File and Directory Manipulation Language (FDL)

Rupayan Basu rb3034@columbia.edu
Pranav Bhalla pb2538@columbia.edu
Cara Borenstein cjb2182@columbia.edu
Daniel Garzon dg2796@columbia.edu
Daniel L. Newman dIn2111@columbia.edu

October 28, 2013

mailto:rb3034@columbia.edu
mailto:pb2538@columbia.edu
mailto:cjb2182@columbia.edu
mailto:dg2796@columbia.edu
mailto:dln2111@columbia.edu

Table of Contents

1. Introduction
2. Data Types

2.1. int
2.2. bool
2.3. string
2.4. path

2.4.1. name
2.4.2. created_at
2.4.3. modified_at

2.4.4. kind
2.5. dict
2.6. list

3. Lexical Conventions
3.1. Identifier
3.2. Comments
3.3. End of Statement
3.4. Keywords
3.5. Constants
4. Functions
4.1. Function Definitions
4.2. Built-in Functions
4.2.1. len
4.2.2. keys
4.2.3. values
4.2.4. delete
4.2.5. append
4.2.6. print
5. Expressions and Operators
5.1 Primary Expressions
5.1.1. Identifier
5.1.2. constant

5.1.3. bool
5.1.4. string
5.1.5. path
5.1.6. ()

5.1.7. function declarations
5.2. Multiplicative Operators

5.2.1. *
5.2.2. /
5.2.3. %
5.3. Additive
5.3.1. +

5.3.2. -

8.

5.4. Relational and Equality Operators
54.1. <

54.2. >
5.4.3. <=
5.4.4. >=
5.4.5. ==
5.4.6. I=
5.5. Logical Operators
5.5.1. &&
5.5.2. ||
5.6. Assignment Operators
5.6.1. =
5.7. Move <<-
5.8. Copy <-

5.9. Comma Operator

Declarations
6.1. Variable Declaration
6.2. Function Declaration

Statements

7.1. Statement Definition
7.2. if

7.3. while

7.4. break

7.5. continue

7.6. for

7.7. return
Scoping and Indentation
References

2.

Introduction

File and Directory Manipulation Language (FDL, pronounced “fiddle”) provides a simple
and intuitive syntax for managing file systems. By providing the user with new data types,
and an extensive list of mathematical and logical operators, what used to be tedious and
time consuming will now be easy and fast. Users can write programs that organize their
file systems by conveniently copying/moving files and directories to different locations,
and removing files and directories from specific file paths, through the use of special
operators. Users can loop through subdirectories and files contained within a chosen
directory, with a template to browse the file/directory tree stemming from that directory.
Files/Directories can be organized by the built-in attributes spanning from last modified
date to size. Built-in data structures like list and dict allow users to conveniently store and
access groups of files/directories.

Data Types

2.1. int: The set of all integers in the range of -2731 - 1 to +2731 + 1.

2.2. bool: A binary variable having two values, 1 for true and 0 for false. Used in
conditional statements, such as if and while. Can be used to compare paths, lists,
dictionaries and integers.

2.3. string: A sequence of characters surrounded by double quotes.

2.4. path: String that specifies a valid location of a file or directory in the file system for
which the following attributes are defined:

2.4.1. name: Field that holds the name of the file or directory.

2.4.2. created_at: Field that holds the date when a file or directory was created.

2.4.3. modified_at: Field that holds the date of the last time a file or directory was
modified.

2.4.4. kind: Field that holds the kind of the path. It will return file or directory.

2.5. dict: A dictionary is an associative array containing a collection of primitives,
indexed by a key that is a singleton integer, or a string containing a path.

2.6. list: A list is an unordered collection of primitives. It can contain zero or more
elements that are indexed by an integer value that gets incremented every time an
element is appended.

