File and Directory
Manipulation Language (FDL)

Rupayan Basu rb3034@columbia.edu
Pranav Bhalla pb2538@columbia.edu
Cara Borenstein ¢jb2182@columbia.edu
Daniel Garzon dg2796@columbia.edu
Daniel Newman din2111@columbia.edu

December 20, 2013

Contents

© 0N ;A

Introduction

Language Tutorial

Language Manual

3.1 Data Types

3.2 Lexical Conventions
3.3.1 Identifier
3.3.2 Comments
3.3.3 End of Statement
3.3.4 Keywords
3.3.5 Constants

3.4 Functions
3.4.1 Function Definitions
3.4.2 Built-in Functions

3.5 Expressions and Operators
3.5.1 Primary Expressions
3.5.2 Multiplicative Operators
3.5.3 Additive Operators
3.5.4 Relational and Equality Operators
3.5.5 Logical Operators
3.5.6 Assignment Operators
3.5.7 Move <<-
3.5.8 Copy <-
3.5.9 Comma Operator

3.6 Declarations

3.7 Statements

3.8 Scoping and Indentation

3.9 References

Project Plan

Architectural Design

Test Plan

Lessons Learned

Individual Work Breakdown

Appendix

Introduction

File and Directory Manipulation Language (FDL, pronounced “fiddle”)
provides a simple and intuitive syntax for managing file systems. By providing the
user with new data types, and an extensive list of mathematical and logical
operators, what used to be tedious and time consuming to manage and program is
now easy and fast. Users can write programs that organize their file systems by
conveniently copying/moving files and directories to different locations through the
use of special operators, and conveniently accessing specific attributes of the files.
Users can loop through subdirectories and files contained within a chosen
directory, with a template that can be utilized to browse the file/directory tree
stemming from that directory. Files/Directories can be organized by the built-in
attributes such as last modified date and names. The built-in list data structure
allows users to conveniently store and access groups of files/directories.

Furthermore, by implementing the “path” type to hold a valid file or
directory path, FDL simplifies how files are manipulated, giving users the ability to
define a path with a string, then use predefined operators on the files to move or
copy them within the filesystem, leaving the code clean and succinct. One is able to
reorganize a file system in a way that is simple to code, and simple for others
interpret.

2. Language Tutorial

Structure;

An FDL program has the following structure:
a. Declaration/Initialization of global variables.
b. Definition of functions
i. Each program must contain a ‘main’ function, which will be executed from
the command line when the program is run
ii. Within each function, variables declarations/initializations come first,
followed by statements.
iii. All functions, loops and if blocks are terminated with the keyword ‘end’, and
spacing is left to the user to organize code by preference (such as indenting
blocks or keeping code dense)

Paths in FDL:

Paths are central to FDL. A ‘path’ datatype allows users to create variables using the
relative/absolute paths of files/directories as follows:

path file1

path file2 = ‘./Documents/foo.txt’

To iterate through files in a directory, FDL provides a unique for-loop:
for (filename in dirname)
/* statements */
end

A special operators are provided to copy/move files from one directory to another:
destDir <- file1 /*copies file1 to destDir */
destDir <<- file2 /* moves file2 to destDir */

Every path variable, comes built in with ‘attributes’ which can be used to obtain useful
information about paths:
pathvar.kind : returns O for invalid, 1 for file, 2 for directory
pathvar.name : extracts the name of the file/directory from the path
pathvar.type: return “.” followed by the file extension, like “.ml” for “fdl.ml”

Lists in FDL:

Lists are a useful data structure in FDL. List variables can be declared/initialized as follows:
list 11 =[1,2,3]
list12 =]

Lists can hold elements of different fdl types:
I =[a', 1, file1]

Finally, FDL supports the following list operators:
l.add(a) /* adds a variable a to the list | */
l.remove(b) /* removes an item matching variable b from | */

A special if-in construct helps check if an item exists in a list:
if file1 in list1 then print file1.name

A simple FDL program:
The following program copies a file from one specified location to a destination directory:

def int main()
path src = "./sample_dir/sample_file.pdf"
path dest = "./test"
dest <- src
return O
end

Within the main method, the path variable, ‘src’, is initialized to the file path of a file that
we wish to copy. The file path of the directory into which we wish to copy ‘src’ is stored in
the path variable ‘dest’. The copy operator, ‘<-" is then called, and a copy of the src file will
now exist in both the src location of the file system, as well as in the dest location.

One step further:

If we wish to do more than copy just one file, we can place the copy operation into a loop
that iterates through a full directory, moving all files in the source directory to a target
directory, as follows:

def int main()

path src = "./sample_dir"
path dest = "./test"
path f

for (f in dir)
print "file path "
print f
if (f.kind == 0) then
print f
dest <- f
end
end
return 1
end

In this example src is set to the directory filled with files we wish to move rather
than setting it to one file within the directory, ‘dir'. An enhanced for loop, which acts on all
files in the specified directory, executes the for loop’s definition, with each subsequent file
as the program iterates through the directory. Along the way print statements were
specified, in order to keep track of what is happening in the console as the file system is
manipulated behind the scenes.

In this particular case, we check that the files we are going to copy are of type ‘file’
rather than ‘directory’, before copying them, exhibiting yet another feature of FDL. Specific
file attributes can be accessed by calling them from ‘path’ type variables.

3. FDL Language Reference Manual

3.1 Data Types

3.1.1
3.1.2

3.1.3
3.1.4

3.1.5

int: The set of all integers in the range -2A31 - 1 to +2/31 + 1.
bool: A binary variable having two values, 1 for true and 0 for false. Used in
conditional statements, such as if and while. Can be used to compare paths,
lists, dictionaries and integers.
string: A sequence of characters surrounded by double quotes.
path: String that specifies a valid location of a file or directory in the file
system for which the following attributes are defined.
name: Field that holds the name of the file or directory, at the end of
path
type: Field that holds the extension of the file, valid only in case of
directories.
kind: Field that holds the kind of the path. It will return 1 for file, 2
for directory and 0 if the path is invalid.
list: Alistis an unordered collection of primitives. It can contain zero or
more elements that are indexed by an integer value that gets incremented
every time an element is appended.

3.2 Lexical Conventions

3.2.1

3.2.2

3.2.3

3.24

3.2.5

Identifiers
An identifier is a sequence of lowercase and uppercase letters, digits (0-9)
and underline “_". Each identifier begins with a lowercase letter or
underscore.
Comments
Comments are specified like a block comment in C using the open “/*" and
close “*/” reserved symbols.
End of Statement
A newline “/n" specifies the end of a statement and a tab “\t” specifies the
scope
Keywords
Keywords are special identifiers reserved as part of FDL itself. Here is the list
of keywords recognized by FDL:

path, bool, string, list, 1int, void, if, else, then,

while, for, 1in, true, false, return, def, main, print
Constants
FDL has string constants called paths. They specify the location of a file or
directory in memory. FDL also stores the following escape sequences as
constants:
Newline “\n", Tab “\t”, Double Quotation “\"”

3.3 Functions
3.3.1 Function Definitions

- Afunction definition in FDL begins with the keyword “def”, followed by
the return type, function name and a parenthesized list of input
parameters, with each parameter preceded by the type. The statements
that form the body of the function begin on the next line, indented by a tab.
The “return” keyword is used to return values to the calling statement.

- Every valid FDL program must have a “main” function which is always
executed first. The “main” keyword is reserved.

- All user defined functions must be defined before the main function, at
the top of the program.

- No statements can exist outside function definitions

3.4 Expressions and Operators
3.4.1 Primary Expressions

3.4.1.1 didentifier
An identifier is a primary expression, declared with a type, that can be
assigned a value of that type, to which it refers

3.4.1.2 constant
An integer is a primary expression of type int.

3.4.1.3 bool
A bool is an int, storing the value 0 or the value 1.

3.4.1.4 string
A string is a primary expression composed of ASCII characters.

3.4.1.5 path
A path is a primary expression, in the format of a string. It refers to a
valid path of a file or directory from the current directory of the
program or originating in the home directory of file-system.

3.4.1.6 (expression)
A parenthesized expression is a primary expression whose type and
value are identical to those of the unadorned expression. Parenthesis
are used to indicate precedence, to compute the values inside the
parentheses before handling the rest of the associate expressions
from left to right.

3.4.1.7 def primary-expression (expression-list)
“A function call is a primary expression preceded by the reserved
word “def” and followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual
arguments to the function. The primary expression must be of type
“function returning . . .”, and the result of the function call is of type

1" nn

3.4.1.8 list[index]
The square brackets “[*“]” are used to access list elements, where the
variable before the starting bracket is the list variable and the variable inside
the brackets is the index of the element.

list fileList = []

3.4.2 Multiplicative Operators
3.4.2.1 expression * expression
The binary * operator indicates multiplication.
3.4.2.2 expression / expression
The binary / operator indicates division.

3.4.3 Additive Operators
The additive operators + and - group left to right.
3.4.3.1 expression + expression
The result is the sum of the expressions. If both operands are int, the
result is int. If one of the expressions is a string, the result is a string,
in the form of the second expression concatenated to the end of the
first expression.
3.4.3.2 expression - expression
The result is the difference of the operands. Both operands must be
int and the result is int.
3.4.4 Relational and Equality Operators
The relational operators group left to right, and return the boolean
pertaining to the truth of the expression (1 if true, O if false)
3.44.1 expression < expression
3.4.4.2 expression > expression
3.4.4.3 expression <= expression

3.4.4.4 expression >= expression
3.4.4.5 expression == expression
3.4.4.6 expression != expression

3.4.4.7 expression && expression
The && operator returns 1 if both its operands are non-zero, 0
otherwise.

3.4.4.8 expression || expression
The | | operator returns 1 if either of its operands is nonzero, and 0
otherwise.

3.4.5 Assignment Operators
There are a number of assignment operators, all of which group right to left.
All require an Ivalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place.
3.3.5.1 1lvalue = expression
The value of the expression replaces that of the object referred to by
the Ivalue.

3.4.6 Move and Copy Operators

The <<- and <- operators group left to right, and are used to move or copy
the file/directory of path_scr to the directory path_dest on the left of the
operator
3.3.6.1 path_dest <<- path_src

The file/directory in path_src is moved into the path_dest directory.
3.3.6.2 path_dest <- path_src

The file/directory in path_src is copied into the path_dest directory.

3.4.7 Comma Operator
It is used to separate function arguments,and list arguments.

3.5 Declarations
3.5.1 Variable Declarations
Variables must be declared before they are used in the program, including
the ones that are used as “iterators” in for loops. All variable must be

declared at the start of a function before any other statements are entered. A
variable declaration has the following form:

var_type var_name

The var_type can be int, bool, list, string or path. The
var_name can be any valid identifier which is letter followed by any
number of letter or digits. If a variable is declared, in the following
assignment, value assigned to the variable must have exactly the same type
as declared.

The expression must have exactly the same type as var_type.

path variables are declared like other variables with the path keyword
before the identifier. A string can be assigned to the path variable and
interpreted as a “path” to a directory or file in the file system.

3.5.2 Function Declarations
A function declaration has the following format:

def return_type function_name (<arg_type arg_name>)

We use the keyword def to identify that what follows is either a function
declaration or definition. return_type and arg_name are one of the
predefined types int, bool, list, string or path.

function_name, arg_name and the other arguments can be any valid
identifiers.

