
GAMMA: A Strict yet Fair Programming Language

Ben Caimano - blc2129@columbia.edu
Weiyuan Li - wl2453@columbia.edu

Matthew H Maycock - mhm2159@columbia.edu
Arthy Padma Anandhi Sundaram - as4304@columbia.edu

A Project for Programming Languages and Translators,
taught by Stephen Edwards

Why GAMMA? – The Core Concept

We propose to implement an elegant yet secure general purpose object-oriented programming language.
Interesting features have been selected from the history of object-oriented programming and will be combined
with the familiar ideas and style of modern languages.

GAMMA combines three disparate but equally important tenants:

1. Purely object-oriented

GAMMA brings to the table a purely object oriented programming language where every type is
modeled as an object–including the standard primitives. Integers, Strings, Arrays, and other types
may be expressed in the standard fashion but are objects behind the scenes and can be treated as such.

2. Controllable

GAMMA provides innate security by choosing object level access control as opposed to class level
access specifiers. Private members of one object are inaccessible to other objects of the same type.
Overloading is not allowed. No subclass can turn your functionality on its head.

3. Versatile

GAMMA allows programmers to place ”refinement methods” inside their code. Alone these methods do
nothing, but may be defined by subclasses so as to extend functionality at certain important positions.
Anonymous instantiation allows for extension of your classes in a quick easy fashion. Generic typing
on method parameters allows for the same method to cover a variety of input types.

The Motivation Behind GAMMA

GAMMA is a reaction to the object-oriented languages before it. Obtuse syntax, flaws in security, and
awkward implementations plague the average object-oriented language. GAMMA is intended as a step
toward ease and comfort as an object-oriented programmer.

The first goal is to make an object-oriented language that is comfortable in its own skin. It should natu-
rally lend itself to constructing API-layers and abstracting general models. It should serve the programmer
towards their goal instead of exerting unnecessary effort through verbosity and awkwardness of structure.

1

The second goal is to make a language that is stable and controllable. The programmer in the lowest
abstraction layer has control over how those higher may procede. Unexpected runtime behavior should be
reduced through firmness of semantic structure and debugging should be a straight-forward process due to
pure object and method nature of GAMMA.

GAMMA Feature Set

GAMMA will provide the following features:

• Universal objecthood

• Optional “refinement” functions to extend superclass functionality

• Anonymous class instantiation

• Static typing with generic method parameters

• Access specifiers that respect object boundaries, not class boundaries

ray: The GAMMA Compiler

The compiler will proceed in two steps. First, the compiler will interpret the source containing possible
syntactic shorthand into a file consisting only of the most concise and structurally sound GAMMA core.
After this the compiler will transform general patterns into (hopefully portable) C code, and compile this to
machine code with whatever compiler the user specifies.

Code Example

Example 1: Personhood
1 Class Person :
2 Protected :
3 ## ins tance v a r i a b l e s have a type an ac c e s s c l a s s
4 St r ing f i r s t name
5 St r ing last name
6
7 ## con s t ru c t o r s take arguments , i n i t i a l i z e s t a t e
8 i n i t (S t r ing f i r s t name , S t r ing last name) :
9 t h i s . f i r s t name = f i r s t name

10 t h i s . last name = last name
11
12 Publ ic :
13 ## methods can return va lue s and can be s p e c i a l i z e d
14 ## via re f inement
15 St r ing toS t r i ng :
16 St r ing r e s u l t = th i s . f i r s t name + ” ” + th i s . last name + ” i s be ing s t r i n g i f i e d ”
17
18 ## Only use t h i s l i n e i f we have a de f ined
19 ## r e f i n i n g method
20 i f r e f i n a b l e (ext ra) :

2

21 r e s u l t = r e s u l t + ” in to a ” + r e f i n e ext ra ()
22
23 r e s u l t = r e s u l t + ” !”
24
25 re turn r e s u l t
26
27 Class Student extends Person :
28 ## subc l a s s e s have t h e i r own data
29 Pr ivate :
30 St r ing l e v e l # Freshman , e t c . . .
31
32 Protected :
33 ## Subc l a s s e s have to invoke t h e i r supe r c l a s s ,
34 ## ju s t l i k e in common OOP languages (java / e tc)
35 i n i t (s t r i n g f i r s t , s t r i n g l a s t , s t r i n g grade) :
36 super (f i r s t , l a s t)
37 t h i s . l e v e l = grade
38
39 Publ ic :
40 ## Now we can r e f i n e !
41 St r ing toS t r i ng . ext ra :
42 St r ing l e v e l r e s u l t = t h i s . last name + ” , ” + th i s . f i r s t name + ” i s a ” + th i s . l e v e l
43 p r i n t l n (l e v e l r e s u l t)
44 re turn l e v e l r e s u l t
45
46 ## Cal l our c l a s s
47 Person average = new Person (” John ” , ”Smith ”)
48 p r i n t l n (average . t oS t r i ng)
49
50 p r i n t l n (””)
51
52 Student very smart = new Student (” Roger ” , ”Penrose ” , ”Graduate Student ”)
53 p r i n t l n (very smart . t oS t r i ng)

The above program should print:
John Smith is being stringified!

Penrose, Roger is a Graduate Student
Roger Penrose is being stringified into Penrose, Roger is a Graduate Student!

3

