
PubCrawl Project Proposal
COMS W4115

Matt Dean, Sireesh Gururaja, Kevin Mangan, Alden Quimby
mtd2121, skg2123, kmm2256, adq2101

September 25, 2013

1 Description

PubCrawl is a distributed systems programming language with a focus on list operations. Given some number
of networked slave computers, it will automatically split work up among them, requiring the developer only
to specify whether a function should distribute work or not. To create a robust platform, we will also
implement redundant processing, so that processed data is not lost in the case of an unstable network.

To distribute work, the developer will specify the IP addresses of the slave computers, which will be
running a slave server utility. When the output program is run, it sends compiled and serialized functions to
the remote servers. It then passes data to each slave computer as the functions are called. This is blocking
- the program does not continue until all the results have been received.

2 Proposed Uses

Pubcrawl helps you distribute your computationally extensive or network related problems across multiple
machines in a cluster. Those machines can chip away at their portion of the problem and then send results
back to the master machine. A simple analogy for this type of problem would be counting the number of
books in the library. It would be much faster to have two people counting (one person counts the even
numbered shelves, and the other counting the odd shelves). When finished, they just combine their numbers
to produce the result.

One concrete use case is counting the appearance of a word in a large set of HTML pages. With PubCrawl,
you would easily be able to have each node fetch certain URL’s, count the number of word appearences, and
return them to the master for further computation.

3 Syntax

3.1 Comments

Comments will be the same as in java. It’s simple and widely understood.

// single line comments start

/*

multi-line comments

*/

/*

/* this breaks */

// this, however, works

*/

/* this will break too /* */

1



3.2 Variable declaration

Variables are defined via classic imperative programming standards. Whatever name is on the left hand side
is given the value of the result of the right hand side. And equals sign splits the two. There’s no keyword
”var” or type declaration. Types are inferred and variables can be overwritten, much like javascript.

3.3 Types

Strings will use single quotes, and single quotes only!

name = ’Alden’;

hiThere = ’Hi, my name is {{name}}’; // built in formatting

hereisasinglequote = ’\’’; // backslash escape

Numbers will be... well numbers.

n1 = 4;

n2 = 5.0; //no special "floats", everything’s just a number

Unlike in a language such as javascript, only three things make a correctly formatted boolean expression.

b1 = true;

b2 = false;

b3 = null; //will resolve to false

pubCrawl is object oriented and objects will strictly follow JSON syntax. We find JSON syntax elegant plus
it will allow for seamless network integration.

o1 = {};

o2 = {

p1: ’hey’,

’p2’: {

p3: 7

},

myFunc: (x,y) -> x + y

};

Object access is similar to javascript, if not identical.

thisIsHey = o2.p2;

alsoHey = o2[’p2’]; // must be a string, o2[7] is invalid

// allows for cases where you must access via "[]"

weirdObj = {

’72’: ’hey’,

’c.o.o.l’: ’dude’

};

weirdObj.72; // fails

weirdObj[’72’]; // ’hey’

weirdObj.c.o.o.l; // fails

weirdObj[’c.o.o.l.’]; // ’dude’

// keys is also available to all objects, returns strings

k = o2.keys; // [’p1’, ’p2’, ’myFunc’];

2



Lists? Arrays? It’s all just a collection to pubCrawl. They’re a simple, easy to use structure with random
access, add and removal, and subsets. In addition, strings are handled like a list of single string characters,
this allows list functions to work for strings. ”ABC” = [”A”,”B”,”C”]

// collection creation

l1 = [];

l2 = [1,2,3,4,5,6];

// access

five = l2[4];

oneTwoThree = l2[0:2];

copyOfL2 = l2[:];

// modification

oneTwoThree.add(4); // now [1,2,3,4]

oneTwoThree.remove(2); // now [1,3,4]

mystring = ’ABCDEFG’;

DEF = mystring[3:5];

3.4 Control Flow

pubCrawl includes basic control flow. Notably we use ”elif” instead of ”else if” but otherwise it’s just like
java (but without those annoying do-whiles).

// conditionals (else is not required)

if (bool) {

// do stuff here

}

elif (otherBool) {

// more stuff here

}

else {

// other stuff

}

// foreach loops

for (item in list) {

}

// for loops

for (i = 0; i < 10; i++) {

}

// while loops

while (bool) {

}

3



3.5 Functions

Functions are a big part of what makes pubCrawl great. We have super simple function declaration as well
as some syntactic sugar to keep your code clean and easy to read. Taking a chapter out of the functional
programming book, all functions must return a result since everything is pass by value. Additionally,
functions are first class objects and can be passed as arguments to other functions. This will come in handy
later on.

