

American Pool Video Game

Group Name: Pool-Maniac

CSEE 4840 Embedded System Design

 Jiawan Zhang jz2492

 Xunchi Wu xw2256

Yichen Liu yl2904

Yuhan Zhang yz2500

 Zeshi Wang zw2221

1. Project Introduction

 In this project, we designed a 2-D American Pool Video Game for two players following the

basic American pool rules based on the DE2 board. We have VGA, Keyboard and Audio in our

project. We also made the pool game software to realistically simulate the physical movement of

the balls on FPGA.

2. Architecture

 We wrote the VGA controller, SRAM controller, PS2 controller and Audio Controller to

control the peripherals. We also wrote the Pool Cue RAM Controller to use part of the on chip

memory as RAM for pool cue display. The irTimer is used to help fix the runtime of the loops.

*The yellow blocks are peripherals.

3. VGA

1. Colors and Sprites

 The interface needs only 31 colors, so we made a color table for them. Each color is

represented by a 5-bit color code. The color code range from “00001” to “11111” for the 31

colors, and “00000” is saved for transparent. The images are stored with the color codes, so

memory could be saved.

 The Video display part has 5 sprites (Level 0 to Level 4) concluded as following:

 Contents

Level 0 a. Frames of spool table and serve line

b. Strength bar

c. Background

Level 1 a. 6 pockets and around areas

Level 2 a. 16 balls

Level 3 a. Pool cue

Level 4 a. Instruction words

 Level 4 is the top level and all the way down to Level 0. The level is enabled when the raster

scans into the areas of the images on the level and the point is not transparent. If one level is

enabled, and none of its upper level is, the RGB outputs of the VGA controller will be given with

the color code of this level.

2. Inputs

 Inputs function

From Nios CPU x, y positions for 16 balls Decide the positions of the

centers of the balls.

x, y biases for 16 balls Decide the positions of the

masks related to the ball map

for rotation.

strength Update the strength bar

Serve line enable Show or clear the serve line

x, y positions for instructions Decide the positions of the

instruction words

Enable signals for instruction

words

Show or hide the instruction

words

Highlight signals for

instruction words

Highlight the instruction

words

x, y positions of the

instruction words

Give the positions of the

instruction words

From Ball_Map_rom The color codes of ball maps Give the color code of balls

(Level 2) for current pixel

Form Level1_rom The color codes for pockets

and round areas

Give the color code of pockets

(Level 1) for current pixel

From Words_rom The color codes for instruction

words

Give the color code of

instruction words(Level 4) for

current pixel

From PoolCue_ram The start and end positions for

the pool cue image of each

line on screen

Give the start and end

positions of the pool cue

image for the line being

scanned (Level 3)

3. Balls

 First, in order to make the balls look real, we used three colors for the base image of each ball

to give a 3-D visual effect. In the VHDL code, we made a 2-bit 14*14 mask for the balls. “00”

represents transparent, “01” represents color 1, “10” represents color 2, and “11” represents color

3. When the raster scans into the area of a ball, we give the color code and level enable signals of

this level (Level 2) according to the number in the ball mask and the number of ball.

Second, to make the balls rotate, we made a 2-bit 27*27 map for each ball, which are stored in

Ball_Map_rom (on chip memory). Some part of the maps will cover on the base images of the

balls. In the map, “00” represents transparent, “10” represents black, and “11” represents white.

For example, the map for ball 1, 2, 9 and 10 is shown below.

*Gray represents transparent here.

We also have the ‘biases to map’ of both direction x and y (from 0 to 13) for each ball, which

indicate which part of map will be shown on the ball. For example, for ball 1, as shown in the

following figure, the black cycle includes the area that will show on the ball, when bias x and y

are 0. When the ball moves, we move its bias to the map with an opposite direction. For example,

if ball 1 moves up and left by 1 pixel respectively, then the bias increase in both x and y by 1, so

the part shown on the ball is now what the red cycle included. This is our trick to make the balls

look like rotate.