Lexical Conventions

3.1. Identifier
An identifier is a sequence of lowercase and uppercase letters, digits (0-9) and
underline *_". Each identifier begins with a lowercase letter or underscore.
3.2. Comments
Comments are specified by a double slash “//” and can take up only one line.
//this is an example comment
3.3. End of Statement
A newline ‘/n’ specifies the end of a statement and a tab '\t’ specifies the scope
3.4. Keywords

3.5.

Keywords are special identifiers reserved as part of FDL itself. Here is the list of
keywords recognized by FDL.:

path, bool, dict, list, int, if, else, then, while, for, in, do, true, false, return,
break, continue, def, trash, main

Constants

FDL has string constants called paths. They specify the location of a file or
directory in memory. FDL has a special path called trash which stores the path a
file is moved to for deletion. FDL also stores the following escape sequences as
constants:

Newline “\n”, Tab “\t”, Double Quotation “\"”

4. Functions

4.1.

Function Definitions

-A function definition in FDL begins with the keyword ‘def’, followed by the return
type, function name and a parenthesized list of input parameters, with each
parameter preceded by the type. The statements that form the body of the
function begin on the next line, indented by a tab. The ‘return’ keyword is used to
return values to the calling statement.

-Every valid FDL program must have a ‘main’ function which is always executed
first. The ‘main’ keyword is reserved.

-All user defined functions must be defined before the main function, at the top of
the program.

-No statements can exist outside function definitions

Example:
//Function to return all files in a directory and its sub-directories up to a
//given depth
def list listAllFiles(path dirPath, int depth)
list fileList = []
dict dirDepth = {dirPath = 1}
int currentDepth

for Dir in (keys(dirDepth)) do
if dirDepth{Dir} <=depth then
currentDepth = dirDepth{Dir}
for item in Dir do
if isFile(item) then
fileList = append(fileList, item)
else
dirDepth{item} = currentDepth + 1
return fileList

4.2. Build-in Functions
4.2.1. len - takes a path/string/dict/list variable as input and returns the ‘length’
based on the following definitions:
path: length = depth of the directory/file at the end of the path with
respect to the directory at the beginning of the path
string: length = number of characters in the string
dict: length = number of key-value pairs in the dictionary
list: length = number of items in the list
4.2.2. keys - takes a dictionary type variable as input and returns a list of all the
keys found in a dictionary. If the dictionary is empty it returns NULL.
4.2.3. values: takes a dictionary type variable as input and returns a list of all the
values found in a dictionary. If the dictionary is empty it returns NULL.
4.2.4. delete - takes a dictionary type variable, and a key, as input and deletes an
entry of a dictionary. If the key is invalid, the function will return NULL, else it
deletes the entry and returns TRUE.
4.2.5. append - takes a list variable and a variable to be appended to the list, and
returns a new list with new variable appended at the end.
4.2.6. print - takes a list of arguments separated by commas, converts them to a
string and displays them in the console.

5. Expressions and Operators

5.1. Primary Expressions

5.1.1. identifier
An identifier is a primary expression, declared with a type, that can be assigned a
value of that type, to which it refers

5.1.2. constant
An integer is a primary expression of type int.

5.1.3. bool
A bool is an int, storing the value 0 or the value 1.

5.1.4. string
A string is a primary expression composed of ASCII characters.

5.1.5. path
A path is a primary expression, in the format of a string. It refers to a valid path of
a file or directory from the current directory of the program or originating in the
home directory of filesystem

5.1.6. (expression)
A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. Parenthesis are used to indicate
precedence, to compute the values inside the parentheses before handling the rest
of the associate expressions from left to right.

5.1.7. def primary-expression (expression-list)
“A function call is a primary expression preceded by the reserved word “def” and
followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the actual arguments to the function. The primary
expression must be of type “function returning . . .”, and the result of the function
call is of type ™. . . """

5.2.

5.3.

5.4.