3.6 Statements
3.6.1 Statement

A statement is composed of expressions, which can be grouped by
operators. We use newline to separate one statement from the next. There is

a limitation in our language that all declarations of variables must be done at
the start of the function.

string strl
strl = ¢ hello “

The above code snippet has 2 statements that are separated by the newline
character (‘\n’).

3.6.2 If Statement

If statement consists of keywords if, then, end and else. It has the
following two varieties:

if (expression) then
statement
end

if (expression) then
statementl

else
statement2

end

The expression must be of bool. To ensure scope the statements must be
indented inside the if using the tab. In the first case, if the expression is
evaluated to true, then statement is executed. Otherwise statements after
the if statement is executed. In the second case, if the expression is

evaluated to true, then statement1 is executed, otherwise statement2 is
executed.

3.6.3 While Statement
While statements consists of keyword wh1ile and it allows a statement to be
executed for any number of times, until the expression evaluates to false.

while (i < 10)
i=4d+1
print i
end

The expression must be of type bool. To ensure scope the statements must
be indented inside the while using tab. The expression is evaluated before
the execution of the statement and statement will be executed until the
expression is evaluated to false.

3.6.4 For In Statement
for loops are used to iterate through a list of subpaths in directory, we
interpret the variable given as an associative array and we iterate through
their sub-paths one at a time. for, 1inand end are the keywords that are
used to define the for loop.

for (file 1in path_variable)
statement
end

the statement that needs be run over repeatedly needs to be indented inside
the for statement.

3.6.4 Return Statement
Return statement consists of keyword return. A function must have a
return statement to return its value to its caller. It can return an expression
that is evaluated to type path, int, bool or string, or it can return
nothing when the function uses void as its return type.

return expression
return

3.7 Scoping and Indentation

Our language is modeled on the python rules for indentation and scope, where
whitespace is used to delimit program blocks. It does away with the requirement of
putting braces(*{ }") around code blocks, but we require some extra symbols to
detect the end of if, for and while expressions which has already been explained
in the previous sections.

Scope of variables is within the code blocks they are declared, similar to the code
block scoping rules in C. Functions are of global scope from the position they are
defined till the end of code. Function calls are possible as long as the target function
has been defined before the current position.

4. Architecture

The FDL compiler reads a program written in FDL and translates it into C code. The
compiler itself is written in O'Caml and consists of the following main components:

1. Preprocessor - reads a program in fdl and adds syntactic details such as braces
and semicolons

2. Scanner - reads the preprocessed fdl program and produces valid tokens

3. Parser - performs the syntactic analysis of the tokens and produces an Abstract
Syntax Tree (AST)

4. AST - contains the definitions for the nodes of the abstract syntax tree

5. Type/Scope checker - recursively traverses AST, performs semantic checks,
produces the Semantic AST

6. Symbol table API - an interface for managing the environments for local/global
variables and function names

7. SAST - similar to the AST, but definitions contain additional semantic details
useful for code generation

8. Code generator - recursively traverses the SAST and builds a string of code in
the destination language C.

The block diagram below describes the overall control flow -

FDL

l

Preprocessor.c

l

scannar.mll

1 tokens

parser.mly [+ ast.mili

ast
LJ

¥

symboltable.ml typechecker.ml| |- sast.mli

sast

L
fdl.mi

:

The entry point of the compiler is in fdl.ml, which handles not only the code generation,
but also handles the control flow between the various components of the compiler, as
shown in the extract below:

1. let input = open_in fname 1in

2 let lexbuf = Lexing.from_channel input in

3 let program = Parser.program Scanner.token lexbuf 1in
4. let program_t = Typecheck.check_program program 1in

5 let listing = string_of_program program_t 1in

6 print_string listing

The ‘program’ in line 3 is the ast produced by the parser. The typechecker reads ‘program’
and produces ‘program_t,, the sast. Finally, the function string_of_program takes
program_t as inputin line 5 and prints out the generated ¢ code in line 6.

The typechecker recursively traverses the abstract syntax tree by invoking the functions

corresponding to each node in the ast. The following diagram provides an overview of the
control flow inside typechecker -

Sast.program l Ast.program

check_program

"
Sastvar_decl list Sastfunc_ded list

Astvar decl list Ast func decl list

check_globals check_functions

i / v
: Ast func_dec " Sastfunc dedl
Sastvar decl - | Astvar decl = -

check_function
i

check_global

Ast.stmt list * Saststmt list
L :

check_stmt_list

v

At each node of the ast, the typecheck performs scope and type checks before returning
the corresponding node of the sast. For example, in order to keep track of the scope, the
typechecker maintains an environment variable of type env as described below:

type env = {

locals: string StringMap.t;
globals: string StringMap.t;
functions: string list StringMap.t;

As the typechecker traverses a node in the ast, it updates the env variable and passes it to
the node in the level below it. Functions initially have env with empty locals, but might
contain globals and other function names. This env is then passed to nodes below
functions, such as var_decl or stmt. The following block diagram describes how this is
achieved:

l 1. env contains only globals and functions

check_function 2. add function name to env.functions

env updated with locals _.+*’ 4. pass updated env to strt nodes

3. add locals to env check_locals

check_stmi_list

!

The symbol table provides the interface for maintaining the env variable. It contains the
following functions:
add_global: makes a global variable visible in the scope of the entire program.
add_function: makes a function name visible in the scope of the entire program.
add_local: adds a local variable to the current scope only.
find_function: used to check if a particular function name is visible in the current
scope.
find_variable: used to check if a particular variable id is visible in the current scope

The code generator (string_of_program inside fdl.ml) performs a similar traversal on the
sast, but this time, it builds the string of ¢ code.

5. Compilation

To execute an fdl program the user needs to run the following script:

$./runfdl.sh path/to/fdl/file.fdl

which will produce an executable C-language file. It does so by running the .fdl file
through the preprocessor, outputting a .fdlp file, then compiling that file into a .c file with

the fdl compiler, and using a shell script to produce the executable. Once the executable is
created, it will be automatically executed by the script.

program.fdl

i

preprocessor

program.fdlp

y
fdl compiler

program.c

clibraries p——® gcc

output

6. Testing

The goal of our testing plan is to cover all basic functionalities we deemed critical to the
FDL language. While our tests cannot catch every bug, we aim to cover as much
functionality as possible. All of our tests are automated with provided scripts.

Phase I:

The first stance of testing occurred at early stages of development. When possible, we
aimed to use Test Driven Development (TDD). This means that as we thought of
functionality we wanted FDL to have, we wrote tests that tested the desired functionality
and then implemented the functionality in FDL.

Phase II:

The second stage of testing occurs later on in the development cycle. While we aim to
catch most errors early on with TDD, in order to ensure our testing plan is robust, we need
to implement some tests later on in the development cycle to make sure no critical
functionalities are left untested. Phase Il of testing is specifically aimed at small
functionalities that are added later on in the development cycle to make larger
functionalities work. While their importance seems secondary to larger functionalities,
they must be treated with the same importance as the original small functionalities that
are tested in Phase I. Phase Il of testing ensures all basic functionalities are working as
expected.

Phase llI:

The final stage of testing occurs at the end of the development cycle. The purpose of this
stage is to ensure that all of our larger programs and more complicated functionalities
work as expected. This requires confirming the robustness of our regression tests and
making sure that all of our small tests work well together, not just independently.

7. Project Plan

We came up with many ideas for languages that we wanted to implement, that tried to
either make an existing task easier or languages for many problems for which languages
didn't exist. We finally decided on implementing a file manipulation language, since we felt
from all our ideas it would be the most useful and challenging one. We had a lot of ideas
of what are language could do and the minimum it should do. And had discussions to
prioritize these ideas, so that the most important features got implemented first.

7.1 Planning

We discussed strategies on how to go about building the language and the compiler and
one of first things we decided was that we wanted to build the language iteratively i.e.
starting from a small program, that prints “hello world”, we build on all the stages of the
compiler as we keep adding functionalities. This minimizes error and we can keep adding
test cases for the functionalities as we keep implementing them. We also decided on C to
be our target language since we found it to be flexible enough for our varied needs,
especially the use of pointers.

After we had divided up the initial work, we met regularly once a week to discuss our
progress, solve each others problems and then divide up the work for the next week. We
had a list of features we wanted to implement and we could keep track of our progress
based on the number of features we had implemented.

7.2 Specification

After working on the LRM we were clear about the expectations we had from our
language, though we were unsure whether we would be able to implement all of them. We
went to build a basic skeleton of a compiler involving all the stages of scanning, parsing,
the AST, typechecking, the SAST, and then the translation to C code. Post that we divided
up the features into smaller units to implement and worked on them parallely. We kept
updating the LRM when we felt it was necessary to make changes because our assumption
were incorrect, or we found a better way to do things.

7.3 Development

Since we decided on the iterative approach to building a compiler it took us some time
before we had the basic skeleton working. After this period, we were all able to work
parallely, implementing various features simultaneously. Continuous integration through
gitHub insured that our code got merged on a regular basis and we were not building
conflicting code bases. In the latter stages we focused much more on the “typechecker”
since there were a lot of invalid rules and boundary cases to be taken care of as the
grammar for the language grew.

7.4 Testing

Iteratively developing test cases ensured that we could keep adding test cases as soon as
we were done with implementing the feature. And using the test script, we could perform
regression testing post each change and immediately recognize in case our changes broke
anything. We can remember many instances where testing helped us identify missing
cases in our implementation, and in turn let to a robust implementation and strong
regression test suite.

7.5 Programming Style Guide

One of the “cool” aspects of our language is that we use no semicolons or curly braces,
that make the code obtruse to read and grasp easily, since it absolves the program writer
of the responsibility of indenting the code properly. It is much easier to understand code
without these special characters, if it is indented properly. We have tried to follow this
philosophy while writing our compiler as well, though the OCaml language has pretty
good editing and formatting style inbuilt. The scanner, parser, ast, sast are written pretty
much like typical implementations, though we have tried to arrange the scanner in such a
way that it is easier to read, with multiple statements in a single line, and the statements
are together if they belong to the same class in the scanner (various braces{}[](), logical
operators, arithmetic operators, special symbols). The typechecker and the translator
(fdl.ml) are our two largest files and we have tried to add comments wherever possible so
that it is easy to recall and understand the working of the code. The typechecker actually
begins at the bottom of the file, where it start dividing the whole program into smaller
chunks and then moves on to checking the individual parts. And having a separate symbol
table file helps remove a lot of repeated code from the typechecker.

All of our C functions are written in camel casing, and we have ensured none of our
functions are larger that a single screen size, which is a good measure of the level of their
modularity. In general we have tried to write only single statement per line in both the
OCaml code and the Clibrary code.