4. Pool Cue

In order to store enough images for the pool cue’s rotation with limited memory, we made

some improvements to reduce the memory needed to store the images. First, we use only 2*355

16-bit data for one image, which gives only the start and end positions of the cue in each line of

the image. The data for the images is written in the C code, and we made a PoolCue_ram (using

on chip memory) for the VGA controller to use it. The RAM can store 2*480 16-bit data, one

start point and one end point for each line on the screen. In the C code, when updating the cue,

we first choose an image according the angle of the cue, and then compute the data for the RAM

with the image data and the position of the cue, and write it to the RAM. In the VHDL, when

scan to certain line, we first read the corresponding data from the RAM, and then enable the

level for pool cue (Level 3) from the start position to the end position for each scanning line. The

cue is single colored, so a fixed color code is given for this level.

Besides, in order to reduce the number of images needed, we use only 31 images to generate

120 different forms of the cue. The 31 images give all the forms of cue in the 4
th

 quadrant, and

generate the forms in other quadrants with mirror image.

5. Others

For all the rectangle things, like table frames and strength bar, we defined the vertexes of them

in VHDL, and enable the certain level (Level 0) when the raster scan into the rectangle areas.

They are all single color, so their color codes are fixed.

For the pockets (Level 1) and instruction words (Level 4), their images are stored on the

Level1_rom (on chip memory) and Words_rom(on chip memory). The data is stored as color

codes, and “00000” means transparent. The positions of pockets are written in VHDL as

constant .The positions of instruction words are given by the software. When the raster scan into

the image area, data will be read from the ROM’s, and generate the enable signals and color

codes for VGA controller outputs.

4. Keyboard

 The keyboard is the only controller for the pool video game. The players use the PS/2 keyboard

to send operations, like starting the game, controlling the position of cue ball and the state of

pool cue.

 The arrow keys, space key and enter key are used in our game. The arrow keys are used to

realize position control, including left, right, up and down. Besides, the arrow key is also used to

control the state of pool cue. The up and right key will both realize the clockwise rotate, while

down and left key used for anticlockwise. If the player wants to rotate a big angle, he can use the

up and down key, and if he just need to tune the pool cue a small angle, the left or right key will

be used. The space key is used to adjust the strength of the pool cue, with a red bar shown on the

screen to indicate the current strength. After settling the strength and angle, press the enter key

and release the pool cue which will hit the cue ball. If a key is hold, the keyboard will

continuously send the signal of this key’s code, and this information will be stored in a buffer.

When the enter key is pressed and the release code of a key is received, the hold buffer will be

cleared and set the angle and strength to its initial value.

 The hardware setup for this keyboard controller is to put the PS2 controller based on lab3, into

SOPC and connect the PS/2 signal CLK and DATA correspondingly to the top-level board pins.

5. Audio

In our game, the audio block can generate a corresponding sound when the pool cue or the

table hits the ball, and the collision happened between different balls. Besides, the volume of the

sound is based on the speed of the balls. The collision happened with a fast speed will generate a

loud sound while the sound for the slower speed is smaller. Before we use the sound, we utilize

the Matlab to quantity the sound. We use 16 bits to represent 1 point of the data. Audio chip

clock is 18MHz and sample rate is 48 KHz.

After these preprocess, we got the needy information of the sound and stored them in the on

chip ROM with different character bit for different audio data. The total memory used by the

sound is 20KB. We successfully solved the interference of the hardware on the Avalon bus and

made each part work correctly. When a collision happens, the start audio signal will be generate

and enable the corresponding data in the ROM to generate that sound. Once the hardware

sending the starting audio signal, the ROM address will start to count and shift out the audio

information. When the processes have been done, the address counting buffer will be reset to 0

and the starting audio signal will also set to 0.