5.1.8. dict { key }

The curly brackets “{" "}” are used to access the dictionary elements where the
variable before the starting bracket is the dictionary name and the variable inside
the brackets is the key. It can be used to create and update elements in the
dictionary
The curly brackets are also used to add and create dictionary elements.

dict dirDepth = {dirPath = 1}

dirDepth { “/home” } = 0

5.1.9. list [index]

The square brackets “[" “]” are used to access list elements, where the variable
before the starting bracket is the list variable and the variable inside the brackets is
the index of the element.

list fileList = []

Multiplicative operators
The multiplicative operators *, /, and % group left to right, and are used only for
mathematical operations with ints

5.2.1. expression * expression

The binary * operator indicates multiplication.

5.2.2. expression / expression

The binary / operator indicates division.

5.2.3. expression % expression

The binary % operator yields the remainder from the division of the first
expression by the second.

Additive operators
The additive operators + and - group left to right.

5.3.1. expression + expression

The result is the sum of the expressions. If both operands are int, the result
is int. If one of the expressions is a string, the result is a string, in the form of
the second expression concatenated to the end of the first expression.

5.3.2. expressionl - expression2

The result is the difference of the operands. Both operands must be int and
the result is int.

Relational and Equality operators
The relational operators group left to right, and return the boolean pertaining to the
truth of the expression (1 if true, O if false)

5.4.1. expression < expression
5.4.2. expression > expression
5.4.3. expression <= expression
5.4.4. expression >= expression
5.4.5. expression == expression
5.4.6. expression != expression

5.5. expression && expression
The && operator returns 1 if both its operands are nonzero, 0 otherwise. .

5.6. expression || expression
The || operator returns 1 if either of its operands is nonzero, and 0 otherwise.

5.7. Assignment operators
There are a number of assignment operators, all of which group right to left. All
require an lvalue as their left operand, and the type of an assignment expression is
that of its left operand. The value is the value stored in the left operand after the
assignment has taken place.

5.8. Ivalue = expression
The value of the expression replaces that of the object referred to by the Ivalue.

5.9. Move and Copy operators

The <<- and <- operators group left to right, and are used to move or copy the
file/directory of path_scr to the directory path_dest on the left of the operator

5.9.1. path_dest <<- path_src
The file/directory in path_src is moved into the path_dest directory.
The below code moves the path to trash

trash <<- “"home/fdl.pdf”

5.9.2. path_dest <- path_src

The file/directory in path_src is copied into the path_dest directory.
5.10. Comma Operator

It is used to separate function arguments.

6. Declarations

6.1. Variable Declarations
Variables must be declared before they are used in the program, except for the
ones that are used as “iterators” in for loops. A variable declaration has the
following form:

var_type var_name

The var_type can be int, bool, list, dict, string or path. The var_name can be any
valid identifier which is letter followed by any number of letter or digits. If a variable
is declared, in the following assignment, value assigned to the variable must have
exactly the same type as declared. Variables can also be initialized during the
declaration. A declaration with initialization has the following form:

var_type var_name = expression
The expression must have exactly the same type as var_type.

path variables are declared like other variables with the path keyword before the
identifier. A string can be assigned to the path variable and interpreted as a “path”

6.2.

to a directory or file in the file system.
Also we allow path variables to be used as “associative arrays” in for loops. That is
to say we can write

for (file in path_variable)

Here, for and in are keywords and file and path_variable are variables. The
path_variable must be declared whereas the file variable need not be declared
beforehand. It is automatically interpreted as a variable of type path that loops
through all the sub-paths in path_variable.

Function Declaration
A function declaration has the following format:

def return_type function_name (arg_type argl_name, arg_type
arg2_name,)

We use the keyword def to identify that what follows is either a function
declaration or definition. return_type and arg_type are one of the predefined types
int, bool, list, dict, string or path. function_name and argl_name and the other
arguments can be any valid identifiers.

7. Statements

7.1.

Statement
A statement is composed of expressions, which can be grouped by operators. We
use newline to separate one statement from the next.

string strl
string str2
strl = str2 + " hello ™

The above code snippet has 3 statements that are separated by the newline
character (*\n’).