7.6 Software Development Environment

The fdl compiler was primarily developed for Apple’s Mac OS platform. However, the
compiler was also tested successfully on an Ubuntu system. Following are the details of
the languages used for the various modules:

Module Language/Version
FDL Compiler Ocaml 4.01
Preprocessor C(gccd.2.1)
Helper Libraries C(gcc4.2.1)
Runfdl Shell script

Testall Shell script
Cleanall Shell script

Editor: Sublime Text 2.0.2

Version control: git 1.8.3.4

Repository: github.com

Online Document Collaboration: Google Docs

7.7 Project Timeline

09-09-2013 Team formed and Language idea developed
09-25-2013 Language proposal submitted

10-21-2013 Basic Code skeleton (Scanner, Parser, Translator)
10-28-2013 Language Reference Manual (Hello World done)
11-11-2013 Typechecker and Code generator finished
11-25-2013 Initial Testing Phase Completed

12-02-2013 Compiler fixes done

12-10-2013 Second Testing Phase Completed

12-20-2013 Project Report created and submitted

7.8 Project Log

09-09-2013 Team formed, different ideas discussed
and FDL chosen

09-18-2013 Basic scanner and parser made

09-25-2013 Language whitepaper submitted, test cases
decided

10-21-2013 Basic Code skeleton (Scanner, Parser,
Translator)

10-28-2013 Language Reference Manual, “Hello World”
program works, Created run and testsuites

11-04-2013 Typechecker added, Move, Copy
implemented

11-11-2013 Typechecker done, Lists created

11-25-2013 Testing finished

12-20-2013 Project Report created and submitted

8. Lessons Learned

(and advice for future teams)

Pranav Bhalla:

One of the things with trying to program iteratively is that it takes some time to get the
initial code base up, and during that time it is not possible to have multiple people work
on it. We felt we lost a lot of time during the initial implementation, because once we had
our skeleton up and running we were able to create features much faster than anticipated.
Since we were implementing different features by ourselves, the person implementing
ended up writing the test cases for the feature as well, which was not a good practice. We
found a lot more bugs when one person tried to use the functionality the other had
implemented and in hindsight it might have been better to have another team member
writing test cases for your features.

Daniel Newman:

| learned a lot about the complexities of building a language, but what made my learning
experience unique was that | was working on a Columbia UNIX clic machine, running on
Ubuntu, whereas the rest of my teammates worked on their Macbook OS machines.
Initially we had not anticipated that this would result in any significant differences when
running the code, but later on in the project | had trouble compiling, because errors that
came up on my machine were not errors when running on a Mac. One example is the
shell used for our runfdl.sh script (a component of our testall script, separated for
purposes of testing individual tet cases whose functionality is being worked on. | had to
change the way the shebang at the beginning of the script defined the shell to use, in order
to get rid of Syntax errors that were not coming up for my peers.

Additionally, a function that we had intended to use to retrieve the date a file was
created (rather than just ‘last modified’) as a File attribute, does not work when running on
Linux machines because | learned that such machines do not store that data, and so trying
to access that attribute from my machine in the code, results in compiling errors for the
small C library that we created to accompany our program.

An additional problem encountered was using execl to implement the UNIX cp and
mv commands for the unique move and copy operators of our program. execl executes
and then terminates the process, so keeping such a function would likely have required us
to complicate things and add a bit of code to fork and wait, and deal with multiple
processes wherever execl is called, and so we switched to using the ‘system() function call.

Daniel Garzon:

By working on FDL | was able to realize the importance of good software engineering
practices. Because of the nature of the assignment, we had to learn and put to practice
techniques that are used in the industry today. After we had designed our language, it was
time to start working on the implementation. As with anything the learning curve was

really steep, but once we figured out a way to get “Hello World!” working the curve began
to shallow. Because our language tries to imitate python, by implementing the
preprocessor, and helping with the implementation of lists and paths | am much more
aware of how python and many other languages work under the hood.

| also realized the power that Shell Scripts, C and Makefile have. By translating FDL
to C we were able to do system calls and get real low access to the file system. This
allowed us to implement the desired functionality of our language. Also, we kept out code
modular by having each have its own custom library, so that it is available to all the .fdl
files. Makefiles were extremely useful to get this libraries working. With just a single
command, we were able to compile and link the libraries into .a objects. Once we had all
these working, it seemed like a good idea to make a shell script to compile and run the
FDL source, the libraries, and the .fdl program into a C executable. With a few lines of
code, we were running FDL. Because we were using github to store our repository, and it
is bad practice to leave executables in a shared repository, a clean script was also included
to clean all executables.

In general, for future students my advice would be to start early, design a language
that would really have an influence in your live and after try to always maintain a friendly
relationship between your peers. In my opinion, one of the reasons we were able to
accomplish what we did is because of the enjoyable and positive environment in which we
all worked. By always helping each other, and collaborating the whole project which, at
first might be a little threatening, will become an experience you will never forget.

Cara Borenstein:

Working on the typechecker gave me a much better understanding of and appreciation for
all of the type-checking that languages | use support. | enjoyed switching off between the
two roles of the programmer, who thinks of cases to implement, and the "devious" user,
who tries to break the code. After developing FDL, | have a much better understanding of
the difference between writing a program that seems to work and writing a full robust
language with extensive error handling. For a robust program, the "devious" user
becomes the programmer and this mindset makes programming both more fun and
rewarding.

| also learned about the importance of modularity with testing. If you use larger
tests, the functionality you are testing may work but a different functionality may cause
the program to fail. For example, when testing binary operators, it seemed at first that the
binary operator was not parsing correctly when it was actually the order of the
declarations and initializations that caused the program to fail. We split this test into two
tests: one for declaring and initializing variables and another for the binary operator.

For future groups, | would recommend becoming a git (version control) expert
before beginning the coding process. We had recurring issues with merge conflicts,
especially when the bulk of the code was finished and we were all working on the same
files simultaneously. Ultimately, we all had the opportunity to master github but learning
the ins and outs of github earlier on would have been useful.

Also, | would recommend meeting frequently with your group. We met at least

once a week (usually twice) to check in and code together. Since we are building off and
testing each other's code, | found that coding together was more efficient because any
questions that came up could be answered immediately and efficiently. Coding together is
also more enjoyable because of the shared sense of excitement (and prior frustration)
when a new functionality is implemented correctly.

Rupayan Basu:

By working on the compiler for fdl, | gained a better understanding of the design decisions
behind some of the languages that I usually use. For example, while working on
implementing fdl lists, | found | could make informed (and often valid) guesses about how
lists are implemented in other languages, like python. After working on fdl, what seemed
idiosyncratic in many languages earlier, makes much more sense to me now.

My advice to future teams would be to meet frequently to ensure that everybody in the
team is always on the same page, and is fully aware of each others’ progress, using short
knowledge transfer sessions at the start of every meeting. We found this approach to be
very constructive, as this helped us develop meaningful test cases and understand how
every team member’s contribution to the compiler fit together.

8. Individual Work Breakdown

Pranav Bhalla:

| worked on the initial skeleton of the code, making the basic scanner, parser and
translator. Also worked on the run and test shell scripts. | created the library for the path
functions and the path attributes. And later on worked on the typechecker rules and the
symbol table.

Daniel Newman:

Implemented functionality unique to FDL, particularly Copy and Move Operators. Wrote
code in Ast, Sast, fdl.ml, typecheck, to make these operators work properly. Contributed to
testing. Contributed through pair programming throughout the project, coming up with
multiple bug fixes. Contributed the Expressions and Operators section of the LRM.

Daniel Garzon:

Implemented the preprocessor, shell scripts, Makefiles, and back-end code in C for lists
and paths. Also helped with the lexical analyzer, scanner, and the code
generation/conversion to C. Performed and implemented different test scenarios to check
for vulnerabilities in the preprocessor, list and path libraries with Pranav and Rup.

Cara Borenstein:

Implemented tests for multiplicative, additive, relational, equality, and assignment
operators and modified typecheck, ast, sast, and fdl as needed. Implemented while loop
and contributed to implementation of other control flow statements and corresponding
tests through pair programming.

Rupayan Basu:

Implemented fdl lists, including all list operations, ‘if in” constructs for lists, for loops for
paths, scope for functions, variable initialization. Fixed parsing/type check issues.
Customized C list implementation using union/enums for fdl types. Added test programs,
modified scripts.

9. Appendix

==
H O © 0 N0 e W N

BB R R W W W W W W W W W W NN N NN NN NN = e e e e e e
W N E O O 00N WN =R O OO0 R WNE O OO0 R W N

1 O’Caml
1.1 Scanner

{ open Parser }

[’a’ - 'z’ A" - 2]
[’o’ - ’97]

sy

let letter =
let digit =
let quote =

rule token = parse

digit+ as lit

{ LIT_INT(int_of_string 1lit) }

quote ["’"’Jx quote as lit { LIT_STR(lit) }

letter | (letter | digit

') as id

{ ID@d) }

noa

[7 ’\r” ’\n” ’\t’] { token lexbuf } | "/*" { comment lexbuf 7}
& { LPAREN } | 7Y’ { RPAREN }

| { LBRACE } | 7} { RBRACE } | 7.’ { COMMA }
| 7+? { PLUS } | -2 { MINUS }

| 7%’ {TIMES 3 | '/’ { DIVIDE }

| ’=? { ASSIGN } | 75 { SEMI }

| "<<=" { MOVE }

| r<- { COPY 3}

| "==" { EQ } [=" { NEQ }

| < { LT3 | "<=" { LEQ }

| 7>’ { GT } | ">=" { GEQ }

| [{ LBRACK } | 1 { RBRACK }

| "8&" { AND } [{OR 3}

R { NOT } | ".name” { PATHNAME }

| "def” { DEF } | ".created_at” { PATHCREATED }
| "int” { INT } | ".kind” { PATHKIND }
| "path” { PATH }

| "string” { STR } | "list” { LIST }

| "if" {IF } | "else” { ELSE }

| "then” { THEN } | "print” { PRINT }

| "for" { FOR } | "in" {IN }

| "do” { DO } | "bool” { BOOL }

| "while” { WHILE } | "return’ { RETURN }
| "void” { VOID } | ".add"” { ADD }

| "true” { TRUE } | ".remove” { REMOVE }
| "false" { FALSE } | ".type"” { PATHEXT }
| "trash” { TRASH }

| eof { EOF } (* do as microC *)

|

|

|

|

_ as char

and comment = parse
"%/ { token lexbuf }
| _ { comment lexbuf?}

{ raise (Failure("illegal character

Char.escaped char)) }

=
= O © 0 N0 ke W N

R R R R R R W W W W W W W W W W NN NN NN N NN e e e e e e e
DUk WD RO © 00N OO R WN RO O 00N URWN RO OO kW N

1.2 Parser

%{ open Ast %}

%token LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK COMMA TAB SEMI
%token PLUS MINUS TIMES DIVIDE ASSIGN MOVE COPY

%token EQ NEQ LT LEQ GT GEQ NOT

%token AND OR

%token RETURN IF THEN ELSE FOR IN WHILE DO

%token DEF VOID INT STR LIST PATH BOOL TRASH TRUE FALSE PRINT
%token PATHNAME PATHCREATED PATHKIND PATHEXT ADD REMOVE
%token <int> LIT_INT

%token <string> LIT_STR

%token <bool> LIT_BOOL

%token <string> ID

%token IN

%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%right ASSIGN MOVE COPY NOT

%left AND OR

%left EQ NEQ

%left LT GT LEQ GEQ
%left IN

%left PLUS MINUS
%left TIMES DIVIDE

%start program
%type <Ast.program> program

%%

program:
{01, [13}
| program vdecl { ($2 :: fst $1), snd $1 }
| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:
DEF return_type ID LPAREN formals_opt RPAREN LBRACE vdecl_opt stmt_list RBRACE
{
return = $2;
fname = $3;
formals = $5;

fnlocals = List.rev $8;
body = List.rev $9 }}

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

return_type:
VOID

| INT

| BOOL

| PATH

| STR

| LIST

e N N N R N

formals_opt:

{0173
| formal_list

formal_list:
formal
| formal_list

formal:
INT ID
| BOOL ID
| PATH ID
| STR ID
| LIST ID

vdecl_opt:

{01}
| vdecl_list

vdecl_list:
vdecl

VoidType }
IntType 7}
BoolType }
PathType }
StrType }
ListType }

{ List.rev $1 }

{[s

COMMA formal { $3 ::

vtype = IntTy
vtype = BoolT
vtype = PathT
vtype = StrTy,
vtype = ListT

e R N
e R N

{ List.rev $1 }

{ [$11 2}

| vdecl_list vdecl { $2 :: $1 }

vdecl:
vdecl_type ID SEMI { { vty

| vdecl_type ID ASSIGN expr SEMI
vdecl_type:

VOID { VoidType }

| INT { IntType }

| BOOL { BoolType }

| STR { StrType }

| PATH { PathType }

| LIST { ListType }
stmt_list:

{03

| stmt_list stmt { $2 :: $1 }

rev_stmt_list:
stmt_list

stmt:
expr SEMI

for_expr:
ID

list_expr:
D
| LIT_INT
| LIT_STR

expr_opt:
/* nothing */
| expr

RETURN expr_
IF LPAREN expr RPAREN THEN stmt %prec NOELSE
IF LPAREN expr RPAREN THEN stmt ELSE stmt
PRINT expr SEMI

WHILE LPAREN expr RPAREN stmt
FOR LPAREN for_expr IN for_expr RPAREN stmt
IF list_expr IN list_expr THEN stmt %prec NOELSE
IF list_expr IN list_expr THEN stmt ELSE stmt
LBRACE rev_stmt_list RBRACE

{ List.rev $

opt SEMI

{ Noexpr }
{s$1}

113
$1 3}

pe; vname = $2;
ype; vname = $2;
ype; vname = $2;
pe; vname = $2;
ype; vname = $2;

pe = $1; vname

T3

{ Forid($1) }

{ ListId($1) }

{ { vtype = $1;

vexpr
vexpr
vexpr
vexpr
vexpr

= Noexpr; } }
= Noexpr; } }
= Noexpr; } }
= Noexpr; } }
= Noexpr; } }

$2; vexpr = Noexpr } }

e e R RN R N N

{ ListItemInt($1) }
{ ListItemStr($1) 7}

vname = $2; vexpr = $4 } }

Expr($1) 3}

Return($2) 7}

If($3, $6, Block([1)) }
If($3, $6, $8) }

Print($2) }

While($3, $5) %}

For($3, $5, $7) }

Ifin($2, $4, $6, Block([1)) 3
Ifin($2, $4, $6, $8) 1}
Block($2) }

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166

expr:
[LIT_INT
| TRUE
| FALSE
| LIT_STR
| LBRACK list_items RBRACK
| ID
| expr PLUS expr
| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| expr EQ expr
| expr NEQ expr
| expr LT expr
| expr LEQ expr
| expr GT expr
| expr GEQ expr
| expr AND expr
| expr OR expr
| ID ASSIGN expr
| expr COPY expr
| expr MOVE expr
I
| ID pathattributes
|
|
pathattributes:
| PATHNAME
| PATHCREATED
| PATHKIND
| PATHEXT
list_items:
{ Noitem }
| expr

| expr COMMA list_items

LitInt($1) }
LitInt(1) 3}
LitInt(0) }
LitStr($1) }
List($2) }

Id($1) 3
Binop($1, Add,
Binop($1, Sub,
Binop($1, Mult,
Binop($1, Div,
Binop($1, Equal,
Binop($1, Neq,
Binop($1, Less,
Binop($1, Leq,
Binop($1, Greater,
Binop($1, Geq,
Binop($1, And,
Binop($1, Or,
Assign($1, $3) }
{ Copy($1, $3) }
{ Move($1, $3) }

[e N N N et s W N W e W et W W W W e S e P S

ID LPAREN actuals_opt RPAREN { Call($1, $3) }

{ Pathattr($1, $2) }

$3)
$3)
$3)
$3)
$3)
$3)
$3)
$3)
$3)
$3)
$3)
$3)

ID ADD LPAREN list_expr RPAREN { ListAppend($1, $4) }
ID REMOVE LPAREN list_expr RPAREN { ListRemove($1, $4)

actuals_opt:
/* nothing */

actuals_list:
expr

{0173
| actuals_list { List.rev $1 }

{ Pathname }

{ Pathcreated }
{ Pathkind }

{ Pathext }

{ Item($1) %
{ Seq($1, Comma, $3) }

{ [$1] 3
| actuals_list COMMA expr { $3 ::

$1)

L B I v o Y N e)

o
H O © 00 N O U W N

AR R R R R R W W W W W W W W W W NN N NN NN NN = e e e e e
D TR WD R O © 00O WN RO ©00NO O RWN RO ®©0Wg OO WwN

47

1.3 AST

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | And | Or

type sep = Comma

type data_type = PathType | StrType | IntType | BoolType | VoidType | ListType

type pathattr_type = Pathname | Pathcreated | Pathkind | Pathext

type list_expr =

ListId of string
ListItemInt of int
ListItemStr of string

type items =

and

Item of expr

Seq of expr * sep * items

Noitem

expr =

LitInt of int

LitStr of string

Id of string

Binop of expr * op * expr

Assign of string * expr

Call of string * expr list

Copy of expr * expr

Move of expr * expr

List of items

ListAppend of string * list_expr
ListRemove of string * list_expr
Pathattr of string * pathattr_type
Noexpr

type for_expr =

Forid of string

type stmt =

Block of stmt list

Expr of expr

Return of expr

If of expr * stmt * stmt

For of for_expr * for_expr * stmt

(x | For of expr * expr * stmtx)

| Ifin of list_expr * list_expr * stmt * stmt

While of expr * stmt
Print of expr

type var_decl = {
vtype : data_type;
vname : string;
vexpr : expr;

}

type func_decl = {

type program = var_decl list * func_decl

return : data_type;

fname : string;

formals : var_decl list;
fnlocals : var_decl list;
body : stmt list;

list

o
H O © 00 N O U W N

SO O GOt gr OOt Ot Ot OOt Ot R R s R R R B R AR W W W W W W W W W W NNNNNDNNNNDN =R e
N O © 00N 0k WNN RO © 000N R WN RO O 00N 0RWN RO OO0 R WD = OO0 W N

1.4 SAST

type op_t = Add | Sub | Mult | Div | Equal | Neq | Less | Leq
| Greater | Geq | And | Or | StrEqual | StrNeq | StrAdd

type sep_t = Comma
type data_type_t = PathType | StrType | IntType | BoolType | VoidType | ListType
type pathattr_type_t = Pathname | Pathcreated | Pathkind | Pathext

type list_expr_t =
ListId of string * string
| ListItemInt of int
| ListItemStr of string

type items_t =
Item of expr_t

| Seq of expr_t * sep_t * items_t
Noitem
and expr_t =
LitInt of int
LitStr of string
Id of string
Binop of expr_t * op_t * expr_t
Assign of string * expr_t
Call of string * expr_t list
Copy of expr_t * expr_t
Move of expr_t * expr_t
List of items_t
ListAppend of string * list_expr_t
ListRemove of string * list_expr_t
Pathattr of string * pathattr_type_t
Noexpr

type for_expr_t =
Forid of string

type stmt_t =
Block of stmt_t list
| Expr of expr_t
| Return of expr_t
| If of expr_t * stmt_t * stmt_t
(x| For of expr_t x expr_t * stmt_t *)
| For of for_expr_t x for_expr_t x stmt_t
| While of expr_t * stmt_t
| Print of expr_t x string
| Ifin of list_expr_t * list_expr_t * stmt_t * stmt_t

type var_decl_t = {
vtype : data_type_t;
vname : string;
vexpr : expr_t;

}

type func_decl_t = {
return : data_type_t;
fname : string;
formals : var_decl_t list;
fnlocals : var_decl_t list;
body : stmt_t list;
3

type program_t = var_decl_t list * func_decl_t list

==
H O © 0 N0 ke W N

AW W W W W W W W W WNNNNNNNNNN = e e e e e e
O © W O A WNEO®© WO WNHEO®© XN O W N

1.5 Type Check

open Ast
open Symboltable

module StringMap = Map.Make(String)

let string_of_vtype = function
VoidType -> "void"

IntType -> "int"

StrType -> "string”

BoolType -> "bool”

PathType -> "path”

ListType -> "list”

let get_sast_type = function
Ast.PathType -> Sast.PathType
| Ast.StrType -> Sast.StrType
| Ast.IntType -> Sast.IntType
| Ast.BoolType -> Sast.BoolType
| Ast.VoidType -> Sast.VoidType
| Ast.ListType -> Sast.ListType

let get_
Ast.Pathname -> Sast.Pathname, "s

sast_pathattrtype = function

tring”

| Ast.Pathcreated -> Sast.Pathcreated, "int”

| Ast.Pathkind -> Sast.Pathkind,
| Ast.Pathext -> Sast.Pathext, "s

let get_vtype env id =
(* find_variable method is from t
let t = find_variable id env in

if t = "" then raise (Failure ("undefined variable:

let get_expr_type t1 t2 =

if t1 = "void"” || t2 = "void" then raise (Failure ("cannot use void type inside expression”)) else

"int”
tring”

he symbol table *)

if t1 = "string” || t2 = "string” then "string"” else
if t1 = "int” && t2 = "int"” then "int" else

if t1 = "bool” && t2 = "bool"” then "bool"” else

if t1 = "int"” && t2 = "bool” then "int" else

if t1 = "bool” && t2 = "int"” then "int" else

raise (Failure ("type error™))

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80

let
|

check_listexpr env = function
Ast.ListId(id) ->
Sast.ListId(id, get_vtype env id), get_vtype env id

| Ast.ListItemInt(i) -> Sast.ListItemInt(i), "int”
| Ast.ListItemStr(s) -> Sast.ListItemStr(s), "string”

let

match_oper el op e2 =

let expr_t = get_expr_type (snd el) (snd e2) in
(match op with

Ast.Add -> if expr_t = "int” then (Sast.Binop(fst el, Sast.Add, fst e2), "int") else
if expr_t = "string” then (Sast.Binop(fst el, Sast.StrAdd, fst e2), "string"”) else
raise (Failure ("type error"))
Ast.Sub -> if expr_t = "int"” then (Sast.Binop(fst el, Sast.Sub, fst e2), "int") else
raise (Failure ("type error"))
Ast.Mult -> if expr_t = "int" then (Sast.Binop(fst el, Sast.Mult, fst e2), "int") else
raise (Failure ("type error™))
Ast.Div -> if expr_t = "int” then (Sast.Binop(fst el, Sast.Div, fst e2), "int") else
raise (Failure ("type error"))
(x equal and not equal have special case for string comparison
we may need to add SAST and Egs and Neqgs *)
Ast.Equal -> if expr_t = "int"” then (Sast.Binop(fst el, Sast.Equal, fst e2), "bool”) else
if expr_t = "string” then (Sast.Binop(fst el, Sast.StrEqual, fst e2), "bool”) else
raise (Failure ("type error in == "))
Ast.Neq -> if expr_t = "int” then (Sast.Binop(fst el, Sast.Neq, fst e2), "bool") else
if expr_t = "string” then (Sast.Binop(fst el, Sast.StrNeq, fst e2), "bool") else
raise (Failure ("type error"))
Ast.Less —>if expr_t = "int"” then (Sast.Binop(fst el, Sast.Less, fst e2), "bool"”) else
raise (Failure ("type error"))
Ast.Leq ->if expr_t = "int"” then (Sast.Binop(fst el, Sast.Leq, fst e2), "bool"”) else
raise (Failure ("type error"))
Ast.Greater ->if expr_t = "int"” then (Sast.Binop(fst el, Sast.Greater, fst e2), "bool") else
raise (Failure ("type error"))
Ast.Geq ->if expr_t = "int"” then (Sast.Binop(fst el, Sast.Geq, fst e2), "bool”) else
raise (Failure ("type error"))
Ast.And ->if expr_t = "bool” then (Sast.Binop(fst el, Sast.And, fst e2), "bool") else
raise (Failure ("type error in and"))
Ast.Or —>if expr_t = "bool” then (Sast.Binop(fst el, Sast.Or, fst e2), "bool"”) else
raise (Failure ("type error in or"))