In this way, for the software part, we just need to give a start signal to to audio block and

generate the corresponding sound according to the writedata signal from the software part. We

make the different bit of writedata signal to represent different sound which can generate

different volume of the sound. We calculated the ball speed in the software and combined it with

the audio writedata interface. When the speed is fast enough, it will send the last bit or the third

bit of writedate to be one and enable the correspond louder sound. While the speed is slow, the

second or forth bit of writedate signal will be set to one and generate a small sound. If the speed

is very small that will generate a sound we cannot heard, there will not be a sound produced.

6. irTimer

 The timer is actually a 16-bit down-counter, whose initial data is given by the software. The

counter count from the initial data to 0, and stay 0 still a new initial data is sent again. This timer

is used to fix the runtime of the ball scan loop. When the software run to the end of the loop, it

read the output of the counter, until read a 0. And then write the timer the initial data (3000 for

example). We guaranteed that the longest runtime of the loop is small than the time needed for

the counter to count from initial data to 0(Tcount). Therefore, the runtime is fixed to Tcount, where

Tcount = (1/50MHz) * 3000 = 60us

7. Software Design

Software is the control part of the whole project, since all hardware components are

functioning according to the commands received from the software program. In our design,

software part needs to handle the following situations.

1. The overall game logic control

Software part controls the stages of the game. stage1: the welcoming at the beginning,

stage2: waiting for a cue ball placement, stage3: waiting the player to adjust the angle

and strength of the cue ball, stage4: the physical movement of every ball on the table.

When all the balls on the table stops, program will go back to stage 3; when the cue ball

is pocketed, program will back to stage2; when the black ball 8 is pocketed, program will

back to stage1.

2. The collision between balls and the moving parameters afterwards

 Whenever two balls collide with each other, the program will enter the function

“bound_balls” and conduct physical calculation on the direction and velocity of every

ball involved in this collision incident, and update their corresponding parameters. Also

there will be sounds coming out when the collision happens according to their relative

vecolity.

3. The collision between ball and table edges and the moving parameters afterwards.

Aiming for more realistic performance of the game, we separate the case of the collision

with six pockets apart from general collision of the table edge. Because the six pockets

have slopes near them, we program a realistic bouncing calculation to this case. The

general case of edge collision will follow the mirror reflection.

4. The pocketing of the balls and player changing logic.

The poolgame rule is also reflected in the software. The change of player will based on

whether there’s a ball pockets, whether the pocket ball is of the legal type, and whether

the cue ball is pocked. And the winning condition will solely base on whether the black

ball is pocketed legally.

Challenge Part

After working out the first algorithm for collision and movement between balls (this

algorithm is commonly used in computer), we realized the running speed is too slow, and

there’s serious overlapping of ball pixels. After analyzing the problem, we change a faster

CPU platform, and remove and rewrite some commands which cost a long time (etc.

pow), the running speed improved significantly, but the overlapping of pixels still exists.

The main reason of the overlapping is: the old “bound_ball” function updates directly the

distance that the ball moves for a fixed time, which means the ball will possibly update

more than 1 pixel a time (say 5), though it works fine in computer (because the resolution

is pretty high in computer, there may be 10 pixels buffer for overlapping, the overlap can

be detected and prevented before two balls actually overlap, at least not detected by

human eyes.), this method will completely break down in our project, because our VGA

resolution is pretty low, and the ball is 14*14 pixels, thus whenever there is a 1 pixel

overlap, it will be obvious in human eyes. Therefore, we have to limit the ball movement

to only 1 pixel a time. This is the motivation for our own algorithm: “Count Based Speed

Control”.

The basic idea of our algorithm is: we take in the results from function “bound_ball”,

and assign the speed (X axis and Y axis) into a variable “Vc” (for actual operation we use

“vc” in code). We also make a variable “count”, which is given the value of

corresponding “Vc” after it count down with step of 1 to 0. The movement operation on

this ball (only allow 1 pixel movement a time) will not activate until the variable “count”

decreases to 0 inside the ball scan loop (the loop’s runtime is fixed with the help of

hardware). By this mean we successfully transform the velocity into a countdown-time.