7.2.

7.3.

7.4.

If Statement
If statement consists of keywords if, then and else. It has the following two
varieties:

if (expression) then
statement

if (expression) then
statementl
else
statement2

The expression must be of bool. To ensure scope the statements must be indented
inside the if using the tab. In the first case, if the expression is evaluated to true,
then statement is executed. Otherwise statements after the if statement is
executed. In the second case, if the expression is evaluated to true, then
statementl is executed, otherwise statement2 is executed.

While Statement

While statements consists of keyword while and it allows a statement to be
executed for any number of times, until the expression evaluates to false. It has
the following format:

while (expression)
statement

The expression must be of type bool. To ensure scope the statements must be
indented inside the while using tab. The expression is evaluated before the
execution of the statement and statement will be executed until the expression is
evaluated to false.

Break Statement

Break statement consists of keyword break. It's used to jump out of the while or
for loop and hence must always be used inside one of these two. The following is
an example of using break

statement

while (true)
break

10

7.5.

7.6.

7.7.

Continue statement

Continue statement consists of the keyword continue. It's used to pass control to
the next iteration of a while or for loop and hence must always be used inside one
of these two.

while (true)
i=i+1
if (i <10) then
continue
else
break

For Loop Statement

for loops are used to iterate through a list of paths or a path to a directory, we
interpret the variable given as an associative array and we iterate through their
sub-paths one at a time. for, in and do are the keywords that are used to define
the for loop.

for file in path_variable do
statement

for file in list_variable do
statement

the statement that needs be run over repeatedly needs to be indented inside the
for statement.

Return Statement

Return statement consists of keyword return. A function must have a return
statement to return its value to its caller. It can return an expression that is
evaluated to type path, int, bool or string, or it can return nothing when the
function uses void as its return type.

return expression
return

11

Scoping and Indentation

Our language is modeled on the python rules for indentation and scope, where whitespace
is used to delimit program blocks. It does away with the requirement of putting braces(“{
}") around code blocks, but we require some extra symbols to detect the end of if, for
and while expressions which has already been explained in the previous sections.

We compare two code in our language and in C for better understanding. The following
code is C.
void foo(int x)
{
if (x ==10){
bar();
} else {
foo(x - 1);
b
¥

Now the same program in our language
def void foo(int x)
if (x == 0) then
bar()
else
foo(x - 1)

Scope of variables is within the code blocks they are declared, similar to the code block
scoping rules in C. Functions are of global scope from the position they are defined till the
end of code. Function calls are possible as long as the target function has been defined
before the current position.

References
9.1. Ritchie, D. M., “"C Language Reference Manual”, Bell Telephone Laboratories,
http://cm.bell-labs.com/cm/cs/who/dmr/cman.pdf
9.2. Python Software Foundation, “"The Python Language Reference — Python v2.7.5
documentation”, http://docs.python.org/2/reference/index.html#reference-index

12

http://www.google.com/url?q=http%3A%2F%2Fcm.bell-labs.com%2Fcm%2Fcs%2Fwho%2Fdmr%2Fcman.pdf&sa=D&sntz=1&usg=AFQjCNGyU9aeNNhOpl8S4vu4gHY9HwRT3g
http://www.google.com/url?q=http%3A%2F%2Fdocs.python.org%2F2%2Freference%2F&sa=D&sntz=1&usg=AFQjCNFwZJG4viB38dNztJDBwIa81wrAbA
http://www.google.com/url?q=http%3A%2F%2Fdocs.python.org%2F2%2Freference%2F&sa=D&sntz=1&usg=AFQjCNFwZJG4viB38dNztJDBwIa81wrAbA
http://www.google.com/url?q=http%3A%2F%2Fdocs.python.org%2F2%2Freference%2Findex.html%23reference-index&sa=D&sntz=1&usg=AFQjCNH5DZjPYwrftE5N7HT6_FxJDdxRWQ