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

let rec check_expr env = function
Ast.LitInt(i) -> Sast.LitInt(i), "int”
| Ast.LitStr(s) -> Sast.LitStr(s), "string”

| Ast.Id(id) ->
Sast.Id(id), (get_vtype env id)

Ast.Binop(el, op, e2) —>
match_oper (check_expr env el) op (check_expr env e2)

Ast.Assign(id, e) —>
let t = get_vtype env id in
Sast.Assign(id, (get_expr_with_type env e t)), "void”

Ast.Call(func, el) ->
let args = find_function func env in (* return & arguments type list from definition *)
(match args with
[1 -> raise (Failure ("undefined function " * func))
| hd::tl -> let new_list = try List.fold_left2 check_func_arg [] (List.map (check_expr env) el) tl
with Invalid_argument "arg" -> raise(Failure("unmatched argument list"))
in Sast.Call(func, List.rev new_list), hd)

| Ast.Move(el, e2) ->
let e_t1 = check_expr env el in
let e_t2 = check_expr env e2 in
if snd e_t1 = "path” && snd e_t2 = "path”
then Sast.Move(fst e_t1, fst e_t2), "void”
else
raise(Failure("cannot use path function on non-path variables”))
| Ast.Copy(el, e2) —->
let e_t1 = check_expr env el in
let e_t2 = check_expr env e2 in
if snd e_t1 = "path” && snd e_t2 = "path”
then Sast.Copy(fst e_t1, fst e_t2), "void”
else
raise(Failure(”cannot use path function on non-path variables"))
Ast.List(items) -> Sast.List(check_list_items env items), "list”
Ast.ListAppend(id, item) -> let t1 = get_vtype env id in
let t2 = check_listexpr env item in
if not (t1 = "list")
then raise(Failure(”Can append only to id of type list."))
else if ((snd t2) = "list")
then raise(Failure(”Cannot append list to list."))
else
Sast.ListAppend(id, (fst t2)), "void”
| Ast.ListRemove(id, item) -> let t1 = get_vtype env id in
let t2 = check_listexpr env item in
if not (t1 = "list”)
then raise(Failure(”"Can call remove only on type list."”))
else if ((snd t2) = "list")
then raise(Failure(”Cannot remove a list from list."))
else
Sast.ListRemove(id, (fst t2)), "void”
| Ast.Pathattr(id, e) ->
if not ((get_vtype env id) = "path")
then raise(Failure("cannot use path attributes on non-path variable " " id))
else
Sast.Pathattr(id, fst (get_sast_pathattrtype e)), snd (get_sast_pathattrtype e)
Ast.Noexpr -> Sast.Noexpr, "void”

and check_list_items env = function
Ast.Item(e) ->let i,t = check_expr env e in
Sast.Item(i)
Ast.Seq(el, sep, e2) -> Sast.Seq(fst (check_expr env el), Sast.Comma, (check_list_items env e2))
Ast.Noitem -> Sast.Noitem

and get_expr_with_type env expr t =
let e = check_expr env expr in
if ((snd e) = "string” && t = "path”) then (fst e)
else if ((snd e) = "int" && t = "bool"”) then (fst e)
else if not((snd e) = t) then raise (Failure ("type error”)) else (fst e)

let check_forexpr env = function
Ast.Forid(id) -> Sast.Forid(id), get_vtype env id

155
156

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

let rec
Ast.

| Ast.

| Ast

| Ast

| Ast.

let rec
Ast.Li
| Ast.

Ast.
Sast

Ast.
matc

Ast.
let
Sast

Ast.

let

(ma
[1
|

(x N
| As
let
let
if s

th
else

ra
| As
let

check_stmt env func = function
Block(stmt_list) -> (Sast.Block(check_stmt_list env func stmt_list)), env

.Expr(expr) -> (Sast.Expr(fst (check_expr env expr))), env
.Return(expr) -> let e = check_expr env expr in

if not(snd e = string_of_vtype func.return) then raise (Failure ("The return type doesn’t match!"))
else (Sast.Return(fst e)), env
If(expr, stmtl, stmt2) -> let e = check_expr env expr in
if not(snd e = "bool”) then raise (Failure ("The type of the condition in If statement must be boolean!"))
else (Sast.If(fst e, fst (check_stmt env func stmt1), fst (check_stmt env func stmt2))), env

Ifin(lexpr1, lexpr2, stmtl, stmt2) -> let el = check_listexpr env lexprl in

if (snd el = "list") then raise (Failure ("Cannot have list in list!"))
else let e2 = check_listexpr env lexpr2 in
if not(snd e2 = "list"”) then raise (Failure ("\’in\’ operator works with list type expression only!"))

else (Sast.Ifin(fst el, fst e2, fst (check_stmt env func stmt1), fst (check_stmt env func stmt2))), env

While(expr, stmt) -> let e = check_expr env expr in

if not (snd e = "bool”) then raise (Failure ("The type of the condition in While statement must be boolean!"))
else (Sast.While(fst e, fst (check_stmt env func stmt))), env (x while() {3} *)
.For(exprl, expr2, stmt) -> let el = check_forexpr env exprl in let e2 = check_forexpr env expr2 in
if not (snd el = "path” && snd e2 = "path”) then raise
(Failure("The type of the expression in a For statement must be path”))
else (Sast.For(fst el, fst e2, fst (check_stmt env func stmt))), env
Print(expr) -> let (expr, expr_type) = check_expr env expr in
(Sast.Print(expr , expr_type)), env

check_expr env = function
tInt(i) -> Sast.LitInt(i), "int"”
LitStr(s) -> Sast.LitStr(s), "string”

Id(id) ->
.Id(id), (get_vtype env id)

Binop(el, op, e2) ->
h_oper (check_expr env el) op (check_expr env e2)

Assign(id, e) —>
t = get_vtype env id in
.Assign(id, (get_expr_with_type env e t)), "void”

Call(func, el) ->
args = find_function func env in (* return & arguments type list from definition *)
tch args with
-> raise (Failure ("undefined function " * func))
hd::tl -> let new_list = try List.fold_left2 check_func_arg [] (List.map (check_expr env) el) tl
with Invalid_argument "arg" -> raise(Failure("unmatched argument list"))
in Sast.Call(func, List.rev new_list), hd)
eed to add type checking for Move and Copy *)
t.Move(el, e2) ->
e_t1 = check_expr env el in
e_t2 = check_expr env e2 in
nd e_t1 = "path” && snd e_t2 = "path”
en Sast.Move(fst e_t1, fst e_t2), "void”

ise(Failure("cannot use path function on non-path variables”))
t.Copy(el, e2) —>
e_t1 = check_expr env el in
let e_t2 = check_expr env e2 in
if snd e_t1 = "path” && snd e_t2 = "path”
then Sast.Copy(fst e_t1, fst e_t2), "void"
else
raise(Failure(”cannot use path function on non-path variables"))

10

215 | Ast.List(items) -> Sast.List(check_list_items env items), "list”

216 | Ast.ListAppend(id, item) -> let t1 = get_vtype env id in

217 let t2 = check_listexpr env item in

218 if not (t1 = "list")

219 then raise(Failure(”Can append only to id of type list."”))

220 else if ((snd t2) = "list")

221 then raise(Failure("Cannot append list to list."))

222 else

223 Sast.ListAppend(id, (fst t2)), "void”

224 | Ast.ListRemove(id, item) -> let t1 = get_vtype env id in

225 let t2 = check_listexpr env item in

226 if not (t1 = "list")

227 then raise(Failure("Can call remove only on type list.”))

228 else if ((snd t2) = "list")

229 then raise(Failure(”Cannot remove a list from list."))

230 else

231 Sast.ListRemove(id, (fst t2)), "void”

232 | Ast.Pathattr(id, e) ->

233 if not ((get_vtype env id) = "path”)

234 then raise(Failure(”cannot use path attributes on non-path variable " " id))
235 else

236 (* return type is string assuming path attributes will be treated that way *)
237 Sast.Pathattr(id, fst (get_sast_pathattrtype e)), snd (get_sast_pathattrtype e)
238 | Ast.Noexpr -> Sast.Noexpr, "void”

239

240 and check_list_items env = function

241 Ast.Item(e) ->let i,t = check_expr env e in

242 Sast.Item(i)

243 | Ast.Seq(el, sep, e2) -> Sast.Seq(fst (check_expr env el), Sast.Comma, (check_list_items env e2))
244 | Ast.Noitem -> Sast.Noitem

245

246 and get_expr_with_type env expr t =

247 let e = check_expr env expr in

248 (* added special case for the path variable x)

249 if ((snd e) = "string” && t = "path”) then (fst e)

250 else if ((snd e) = "int" && t = "bool"”) then (fst e)

251 else if not((snd e) = t) then raise (Failure ("type error”)) else (fst e)

252

253

254 let check_forexpr env = function

255 Ast.Forid(id) -> Sast.Forid(id), get_vtype env id

11

256 let rec check_stmt env func = function

257 Ast.Block(stmt_list) -> (Sast.Block(check_stmt_list env func stmt_list)), env

258 | Ast.Expr(expr) -> (Sast.Expr(fst (check_expr env expr))), env

259 | Ast.Return(expr) -> let e = check_expr env expr in

260 if not(snd e = string_of_vtype func.return) then raise (Failure ("The return type doesn’t match!"))

261 else (Sast.Return(fst e)), env

262 | Ast.If(expr, stmtl, stmt2) -> let e = check_expr env expr in

263 if not(snd e = "bool”) then raise (Failure ("The type of the condition in If statement must be boolean!"))
264 else (Sast.If(fst e, fst (check_stmt env func stmt1), fst (check_stmt env func stmt2))), env (*x if() {} else{} *)
265 | Ast.Ifin(lexprl, lexpr2, stmtl, stmt2) -> let el = check_listexpr env lexprl in

266 if (snd el = "list") then raise (Failure ("Cannot have list in list!"))