The faster the velocity of a ball, the smaller its variable “Vc” will be, meaning it will not

wait a long time before it is allowed to make a 1 pixel movement. Then the variable “Vc”

is updated once a while with multiplying a parameter (friction in physics), making it

possible and realistic to simulate the speed decreasing movement of every ball.

Flow Chart of the Software

8. Ethernet & User Interface Exploration

In the project, we also tried to implement the network between the DE2 Board and laptop,

with the DE2 Board runs a version with the ball game while the MacBook runs another. The

laptop communicates with DE2 board through Ethernet cable. The protocols used for

communicating game messages are IP and the unreliable but simple UDP packets.

We first set on testing and allowing communication between the DE2 Board and the

MacBook, running the Nios II code on top of the compiled VHDL code provided in lab 2, which

includes the Ethernet. We used ARP and designed an appropriate response packet that will assist

the MacBook to map our board’s IP address to its physical MAC address. By changing the

communication method from port-to-port transportation to UDP broadcasting and allowing the

DM9000A some delay time to initialize its configuration before we asked it to send a packet, we

can fully receive UDP packets sent from the board. Therefore, the communication between DE2

board and the laptop was successfully set up based on lab2 program.

Additionally, we designed GUI using JAVA programming, and completely finished a

separated version of the pool game. But some more work have to be down to successfully setup

the Ethernet between the DE2 board and laptop, and this could be solve in the future.

9. Tutorial and rules of this game

Tutorial

(1) Welcoming interface (NEW GAME): press enter key to continue.

(2) Main interface:

(a) player can choose the position to place the cue ball along the serve line by pressing

arrow keys.

Move slowly: left, right arrow

Move quickly: upper arrow, down arrow

Confirm placement: press space key

(b) Adjust the pool cue’s direction and strength

Left, right arrow: minor adjustment on angle

Upper arrow, down arrow: major adjustment on angle

(c) Space key: change the strength (will reverse when it hits the maximum or minimum

thresholds).

(d) Enter key: release the cue ball.

(3) At the top of the screen the current player will be highlighted, indicating the player’s turn.

The pocketed ball will be shown accordingly behind the two players, so they can be

aware how many balls they still need to pocket.

Rule

 Once a player pockets his first ball, he should stick to pocketing the same type of balls (i.e.

solid color or stripes), while another player should pocket another group. A player is allowed to

continue shooting until he fails to legally pocket a ball of his type. After a player has legally

pocketed all his type of balls, he can pocket the 8-ball and win the game. Otherwise, he will lose

the game. If the cue ball is pocketed, the player switch, and the next player is allowed to place

the cue ball along the serve line and start shooting afterwards. Only when all the balls have

stopped moving does it allow player to adjust the pool cue and shoot again.

10. Summary

 In this project, we implemented a 2-D American Pool Video Game on DE2 board. The game

simulated a physical realistic trajectory of the balls movement, and displayed the game interface

on a VGA screen with resolution 640*480. It also followed strictly the traditional American pool

game rule.

 Moreover, a sound is produced whenever a ball collision happens, and the volume of the sound

is linearly dependent on the colliding ball speed. The whole project incorporated the hardware

part written in VHDL with the software part written in C language and displayed on the VGA

screen. DE2 board FPGA with Nios CPU entity is used as the project platform.

 Also, we give a try for an extra function of the project: the network communication between

the FPGA and the laptop.

11. Overview of Personal Responsibilities

In this project, there were several key components that we need to work out, including VGA

driver, Key Board, Audio, Software and Pool game algorithm. We broke down the work

according to everyone’s interests and skills at the beginning to make clear of each one’s

responsibility. However, we continuously helped each other as a team.

Jiawan Zhang: She is the group leader of our group and it is she that helped our group work

properly and efficiently. She developed the VGA controller and the relative software to use the

VGA components. She helped with the main software and came up with the idea of “Count

Based Speed Control” method, which is the critical to the game. She also actively joined the

debug works of the software. Additionally, she is the problem solver of our group. When there is

a problem occurred and she always eager to help and often came up with some creative ideas and

successfully solves the problem.

