.g. with easy declaration and usage, similar to Python) would
be nice, including support for maps of maps
o Butas | thought about it, it would prove difficult with the way Python does it with
dynamic typing; I'd like to start with static typing
o Though we can do this w/ static typing via Java-like generics (as I've tried w/ the
“‘board” type), my board type is restricted to enums as its type, which | feel would
be easier to support to start with than purely generic generics

I’'m also still debating the following:
e In my switch statement for strings/regexps, | am considering if | should have regexps not
require quotes, as to not make it equivalent to strings, like Java has it
o Making it a string like Java is what I'm familiar with (and other Java folks could be
familiar with), but having this as a regexp may be clearer for both the compiler

and the user (and less need and worries on expressing regular expressions in
strings)

o | am leaning towards having regexps be separate from strings, but I’'m going to
work through this as | experiment with the code

Language Grammar Overview:

Types:
e Primitives
o int:=[0-9]+
o String := any character, no special characters or escapes
o boolean := true false
e Ability to define new enum types using the enum keyword. This is here to facilitate the
definition of pieces and players for the game
e board<Type> type that represents the 2d array of the board
o Methods/operators available on board:
m myboard.rowlength := returns the # of rows
m myboard.collength := returns the # of columns
m myboard[row,col] := read/write accessor. These are 1-indexed as most
board coordinate systems are not 0-indexed
func keyword to define functions
Identifiers := [a-zA-Z]+ (i.e. only alphanumerics)

Keywords and Basic Language Constructs:

e Reserved keywords: int, string, boolean, enum, board, if, else, switch, case, func,
printString, readString

semi-colon to split statements

Declarations are separate from assignments

Blocks (i.e. for if/while/func) will be demarcated by braces {}

Entry point is the function “main”

No function overloading

Control constructs:
o if <stmt> else <stmt>
e for <id> in <array> { (<stmt>;)*}
e switch <id> (grp1, grp2, ...) { case “string” {} ... }
o We will allow for switches on strings, with regular expressions supported and
optionally being able to extract matched groups into variables. This is to facilitate
reading groups

Built-in functions:
e printString(String), printMove(Move), ...
o i.e. a print method for each type
e readString(String), readMove(Move), ...
o i.e. aread method for each type

Standard Operators:
e Int operators (returns Int): + - */ (no floating points - all will be rounded)
e Int comparison operators (returns Boolean): < > <= >= ===
e Boolean operators (returns Boolean): == = && ||

Coding Examples:

Coding Example #1 - Checkers:

enum PieceType {c C };
enum Player { p1 p2 };
enum Piece {x X0 O _};

func int main() {
-- board runtime check - must be x by y exactly
board<Piece> myboard,;
myboard = [{
X_X_x_x_\

Player turn;

turn = p1;
string move;

while (true) {
Player winner;
winner = gameover(board, turn);
if (winner == null) {
move = readString();

} else {
/l game over

}
}

/*

We have this pattern-matching switch statement to allow for various input moves, e.g. for chess
0-0-0 or 0-0 for castling notation, which is different from the other move notations that are of the

form ([a-h])([0-91])-([a-h])([0-91])

*/
func boolean eval(string input, board<Piece> myboard, Player player) {
int srcrow;
int srccol;
int tgtrow;
int tgtcol,

switch input {

case “([a-h])([0-91])-([a-h])([0-91])” (string s_srcrow, string s_srccol, string

s_tgtrow, string s_tgtcol) {
srcrow = stringTolnt(s_srcrow);
srccol = stringTolnt(s_srccol);
tgtrow = stringTolnt(s_tgtrow);
tgtcol = stringTolnt(s_tgtcol);

Piece curpiece;
curpiece = myboard[srcrow,srccol];
if (player !'= getPiecePlayer(curpiece)) {

printString(“Invalid move - player must own the piece”);

return false;

}

Piece targetpiece;
targetpiece = myboard[tgtrow,tgtcol];
if (getPiecePlayer(targetpiece) = _) {

printString(“Invalid move - target must be occupied”);
return false;

}

/Il for now, will gloss over the capture steps to show move execution
myboard[srcrow, srccol] = _;
myboard[tgtrow, tgtcol] = curpiece;
return true;
}
case default {
printString(“Invalid move input format”);
return false;

/[Would have preferred a more succinct way to represent this in the language,
/I e.g. some kind of mapping syntax (x => X), but de-scoping this for now
func Player getPiecePlayer(Piece piece) {
if (piece == x || piece == X) {
return p1;
} else if (piece == x || piece == X) {
return p2;
} else {
return null;

}
}

/[Would have preferred a more succinct way to represent this in the language,
/I e.g. some kind of mapping syntax (x => X), but de-scoping this for now
func PieceType getPieceType(Piece piece) {
if (piece == x || piece == 0) {
return c;
} else if (piece == X || piece == O) {
return C;
} else {
return null;

}

func int ind_to_number(input)
switch (input) {
case “a”{
return O;
}
case “b” {
return 1;
}

/! so on and so forth
case default {

return -1
}
}
func Player gameover(board, player) {

map counts;

inti;

int j;

int p1score;

int p2score;

p1score = 0;

p2score = 0;

for (i = 1; i <= board.rowlength; i++) {
for (j = 1; i <= board.collength; i++) {
piece = board][i,j];
if (getPiecePlayer(piece) == p1) {
p1score = p1score + 1;
} else if (getPiecePlayer(piece) == p2) {
p2score = p2score + 2;

}
}

if (p1score == 0) {
return p1;

} else if (p2score == 0) {
return p2;;

}else {
return null;

}