// declaration

add(x,y) -> x+y; //notice no brackets = no return statement

square(num) -> {

if (true) {

return num*num;

}

return 7; // return statement REQUIRED if braces

} // no semi-colon needed to end function if braces

// calling

seven = add(5,2);

// all functions can also be called as extensions on the first argument

alsoSeven = 5.add(2);

3.6 IO

pubCrawl provides some simple IO. Standard in and out, file read and write, as well as simple web down-
loading is all supported.

// read to EOF

input = read(); // stdin

input = read(’path/to/file.txt’); //returns collection of lines

// write

print(’Hello World’); // stdout

print(’Hello World’, ’path/to/file.txt’);

//download

download(’http://www.google.com’); //returns a string

download(’http://images.mywebsite.com/myimage.png’);//returns bytes

3.7 Distribution

The true magic of pubCrawl is in one, special function called ”distribute”. This function is the equivalent
of a ”map” function, however it splits the work across any slaves that are available. Distribute returns a
special object that holds some information about the node, if there was an error, as well as the input and
output objects. This allows the programmer to handle the results however (s)he wants. Distribute is most
elegantly called as an extension function on any list as seen in the example below.

4



urls = [’google.com’, ’apple.com’, ’amazon.com’];

// getPageTitle is defined somewhere else

// it downloads the url and finds the title on the page

results = urls.distribute(x -> getPageTitle(x));

// results is a collection of special objects:

/*

{

’ip’: ’129.324.1.1’, // IP address of slave where task ran

’error’: ’’, // error message if something failed

’input’: ’amazon.com’, // input object for task

’output’: ’Amazon.com: Online Shopping for...’ // result of task

}

*/

3.8 Utilites

pubCrawl will come preloaded with some basic utilites to help programmers get off the ground running. Since
pubCrawl is all about working with collections and data, we’re including map, filter, and any functions. To
aid with string manipulation, we’ll also provide a find function.

// part of a standard library to make list processing easier

// filtering

filtered = results.where(x -> x % 2 == 0);

alsoFiltered = results.where(x -> {

return x % 2 == 0;

});

// mapping

mapped = results.map(x -> x.name);

alsoMapped = results.map(x -> {

if (x == 5) {

return 9;

} else {

return 8;

}

});

//find

longString = ’Today was a great day!’;

locationWas = longString.find(’was’); //returns 6

locationHey = longString.find(’hey’); //returns -1, aka not found

4 Example Programs

4.1 Bubble Sort

Just a simple algorithm example.

5



bubble(values) -> {

swapped = true;

while(swapped) {

swapped = false;

for(var i = 0; i < values.length-1; i++) {

if (values[i] > values[i+1]) {

var temp = values[i];

values[i] = values[i+1];

values[i+1] = temp;

swapped = true;

}

}

}

return values;

}

mylist = [7, 4, 5, 2, 9, 1];

mylist = mylist.bubble();

print(mylist); // 1, 2, 4, 5, 7, 9

4.2 Downloading Xkcd Comics

This time we’re using the cluster to help us out! Let’s download the first 100 comics from xkcd.com.

getComic (id) -> {

wholeSite = download(’http://xkcd.com/’ + id);

imgChunk = wholeSite.split(’<’)

.where(x->x.contains(’imgs.xkcd.com/comics’));

if(imgChunk.length!=1){

return null; //couldn’t find a picture

}

else{

httpStart = imgChunk.find(’http’);

jpgEnd = imgChunk.find(’jpg’) + 3;

return download(imgChunk[httpStart:jpgEnd]);

}

}

// The real magic happens here, each machin in the cluster splits the

// load of the getcomic function across numbers 1-100

pics = range(1, 100).distribute(x -> getComic(x));

// save all images to disk

for(result in pics) {

print(result.output, ’xkcdimg’ + result.input + ’.jpg’);

}

4.3 Distribute some tough math

What if we had a super cluster at our disposal? We could do tricky and time consuming tasks such as
finding the prime factorization of many numbers. We’re using a very basic algorithm in this case, but prime
factorization is a resource consuming process nonetheless.

6



//a simple prime sieve

getPrimes (max) -> {

myPrimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59

,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139

,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227

,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311

,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401

,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499];

return myPrimes.where(x->x < max); //perfect filter example

}

//basic prime factoring algorithm

trial_division(n) -> {

if(n == 1) {

return [1];

}

primes = getPrimes(n/2 + 1);

prime_factors = [];

for(p in primes) {

while (n % p == 0) {

prime_factors.add(p);

n = n/p;

}

}

if (n > 1) {

prime_factors.add(n);

}

return prime_factors;

}

// prime factorize every number up to 1000

range(0, 1000).distribute(trial_division)

.map(x -> print(x.input + ’: ’ + x.output));

7