Xunchi Wu: When the problem of balls overlapping happens, he and Jiawan worked together to

fix it. When Jiawan brought up the idea of “Count Based Speed Control” method, which turned

out to be a turning point for the project, he put this method into practice and implemented in

program successfully. He’s also in charge of the overall performance of the program. (eg. adding

more realistic bouncing movement of balls near the pocket area, main game interface

initialization and displaying, etc.) He’s hard working and had good comminication.

Yichen Liu: She was in charge of the Ethernet. She used lab 2 and edited the codes to build the

communication between DE2 board and laptop (Mac operation). She also made a user interface

on the laptop with JAVA. However, she overlooked the importance of hardware and didn’t give

much attention and time to this project. She failed to inform other members the acture progress

of her part, which directly results in our late realization that this part actually can’t work.

Yuhan Zhang: She and Xunchi together did the study on the physical movement after collision

between two balls, and she successfully worked out a practical algorithm for the project. When

realizing the speed of the original version is unacceptably slow, she also improved the algorithm

to make it work faster. She also implemented the general rules (including player changing,

winning condition, cue ball pocketing, etc.) of the game in the program. She is strict, and we are

encouraged by her to make things better.

Zeshi Wang was in charge of the PS2 Keyboard and the audio block in our project. He

implemented the hardware for each module with VHDL, and also wrote the C code for these two

parts in the software. He successfully debugged several problems both in the hardware and

software and made the system work correctly. He is cooperative, friendly and always eager and

able to help. After finished his own works in the keyboard and audio, he still worked on the

project, and helped others.

VHDL Codes:

-- Top Level

--Editor: Zeshi Wang; Jiawan Zhang

-- Data: 2013

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity top_level is

port (

signal CLOCK_50 : in std_logic; --50 MHz

--signal LEDR : out std_logic_vector(17 downto 0); --LEDs

-- PS/2 port

 PS2_DAT, -- Data

 PS2_CLK : in std_logic; -- Clock

 SRAM_DQ : inout std_logic_vector(15 downto 0);

 SRAM_ADDR : out std_logic_vector(17 downto 0);

 SRAM_UB_N, --Highbyte Data Mask

 SRAM_LB_N, --Lowbyte Data Mask

 SRAM_WE_N, --Write Enable

 SRAM_CE_N, --Chip Enable

 SRAM_OE_N : out std_logic; --Output Enable

 --vga

 VGA_CLK, -- Clock

 VGA_HS, -- H_SYNC

 VGA_VS, -- V_SYNC

 VGA_BLANK, -- BLANK

 VGA_SYNC : out std_logic; -- SYNC

 VGA_R, -- Red[9:0]

 VGA_G, -- Green[9:0]

 VGA_B : out std_logic_vector(9 downto 0); -- Blue[9:0]

 -- Audio CODEC

 AUD_ADCLRCK : inout std_logic; -- ADC LR Clock

 AUD_ADCDAT : in std_logic; -- ADC Data

 AUD_DACLRCK : inout std_logic; -- DAC LR Clock

 AUD_DACDAT : out std_logic; -- DAC Data

 AUD_BCLK : inout std_logic; -- Bit-Stream Clock

 AUD_XCK : out std_logic; -- Chip Clock

-- I2C bus

 I2C_SDAT : inout std_logic; -- I2C Data

 I2C_SCLK : out std_logic; -- I2C Clock

-- Ethernet Interface

 ENET_DATA : inout std_logic_vector(15 downto 0); -- DATA bus 16Bits

 ENET_CMD, -- Command/Data Select, 0 = Command, 1 = Data

 ENET_CS_N, -- Chip Select

 ENET_WR_N, -- Write

 ENET_RD_N, -- Read

 ENET_RST_N, -- Reset

 ENET_CLK : out std_logic; -- Clock 25 MHz

 ENET_INT : in std_logic; -- Interrupt

 LEDG : out std_logic_vector(8 downto 0); -- Green LEDs

 LEDR : out std_logic_vector(17 downto 0) -- Red LED

);

end top_level;

architecture rtl of top_level is

signal counter : unsigned(15 downto 0);

signal reset_n : std_logic;

 signal clk25 : std_logic := '0';

 signal audio_clock : unsigned(1 downto 0) := "00";

 signal network_clock : unsigned(1 downto 0) := "00";

 signal clk_18 : std_logic;