267 else let e2 = check_listexpr env lexpr2 in

268 if not(snd e2 = "list"”) then raise (Failure ("\’in\’ operator works with list type expression only!"))
269 else (Sast.Ifin(fst el, fst e2, fst (check_stmt env func stmtl), fst (check_stmt env func stmt2))), env
270 | Ast.While(expr, stmt) -> let e = check_expr env expr in

271 if not (snd e = "bool”) then raise (Failure ("The type of the condition in While statement must be boolean!"))
272 else (Sast.While(fst e, fst (check_stmt env func stmt))), env (x while() {3} *)

273 | Ast.For(exprl, expr2, stmt) -> let el = check_forexpr env exprl in let e2 = check_forexpr env expr2 in

274 if not (snd el = "path” && snd e2 = "path”) then raise (Failure(”The type of the expression in a For statement must be path”)
275 else (Sast.For(fst el, fst e2, fst (check_stmt env func stmt))), env

276 | Ast.Print(expr) -> let (expr, expr_type) = check_expr env expr in

277 (Sast.Print(expr , expr_type)), env

278

279 and check_stmt_list env func = function

280 [1->11

281 | hd::tl -> let s,e = (check_stmt env func hd) in s::(check_stmt_list e func tl)

282

283 let convert_to_sast_type x env =

284 let t = get_vtype env x.vname in

285 let s_expr =

286 if not (x.vexpr = Ast.Noexpr) then

287 get_expr_with_type env x.vexpr t

288 else Sast.Noexpr

289 in

290 {

291 Sast.vtype = get_sast_type x.vtype;

292 Sast.vname = x.vname;

293 Sast.vexpr = s_expr;

294 }

295

206 let check_formal env formal =

297 let ret = add_local formal.vname formal.vtype env in

298 if (string_of_vtype formal.vtype) = "void” then raise (Failure("cannot use void as variable type")) else

299 if StringMap.is_empty ret then raise (Failure ("local variable " ° formal.vname " " is already defined”))

300 else let env = {locals = ret; globals = env.globals; functions = env.functions } in

301 convert_to_sast_type formal env, env

302

303 let rec check_formals env formals =

304 match formals with

305 [1->11

306 | hd::tl -> let f, e = (check_formal env hd) in (f, e)::(check_formals e tl)

307

308 let check_local env local =

309 let ret = add_local local.vname local.vtype env in

310 if (string_of_vtype local.vtype) = "void"” then raise (Failure(”cannot use void as variable type")) else

311 if StringMap.is_empty ret then raise (Failure ("local variable " " local.vname " " is already defined"))

312 else let env = {locals = ret; globals = env.globals; functions = env.functions } in

313 convert_to_sast_type local env, env

12

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

let rec check_locals env locals =
match locals with
[1->11
| hd::tl -> let 1, e = (check_local env hd) in (1, e)::(check_locals e tl)

let check_function env func =
match List.hd (List.rev func.body) with
Return(_) ->
let env = {locals = StringMap.empty; globals = env.globals; functions = env.functions } in
(* ret is new env %)
let ret = add_function func.fname func.return func.formals env in
if StringMap.is_empty ret then raise (Failure (”"function " " func.fname ° is already defined"))
else let env = {locals = env.locals; globals = env.globals; functions = ret } in
let f = check_formals env func.formals in
let formals = List.map (fun formal -> fst formal) f in

n

(* get the final env from the last formal x*)
let 1, env =
(match f with
[1 -> let 1 = check_locals env func.fnlocals in
1, env
| _ -> 1let env = snd (List.hd (List.rev f)) in
let 1 = check_locals env func.fnlocals in
1, env
) in
let fnlocals = List.map (fun fnlocal -> fst fnlocal) 1 in
(match 1 with
[1 -> let body = check_stmt_list env func func.body in
{ Sast.return = get_sast_type func.return;
Sast.fname = func.fname;
Sast.formals = formals;
Sast.fnlocals = fnlocals;
Sast.body = body
}, env
| _ -> let e = snd (List.hd (List.rev 1)) in
let body = check_stmt_list e func func.body in
{ Sast.return = get_sast_type func.return;
Sast.fname = func.fname;
Sast.formals = formals;
Sast.fnlocals = fnlocals;
Sast.body = body
3}, e
)

| _ -> raise (Failure ("The last statement must be return statement”))

let rec check_functions env funcs =
match funcs with
[1->11
| hd::tl -> let f, e = (check_function env hd) in f::(check_functions e tl)

let check_global env global =
if (string_of_vtype global.vtype) = "void” then raise (Failure("”cannot use void as variable type"))
else let ret = add_global global.vname global.vtype env in
if StringMap.is_empty ret then raise (Failure ("global variable
(x update the env with globals from ret *)
else let env = {locals = env.locals; globals = ret; functions = env.functions } in
convert_to_sast_type global env, env

noa n

global.vname * is already defined"))

let rec check_globals env globals =
match globals with
[1->11
| hd::tl -> let g, e = (check_global env hd) in (g, e)::(check_globals e tl)

let check_program (globals, funcs) =

let env = { locals = StringMap.empty;
globals = StringMap.empty;
functions = StringMap.empty }

in

let g = check_globals env globals in

let globals = List.map (fun global -> fst global) g in

match g with

[1 -> (globals, (check_functions env (List.rev funcs)))

| - -> let e = snd (List.hd (List.rev g)) in (globals, (check_functions e (List.rev funcs)))

13

==
H O © 0 N0 ke W N

R ER W W W W W W W W W W N NN N NN NN NN = e e e e e e
N B O © 03O0 Gk WKNFHO®© WO W AE WNRO®OW-NO A WN

43

45

1.6 Symbol Table

open Ast

module StringMap = Map.Make(String)

type env = {
locals: string StringMap.t;
globals: string StringMap.t;
functions: string list StringMap.t;
¥

let string_of_vtype = function
VoidType -> "void”

IntType -> "int"

StrType -> "string”

BoolType -> "bool”

PathType -> "path”

ListType -> "list”

let find_variable name env =
try StringMap.find name env.locals
with Not_found -> try StringMap.find name env.globals
with Not_found -> ""

(*xraise (Failure ("undefined variable " " name)) x)
let find_function name env =

try StringMap.find name env.functions

with Not_found -> []

(xraise (Failure ("undefined function " " name)) x*)

let add_local name v_type env =
if StringMap.mem name env.locals then StringMap.empty
else StringMap.add name (string_of_vtype v_type) env.locals

let add_global name v_type env =
if StringMap.mem name env.globals then StringMap.empty
else StringMap.add name (string_of_vtype v_type) env.globals

(x from the ast *)
let get_arg_type = function
v -> string_of_vtype v.vtype

let add_function name return_type formals env =
if StringMap.mem name env.functions then StringMap.empty
else let f = List.map get_arg_type formals in
StringMap.add name (string_of_vtype (return_type)::f) env.functions

14

© 0N OO W N

N O 000 o 000 OO0 O ot OOt gt Ot Ot Ot Ot Ol B s B R s R R R B W W W W W W W W W WNNNNNNNNNN R e e
© © 00N DU WN R O ©000NO R WNN RO ©0NOU R WN RO OO0 WN R OO0 R WN RO ©00NDU W= O

2 Shell Scripts
2.1 Test All Script

#1/bin/sh

if [! -f "c/libraries/liblist.a” 1 || [! -f "c/libraries/libpath.a” 1 ; then
cd c/libraries
make >> lib_msgs.txt

cd ../..
fi
if [! -f "preprocessor/./preprocessor” J; then
cd preprocessor
make >> preproc_msgs.txt
cd ..
fi

if [! -f "./fdl” 1; then
make >> compiler_msgs.txt
fi

FDL="./fdl"
PRE="preprocessor/./preprocessor”

Compare() {
difference=$(diff -b $1 $2)
echo $difference
if ["$difference” != "" 7J; then
echo $difference > $3
fi
¥

function compile() {
basename=‘echo $1 | sed ’s/.*\\///
s/.fdl// ¢
reffile=‘echo $1 | sed ’'s/.fdl$//" ¢
prepfile=${reffile}’.fdlp’
basedir="‘echo $1 | sed ’s/\/["\/1*x$//” /"

testoutput=‘echo ${basedir}test_outputs/$basename.c.out*
echo "Preprocessing ’$17..."
$PRE $1 $prepfile && echo "Preprocessor for $1 succeeded”
echo "Compiling $prepfile ..."
$FDL $prepfile > "${reffile}.c” && echo "Ocaml to C of $1 succeeded”

if [-f "${reffile}.c” 1; then

gcc -Ic/libraries -Lc/libraries -1list -lpath "${reffile}.c” -o "${reffile}” && echo "COMPILATION of ${reffile}.c succeeded”
else

echo "Ocaml to C of $1 failed”

return
fi

rm -rf $prepfile

if [-f "${reffile}"” J; then
eval ${reffile} > ${reffile}.generated.out
Compare ${testoutput} ${reffile}.generated.out ${reffile}.c.diff
rm -rf ${reffile}.generated.out
rm -rf ${reffile}.c
rm -rf ${reffile}
else
echo "C to binary of ${reffile}.c failed”
fi
3

files=sample_program/*.fdl

for file in $files
do

compile $file
done

15

© 0 N OO AW N

S O O GOt O OOt Ot Ot OOt O s R e s R s R R R e W W W W W W W W W W N N NN NN NN R e e e
N B O © 00 O Utk W N HO®©O®WNO O B WO ®©OoWwSNO O A& WNROO©OWSNO U R WNRO®©OW-SNO OB WN = O

2.2 Run FDL Script

#1/bin/sh

if [! -f "c/libraries/liblist.a” 1 || [! -f "c/libraries/libpath.a” 1 ; then

cd c/libraries
make >> lib_msgs.txt

cd ../..
fi
if [! -f "preprocessor/./preprocessor” 1; then
cd preprocessor
make >> preproc_msgs.txt
cd ..
fi

if [! -f "./fdl” 1; then
make >> compiler_msgs.txt
fi

fdl exectutable

FDL="./fdl"

preprocessor executable
PRE="./preprocessor/preprocessor”

function compileAndRun() {
basename=‘echo $1 | sed ’s/.*\\///
s/.fdl//’ ¢
reffile=‘echo $1 | sed ’s/.fdl$//’ ¢
prepfile=$reffile’.fdlp’
basedir="‘echo $1 | sed ’"s/\/["\/1*x$//> /"

$PRE $1 $prepfile
if [! -f $prepfile J; then
echo "$prepfile does not exist”
return
fi
$FDL $prepfile > "${reffile}.c”

if [-f "${reffile}.c” 1; then

gcc -Ic/libraries -Lc/libraries -1llist -lpath -w -o "${reffile}"” "${reffile}.c”

else
echo "Ocaml to C of $1 failed”
return

fi

if [-f "${reffile}"” 1; then
eval ${reffile}
rm -rf ${reffile}.fdlp
rm -rf ${reffile}.c
rm -rf ${reffile}
else
echo "C to binary of ${reffile}.c failed”
fi
¥

if [-f $1 1; then
compileAndRun $1
else
echo "$1 doesnt exist”
fi

16

© 0 N OO AW N

e e e e
B B I BV S)

2.3 Clean All Script

#1/bin/sh

if [-f "c/libraries/liblist.a”] || [-f "c/libraries/libpath.a”] ; then
cd c/libraries
make clean
cd ../..

fi

if [-f "preprocessor/./preprocessor”]; then
cd preprocessor
make clean
cd ..

fi

if [-f "./fdl” J; then

make clean
fi

17

—
H O © 0 N O O A W N

P T T
N = O © ;oA W N

3

Preprocessor

3.1 Makefile

cC
CXX

gce
g++

INCLUDES =
CFLAGS = -g -Wall $(INCLUDES)
CXXFLAGS = -g -Wall $(INCLUDES)