--signals for PoolCue_ram

signal CueRam_rdaddress_VGA : std_logic_vector(8 downto 0);

signal CueRam_rdclk_VGA : std_logic;

signal CueRam_q_VGA : std_logic_vector(31 downto 0);

signal CueRam_rdaddress_RAM : std_logic_vector(8 downto 0);

signal CueRam_rdclk_RAM : std_logic;

signal CueRam_q_RAM : std_logic_vector(31 downto 0);

 component de2_i2c_av_config is

 port (

 iCLK : in std_logic;

 iRST_N : in std_logic;

 I2C_SCLK : out std_logic;

 I2C_SDAT : inout std_logic

);

 end component;

begin

 CueRam_rdaddress_RAM <= CueRam_rdaddress_VGA;

 CueRam_rdclk_RAM <= CueRam_rdclk_VGA;

 CueRam_q_VGA <= CueRam_q_RAM;

 process (CLOCK_50)

 begin

 if rising_edge(CLOCK_50) then

 if counter = x"ffff" then

 reset_n <= '1';

 else

 reset_n <= '0';

 counter <= counter + 1;

 end if;

 end if;

 end process;

process (CLOCK_50)

 begin

 if rising_edge(CLOCK_50) then

 if audio_clock = "11" then

 audio_clock <= "00";

 AUD_XCK <= '1';

 else

 audio_clock <= audio_clock + "1";

 AUD_XCK <= '0';

 end if;

 end if;

 end process;

process (CLOCK_50)

 begin

 if rising_edge(CLOCK_50) then

 if network_clock = "01" then

 network_clock <= "00";

 ENET_CLK <= '1';

 else

 network_clock <= network_clock + "1";

 ENET_CLK <= '0';

 end if;

 end if;

 end process;

 i2c : de2_i2c_av_config port map (

 iCLK => CLOCK_50,

 iRST_n => '1',

 I2C_SCLK => I2C_SCLK,

 I2C_SDAT => I2C_SDAT

);

nios : entity work.nios_system port map (

 -- the_de2_ps2_inst

 PS2_Clk_to_the_de2_ps2_0 => PS2_CLK,

 PS2_Data_to_the_de2_ps2_0 => PS2_DAT,

 clk_0 => CLOCK_50,

 reset_n => reset_n,

 --leds_from_the_leds => LEDR(15 downto 0),

 SRAM_ADDR_from_the_sram_0 => SRAM_ADDR,

 SRAM_CE_N_from_the_sram_0 => SRAM_CE_N,

 SRAM_DQ_to_and_from_the_sram_0 => SRAM_DQ,

 SRAM_LB_N_from_the_sram_0 => SRAM_LB_N,

 SRAM_OE_N_from_the_sram_0 => SRAM_OE_N,

 SRAM_UB_N_from_the_sram_0 => SRAM_UB_N,

 SRAM_WE_N_from_the_sram_0 => SRAM_WE_N,

 --the audio instruction

 AUD_ADCDAT_to_the_audio_0 => AUD_ADCDAT,

 AUD_ADCLRCK_from_the_audio_0 => AUD_ADCLRCK,

 AUD_BCLK_to_and_from_the_audio_0 => AUD_BCLK,

 AUD_DACDAT_from_the_audio_0 => AUD_DACDAT,

 AUD_DACLRCK_from_the_audio_0 => AUD_DACLRCK,

 -- Ethernet Interface

 ENET_DATA_to_and_from_the_DM9000A_0 => ENET_DATA,

 ENET_CMD_from_the_DM9000A_0 => ENET_CMD,

 ENET_CS_N_from_the_DM9000A_0 => ENET_CS_N,

 ENET_WR_N_from_the_DM9000A_0 => ENET_WR_N,

 ENET_RD_N_from_the_DM9000A_0 => ENET_RD_N,

 ENET_RST_N_from_the_DM9000A_0 => ENET_RST_N,

 ENET_INT_to_the_DM9000A_0 => ENET_INT,

 -- the_de2_vga_raster

 VGA_BLANK_from_the_de2_vga_raster_0 => VGA_BLANK,

 VGA_B_from_the_de2_vga_raster_0 => VGA_B,

 VGA_CLK_from_the_de2_vga_raster_0 => VGA_CLK,

 VGA_G_from_the_de2_vga_raster_0 => VGA_G,

 VGA_HS_from_the_de2_vga_raster_0 => VGA_HS,

 VGA_R_from_the_de2_vga_raster_0 => VGA_R,

 VGA_SYNC_from_the_de2_vga_raster_0 => VGA_SYNC,

 VGA_VS_from_the_de2_vga_raster_0 => VGA_VS,

 CUERAM_addr_from_the_de2_vga_raster_0 => CueRam_rdaddress_VGA,

 CUERAM_clk_from_the_de2_vga_raster_0 => CueRam_rdclk_VGA,

 CUERAM_q_to_the_de2_vga_raster_0 => CueRam_q_VGA,

 --LED

 LEDG_from_the_de2_vga_raster_0 => LEDG,

 LEDR_from_the_de2_vga_raster_0 => LEDR,

 -- PoolCue_ram

 CUE_q_from_the_PoolCue_ram_controller_0 => CueRam_q_RAM,

 CUE_rdaddress_to_the_PoolCue_ram_controller_0 => CueRam_rdaddress_RAM,

 CUE_rdclock_to_the_PoolCue_ram_controller_0 => CueRam_rdclk_RAM

);

end rtl;

-- VGA Controller

--

-- VGA controller for American Pool Game

--

-- Eidtor: Jiawan Zhang

-- Data: 2013

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_vga_raster is

 port (

 --**

 reset : in std_logic;

 clk50 : in std_logic; -- Should be 25.125 MHz

 read : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 address : in std_logic_vector(6 downto 0); --7 bits 128 addresses

 readdata : out std_logic_vector(15 downto 0);

 writedata : in std_logic_vector(15 downto 0);

 irq : out std_logic;

 --**

 VGA_CLK, -- Clock

 VGA_HS, -- H_SYNC

 VGA_VS, -- V_SYNC

 VGA_BLANK, -- BLANK

 VGA_SYNC : out std_logic; -- SYNC

 VGA_R, -- Red[9:0]

 VGA_G, -- Green[9:0]

 VGA_B : out std_logic_vector(9 downto 0); -- Blue[9:0]

 CUERAM_clk : out std_logic;

 CUERAM_addr : out std_logic_vector(8 downto 0);

 CUERAM_q : in std_logic_vector(31 downto 0);

 LEDR : out std_logic_vector (17 downto 0);

 LEDG : out std_logic_vector (8 downto 0)

);

end de2_vga_raster;

architecture rtl of de2_vga_raster is

 component Ball_Map_rom port (

 address : in std_logic_vector(13 downto 0);

 clock : in std_logic;

 q : out std_logic_vector(1 downto 0)

);

 end component;

 component PoolCue1_rom port (

 address : in std_logic_vector(15 downto 0);

 clock : in std_logic;

 q : out std_logic_vector(3 downto 0)

);

 end component;

 component Level1_rom port (

 address : in std_logic_vector(13 downto 0);

 clock : in std_logic;

 q : out std_logic_vector(4 downto 0)

);

 end component;

 component Words_rom port

 (

 address : IN STD_LOGIC_VECTOR (12 DOWNTO 0);

 clock : IN STD_LOGIC := '1';

 q : OUT STD_LOGIC_VECTOR (0 DOWNTO 0)