LDFLAGS =
LDLIBS =

.PHONY: default
default: preprocessor

header dependency
preprocessor: preprocessor.o

.PHONY: clean
clean:

rm -f %.0 *.txt *~ a.out core preprocessor

.PHONY: all

all:

clean default

18

3.2 Preprocessor

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <unistd.h>

5 #include <assert.h>

6 #include <ctype.h> /* For isspace(). */

7 #include <stddef.h> /* For size_t. %/

8

9 #define MAX_BUFFER 4096

10

11 static void die(const char *message)

12 {

13 perror(message);

14 exit(1);

15 }

16

17 const char *getFileExtension(const char xfileName) {
18 const char *dot = strrchr(fileName, ’.’);

19 if(!dot || dot == fileName) return "";

20 return dot + 1;

21}

22

23 void remove_whitespace(char #*str) {

24 char #*p;

25 size_t len = strlen(str);

26

27 for(p = str; *p; p ++, len --) {

28 while(isspace(*p)) memmove(p, p+1, len--);
29 }

30}

31

32 int is_empty(const char *s) {

33 while (*s != ’\0") {

34 if (!isspace(*s))

35 return 0;

36 st+t;

37 }

38 return 1;

39}

40

41

42 int main(int argc, char const *argv[])

43 {

44 if (argec != 3) {

45 fprintf(stderr, "%s\n", "usage: ./preprocessor <fdl file> <fdlp file>");
46 exit(1);

47 }

48 char *fileName = (char %) argv[1];

49 char xoutputFileName = (char *) argv[2];

50

51 if (stremp(”fdl”, getFileExtension(fileName)) != 0)
52 {

53 die("file extension must be fdl");

54 3

55 if (stremp(”fdlp”, getFileExtension(outputFileName)) != 0)
56 {

57 die("output file extension must be fdlp");
58 }

59 FILE *input;

60 if ((input = fopen(fileName, "r")) == NULL) {
61 die("fpen() failed");

62 3}

63 FILE *output;

64 if ((output = fopen(outputFileName, "w")) == NULL) {
65 die("fpen() failed");

66 }

67

68 char buffer[MAX_BUFFER];

19

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

while (fgets(buffer, sizeof(buffer), input) != NULL) {
size_t len = strlen(buffer) - 1;
if (buffer[len] == "\n’) {

}

buffer[len] = "\0’;

if (strstr(buffer, "x/") != NULL) {

3

fprintf(output, "%s\n", buffer);

else if (strstr(buffer, "/x") != NULL) {

}

else if (strstr(buffer,

}

else if (strstr(buffer,

3

else if (strstr(buffer,

3

else if (strstr(buffer,

}

else if (strstr(buffer,

3

fprintf(output, "%s\n", buffer);

fprintf(output, "%s {\n", buffer);

fprintf(output, "%s;\n"”, buffer);

fprintf(output, "%s;\n", buffer);

fprintf(output, "%s;\n"”, buffer);

fprintf(output, "%s;\n”, buffer);

else if (strstr(buffer, "string ") !=

}

else if (strstr(buffer,

}

else if (strstr(buffer,

}

else if ((strstr(buffer

}

fprintf(output, "%s;\n"”, buffer);

fprintf(output, "%s;\n", buffer);

fprintf(output, "%s {\n", buffer);

fprintf(output, "%s {\n", buffer);

"def ") I= NULL) {

"int ") 1= NULL) {

"path ") != NULL) {

"dict ") 1= NULL) {

"list ") != NULL) {

NULL) {

"bool ") != NULL) {

"for ") != NULL) {

, "if (") !'= NULL || strstr(buffer, "if(") != NULL)

&& (strstr(buffer, "then") != NULL)) {

else if ((strstr(buffer, "if (") != NULL || strstr(buffer, "if(") != NULL)

}

fprintf(output, "%s\n", buffer);

&& (strstr(buffer, "then") == NULL)) {

else if (strstr(buffer, "then”) != NULL) {

}

fprintf(output, "%s {\n", buffer);

20

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

153
154
155
156
157

else if (strstr(buffer, "else") != NULL) {
int i;
int counter = 0;
for (i = 0; i < strlen(buffer); ++i)

{
if (buffer[i] ==’ ") {
fprintf(output, "%c", buffer[il);
counter++;
3
3

fprintf(output, "} %s {\n", buffer + counter);
3

else if (strstr(buffer, "while (") != NULL || strstr(buffer,

fprintf(output, "%s {\n", buffer);

}
else if (strstr(buffer, "end”) != NULL) {
int i;
for (i = 0; i < strlen(buffer); i++){
if (buffer[i] == ’e’) {
buffer[i] = '}’
} else if (buffer[i] == 'n’) {
buffer[i]l = ’\n’;
} else if (buffer[i] == ’d’) {
buffer[i] = ’\0’;
} else {
}
3
fprintf(output, "%s”, buffer);
}
else {
if (is_empty(buffer)) {
remove_whitespace(buffer);
fprintf(output, "\n");
} else {
fprintf(output, "%s;\n", buffer);
3
}
3
fclose(input);
fclose(output);
return 0;

21

"while(") != NULL) {

—
H O © 0 N O O A W N

I T e S o S ~ S R
N = O © 00 g0 ks W N

4

Libraries in C

4.1 Makefile

cC
CXX

= gcc
= g+

INCLUDES = -I libraries/

CFLAGS = -g -Wall $(INCLUDES)
CXXFLAGS = -g -Wall $(INCLUDES)

LDFLAGS = -g -L libraries/

LDLIBS = -1list -lpath

stat_calls: stat_calls.o

stat_calls.o: stat_calls.c

.PHONY: clean
clean:

rm -f x.0 *.txt a.out core stat_calls

.PHONY: all

all:

clean stat_calls

22

=
H O © 00 N O Uk W N

R R R B R R W W W W W W W W W W N NN NN NN N NN = e e e e e e
DU WD R O © 00N ORI WD RO © 00N U R WN R O © 00N O W N

4.2 Lists
4.2.1 List Header

fifndef _LIST_H_
fidefine _LIST_H_

enum fdl_type { fdl_str, fdl_path, fdl_int, fdl_bool };

struct Node {
enum fdl_type type;

union {
int int_item;
int bool_item;
char xstring_item;
char xpath_item;

b

struct Node *next;

3

struct List {
struct Node *head;

3

struct Node *createIntNode(int data, enum fdl_type type);
struct Node *createStrNode(char *data, enum fdl_type type);

static inline void initList(struct List *list)

{
list->head = 0;
3
static inline int isEmptyList(struct List *list)
{
return (list->head == 0);
3

void addFront(struct List *list, struct Node *node);

void traverselist(struct List *list, void (*f)(struct Node *));
void printNode(struct Node #*node);

int findNode(struct List xlist, struct Node *nodel);

void removeNode(struct List *list, struct Node *nodel);

struct Node popFront(struct List xlist);

void removeAllNodes(struct List *list);

void addAfter(struct List *list, struct Node *prevNode, struct Node *newNode);
void reverselList(struct List *list);

void addBack(struct List *list, struct Node *newNode);

void loadDirectoryTolList(char *path, struct List *subPath);

flendif

23

4.2.2 List Implementation

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include "list.h”

5 #include "dirent.h"

6

7 void loadDirectoryTolList(char #*path, struct List *subPath){
8 char xbuffer;

9 DIR xdir;

10 struct dirent *ent;

11 int len;

12 if ((dir = opendir (path)) != NULL) {

13 /* print all the files and directories within directory */
14 while ((ent = readdir (dir)) != NULL) {

15 len = strlen(path) + strlen(ent->d_name) + 2;
16 buffer = (char *)malloc(sizeof(char)*len);

17 //printf("%s\n",ent->d_name);

18 strcpy(buffer, path);

19 strcat(buffer, "/");

20 strcat(buffer, ent->d_name);

21 struct Node * node = createStrNode(buffer, fdl_path);
22 addBack (subPath, node);

23 //buffer = "\0";

24 }

25 closedir (dir);

26 } else {

27 /* could not open directory */

28 perror ("");

29 exit(0);

30 }

31 }

32

33 struct Node *createIntNode(int data, enum fdl_type type) {
34 struct Node *newNode = (struct Node *)malloc(sizeof(struct Node));
35 if (newNode == NULL){

36 printf(”"Could not create new node!\n");

37 exit(1);

38 }

39

40 newNode->type = type;

41 newNode->next = NULL;

42 switch(newNode->type){

43 case fdl_int: newNode->int_item = data; break;

44 case fdl_bool: newNode->bool_item = data; break;
45 default: break;

46 }

47 return newNode;

48)

49

50 struct Node *createStrNode(char *data, enum fdl_type type) {
51 struct Node *newNode = (struct Node *)malloc(sizeof(struct Node));
52 if(newNode == NULL){

53 printf(”"Could not create new node!\n");

54 exit(1);

55 }

56

57 newNode->type = type;

58 newNode->next = NULL;

59 switch(newNode->type){

60 case fdl_str: newNode->string_item = data; break;
61 case fdl_path: newNode->path_item = data; break;
62 default: break;

63 }

64 return newNode;

65 }

66

67 void addFront(struct List *list, struct Node *node)

68 {

69 node->next = list->head;

70 list->head = node;

71}

24

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

void traverselList(struct List *list, void (*f)(struct Node *))

{
struct Node *node = list->head;
while (node) {
f(node);
node = node->next;
3
}
void printNode(struct Node *node)
{
switch(node->type){
case fdl_int: printf("%d\n",node->int_item); break;
case fdl_bool: if(node->bool_item == 1) printf("True\n");
else printf("False\n"); break;
case fdl_str: printf("%s\n",node->string_item); break;
case fdl_path: printf("%s\n",node->path_item); break;
3
}

int findNode(struct List *list, struct Node *nodel) {
struct Node *node2 = list->head;
while (node2) {
if(nodel->type == node2->type){
switch(nodel->type){

case fdl_int: if (nodel->int_item == node2->int_item) return 0; else break;
case fdl_str: if (strcmp(nodel->string_item, node2->string_item) == 0) return 0; else break;
case fdl_bool: if (nodel->bool_item == node2->bool_item) return 0; else break;

case fdl_path: if (strcmp(nodel->path_item, node2->path_item) == 0) return 0; else break;
default: return 1;

}
3
node2 = node2->next;
}
return 1;

}

void removeNode(struct List *list, struct Node *nodel) {

struct Node *node2 = list->head;
int del = 0;

struct Node *prev = list->head;
while (node2) {

if(nodel->type == node2->type){
switch(nodel->type){
case fdl_int: if (nodel->int_item == node2->int_item) { del = 1; break; } else break;

case fdl_str: if (strcmp(nodel->string_item, node2->string_item) == 0) { del = 1; break; } else break;

case fdl_bool: if (nodel->bool_item == node2->bool_item) { del = 1; break; } else break;

case fdl_path: if (strcmp(nodel->path_item, node2->path_item) == 0) { del = 1; break; } else break;

default: del = 0;

}
3
if(del == 0){
prev = node2;
node2 = node2->next;
}
else break;
3
if(del == 1){
if(node2 == list->head)
list->head = node2->next;
else
prev->next = node2->next;
free(node2);
3
else {
printf("List item not found.\n");
3

3

struct Node popFront(struct List xlist) {
struct Node *oldHead = list->head;
struct Node node = *oldHead;
list->head = oldHead->next;
free(oldHead);
return node;

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194

void removeAllNodes(struct List *list)
{
while (!isEmptyList(list))
popFront(list);
}

void addAfter(struct List *list,
struct Node *prevNode, struct Node *newNode)
{
if (prevNode == NULL)
addFront(list, newNode);

newNode->next = prevNode->next;
prevNode->next = newNode;

}

void reverselList(struct List *list)
{
struct Node *prv = NULL;
struct Node *cur = list->head;
struct Node *nxt;

while (cur) {
nxt = cur->next;
cur->next = prv;
prv = cur;

cur = nxt;

}

list->head = prv;

}

void addBack(struct List *list, struct Node *newNode)

{

newNode->next = NULL;

if (list->head == NULL) {
list->head = newNode;
return;

3
struct Node *end = list->head;
while (end->next != NULL)

end = end->next;

end->next = newNode;

26

e
= O © 0 N O Uk W N

e e e
[SLENF NV N

4.3 Paths
4.3.1 Path Header

#ifndef _PATH_H_
#define _PATH_H_

char* getName(char *path, char *xoutput);
int checkValid(char =*path);

int getCreatedAt(char #*path);

int getPathType(char #*path);

int isDir(char =*path);

char* getPathName(char =*path);

int copyFile(charx src, char *dest);

int moveFile(charx src, char *dest);

char* getExtension(char #*path);

char* stringConcat(char *stri1, char *str2);

#endif

27

=
= O © 0 N0 ke W N

NN o0 000 o000 o0 o0 oot gr Ot ot Ot Ot Ot Ot s s R s R R R R R R W W W W W W W W W W NNNNNDNNNN R e e
N H O © 0O Uk WN=EO© OO WN RO OO0 U R WN R OO0 ORI WN RO ®© N OREWNHEO®©OWNO O WN

4.3.2 Path Implementation

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sys/stat.h”
#include "time.h"
#include<libgen.h>

// test function
char* getName(char #*path, char *output){
char xdirc, *basec, *bname, *dname;

dirc = strdup(path);

basec = strdup(path);

dname = dirname(dirc);

bname = basename(basec);

//printf("dirname=%s, basename=%s\n", dname, bname);
strcpy(output, dname);

return output;

3

int checkValid(char *path){
/* testing the stat sys call for files and directories */
struct stat info;
if (stat(path, &info) != 0)
return 0;
else
// can be valid directory or file
return S_ISDIR(info.st_mode) ? 1 : S_ISREG(info.st_mode);
}

// returns -1 in case of invalid path
int getCreatedAt(char *path){
if(checkValid(path)){
struct stat info;
stat(path, &info);

return (int) info.st_birthtime;
Yelse
return -1;

3

// Directory 1, File 0, invalid path -1
int getPathType(char *path){
if(checkValid(path)){
struct stat info;
stat(path, &info);

return S_ISDIR(info.st_mode);
Yelse
return -1;

3

int isDir(char *path){

if(checkVvalid(path)){
struct stat info;
stat(path, &info);

return S_ISDIR(info.st_mode);
Yelse
return -1;

}

// get the last directory or filename
char* getPathName(char* path){
if(checkvalid(path)){
char xbasec = strdup(path);
char xbname = basename(basec);
return bname;
Yelse
return NULL;

28

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

int copyFile(char* src, char *dest){

}

char copycommand[1000];
if (checkvalid(dest) == 0) {
char temp[1000] = "mkdir -p ";
strcat(temp, dest);
system(temp);
}
sprintf(copycommand, "/bin/cp %s %s", src, dest);
return system(copycommand);

int moveFile(char* src, char *dest){

}

char movecommand[1000];

if (checkValid(dest) == 0) {
char temp[1000] = "mkdir -p ";
strcat(temp, dest);
system(temp);
¥
sprintf(movecommand, "/bin/mv %s %s", src, dest);
return system(movecommand);

char* getExtension(char #*path){

3

char xptr = rindex(path, ’.’);
return strdup(ptr);

char* stringConcat(char *str1, char #*str2){

3

char xstrdupl = strdup(stri);
char xstrdup2 = strdup(str2);
strcat(strdupl, strdup2);
return strdupl;

29

© 0 N O U W N =

NN N R R R e e e e
W N H O W XN W N = O

n

N
]

5 FDL Demos

5.1 HTML
def int main()
path src = "./demo/site"”
path js = "./demo/site/js"
path css = "./demo/site/css”
path imgs = "./demo/site/images”
path html = "./demo/site/html”
path f
for (f in src)
if (f.type == ".js") then
js <<= f
end
if (f.type == ".css") then
css <<- f
end
if (f.type == ".jpeg") then
imgs <<- f
end
if (f.type == ".html"” && f.name != "index.html") then
html <<- f
end
end
return 0

end

© 0 N O O AW N

W W W W W W W W wWNNNDDNDNDNDNNDN = = e e e e e e e
W 9 3 Ok WO © 000U R WN = O ®© OO WN = O

5.2 Duplicates

def int main()

path dir1 = "./demo/duplicates/fdl_copy”

path dir2 = "./demo/duplicates/fdl”
path trash = "7/.Trash”

path filel

path file2

int check = 0

string a

string b

list 1

1=11

for (filel in dir2)
a = filel.name
1.add(a)

end

1.remove(”.")
1l.remove(”..")
1.remove("”.DS_Store")

for (file2 in dir1)
b = file2.name
if b in 1 then
print "Duplicate Found”
print b
trash <<- file2
check =1
end
end

if (check != 1) then
print "No duplicates found”
end

return 0
end

31

© 0 N O O AW N

W oW W W W W W WNNRNNINDNINNINILNRE B R 2 2 = 2 e e
N OO R WO © 00O R WN = O ®© OO W N = O

5.3 Same File Type Different Directories

def int main()

path d1 = "."
path d2 = "./c"
path f1

path f2

list 1

string a
string b

int check = 0

1 =11

for (f1 in d1)
if (f1.kind == 1) then

a = f1.type
1.add(a)
end

end

1.remove(”.")
1l.remove(”..")
1.remove("”.DS_Store")

for (f2 in d2)
b = f2.type
if b in 1 then
print "type " + b
print f2.name
check =1
end
end

if (check != 1) then

print "No files of same type found”

end

return 0

end

32

W N O Uk W N N O U W N = W = 3 Uk W N QTR W N =

© 0 N OO A W N

6 FDL Tests

inta=1+2

def int main()
intb=a+2
print a + b
return 1

end

int a
def int main()
int b
a=2
b = a+1
print b
return 0
end

int a
def int main()
a=0
a::
print a==0
return 0
end

bool b
def int main()
b =0
print b
b = false
print b
return 0
end

def int main()
bool a = true
print a
a=1==
if(1 <2 ==

print true

end
return 0

end

== 0) then

33

= e
= O © 0 N O O W N

Jun
N

o G W N =

(S N U

© 0 N O AW N

def int main()
bool a
bool b
bool ¢
a=1==
b = 1<1
c=allb
print a
print b
print c
return 0

end

int a

def int main()
int b
print 1/2
return 1

end

def int main()
print 1==
print 1==
return 1

end

def int main()
path file
path file2
path dir
file = "/Users/cjborenstein/Desktop/file.txt"
file2 = "/Users/cjborenstein/Desktop/file2.txt"
dir = "/Users/cjborenstein/Desktop/"
return 1
end

34

= e
= O © 0 N O O W N

e e
D e W N

17
18
19
20
21
22
23

© 00 N O U RE W N =

e
= o

© 00 N O U W N =

e
N o= O

13
14
15
16
17
18
19
20
21
22

def void findAndCopy()
path loc1 = "./sample_program/copy.txt"
path locldest = "."
path loc2 = "./copy.txt"
path loc2dest = "./sample_program”

/* move the file out if it exists*/
if (locl.kind != 0) then

locldest <<- locl

print "moved”
end

/* copy the file backx*/
loc2dest <- loc2
print "copied”

return
end

def int main()
findAndCopy ()
return 0

end

def void fun(int a)
print a
return

end

def int main()
int a
a=5
fun(5)
return 0
end

def void findAndMove()
path loc1 = "./sample_program/move.txt"
path locldest = "."
path loc2 = "./move.txt"
path loc2dest = "./sample_program”

if (locl.kind != 0) then
locldest <<- locl
print "moved to”
print locldest

else
loc2dest <<- loc2
print "moved to”
print loc2dest

end

return

end

def int main()
findAndMove ()
return 0

end

35

= e
= O © 00 N O Ul W N =

Jun
]

© 0N OO s W N

NN NN N NN E R R R R e e
N O R WN R O ©00NNO U WN = O

© 0 N OO s W N

R e e
_ W N = O

15

16

def int main()
path f
path dir =
int count = 0
for (f in dir)
print count

non

print f
count = count + 1
end
return 1
end

def int main()
path f
path dir
path dest

dir = "./test/src”
dest = "./test/dest”
print "destination "
print dest.kind
/* moving to destination */
for (f in dir)
if (f.kind == 0) then
print f
dest <<- f
end
end

/* moving back */
for (f in dest)
if (f.kind == 0) then
dir <<- f
end
end

return 1
end

def int gcd(int a, int b)
while (a != b)
if(a>b) then
a=ab
else
b = b-a
end
end
return a
end

def int main()
int g = gcd(15, 30)
print g
return 0

end

36

TR W N = QU W N =

= e
= O © 0 N O Ok W N

"
)

© 0N OO W N

= e
N R O

N OO R W N =

DGk W N

def int main()
print 1>=2
print 1>=1
print 2>=1
return 1

end

def int main()
print 1>2
print 2>1
return 1

end

int a
def int main()
int b

a=0
b =3

if (a==0) then
print b
end
return 0
end

def int main()
int a
int b
bool ¢
a=1
b =2
c=a<hb
if (a<b) then

print b

end
return 1

end

def int main()

list 1
1 =1["a","b",1,2,3]
if 1 in 1 then print 1
return 0
end

def int main()
print 1<=0
print 1<=1
print 1<=2
return 1

end

37

Ut W N = W = 3 U W N = N O U R W N = [e L TR W

DGR W N

def int main()
print 1<1
print 1<2
return 1

end

def int main()
list 1
1=1[1,2]
1.add(3)
1.remove(1)
print 1
return 0

end

def int main()
list 1
1 =1[3]
1.remove(1)
print 1
return 0
end

def int main()
list 1
1=11]
1.add(3)
1.remove(1)
print 1
return 0

end

def int main()
list 1
1=11
return 0
end

def int main()
list 1
1=_["a","b",1,2,3]

return 0
end

38

© 0N OO AW N

[un
[=}

e
= O © 0 N O Uk W N

e e e e
© 00 N O U W N

[R N N o I e S N

D Ut W N

/* using local var b */
int a

def int main()
int b
a=2
b=a+1
print b
return 0
end

int a

def int main()
path home
home = "./sample_program/sample_path.fdl”

/*print home
print home.namex/

print home.type
print "\n"
if(home.kind == 2) then

print "we have a directory here”
else

print "we have a file here here”
end

return 1
end

int a

def int main()
int a
a=2
print a
return 0

end

def int main()
int b
print "home/"+"files"
return 1

end

int a

def int main()
int b
print 1-2
return 1

end

39

o s W N =

int

def int main()

a

int b
bool ¢

a
b
c

while (a<b)

=0
=3
=a<hb

b=a

end
return 1

end

int

def int main()

a

int b
print 1%2
return 1

end

40