);

 end component;

 --clock

 signal clk : std_logic := '0';

 signal clk_count : unsigned(1 downto 0) := "00";

 --Interrupt

 signal Interrupt : std_logic;

 -- Video parameters

 --Keep as oringinal

 constant HTOTAL : integer := 800;

 constant HSYNC : integer := 96;

 constant HBACK_PORCH : integer := 48;

 constant HACTIVE : integer := 640;

 constant HFRONT_PORCH : integer := 16;

 constant VTOTAL : integer := 525;

 constant VSYNC : integer := 2;

 constant VBACK_PORCH : integer := 33;

 constant VACTIVE : integer := 480;

 constant VFRONT_PORCH : integer := 10;

 --End: Keep as oringinal

 -- Signals for the video controller

 --Keep as oringinal

 signal Hcount : unsigned(9 downto 0); -- Horizontal position (0-800)

 signal Vcount : unsigned(9 downto 0); -- Vertical position (0-524)

 signal EndOfLine, EndOfField : std_logic;

 signal vga_hblank, vga_hsync, vga_vblank, vga_vsync : std_logic; -- Sync. signals

 --End: Keep as oringinal

 --Color table

 type colortable_type is array(1 to 31) of std_logic_vector(7 downto 0);

 constant COLOR_TABLE_R : colortable_type :=(

 "00110010", -- 1. table bed color : limegreen

 "11001101", -- 2. pool cue color !!!!

 "11111111", -- 3. yellow 1

 "11111111", -- 4. yellow 2

 "11111010", -- 5. yellow 3

 "00000000", -- 6. blue 1

 "00000000", -- 7. blue 2

 "10100101", -- 8. blue 3

 "11111111", -- 9. red 1

 "11111111", -- 10. red 2

 "11111111", -- 11. red 3

 "11011100", -- 12. purple 1

 "11101011", -- 13. purple 2

 "11101110", -- 14. purple 3

 "11111111", -- 15. orange 1

 "11111111", -- 16. orange 2

 "11111111", -- 17. orange 3

 "00000000", -- 18. green 1

 "00000000", -- 19. green 2

 "11011010", -- 20. green 3

 "10100000", -- 21. brown 1

 "10110100", -- 22. brown 2

 "11110100", -- 23. brown 3

 "00000000", -- 24. black 1

 "00101000", -- 25. black 2

 "01101001", -- 26. black 3

 "11100000", -- 27. while 1

 "11110101", -- 28. while 2

 "11111111", -- 29. while 3

 "10000000", -- 30. table edge 1: marron

 "01000000" -- 31. table edge 2: oliverdrab

);

 constant COLOR_TABLE_G : colortable_type :=(

 "11001101", -- 1. table bed color : limegreen

 "10000101", -- 2. pool cue color

 "11110000", -- 3. yellow 1

 "11111111", -- 4. yellow 2

 "11111010", -- 5. yellow 3

 "00000000", -- 6. blue 1

 "00000000", -- 7. blue 2

 "11010000", -- 8. blue 3

 "00000000", -- 9. red 1

 "01000101", -- 10. red 2

 "10100000", -- 11. red 3

 "00010101", -- 12. purple 1

 "00000000", -- 13. purple 2

 "10000010", -- 14. purple 3

 "10001100", -- 15. orange 1

 "10100101", -- 16. orange 2

 "11100100", -- 17. orange 3

 "01100100", -- 18. green 1

 "01110110", -- 19. green 2

 "11001101", -- 20. green 3

 "01010010", -- 21. brown 1

 "01101001", -- 22. brown 2

 "10100100", -- 23. brown 3

 "00000000", -- 24. black 1

 "00101000", -- 25. black 2

 "01101001", -- 26. black 3

 "11100000", -- 27. while 1

 "11110101", -- 28. while 2

 "11111111", -- 29. while 3

 "00000000", -- 30. table edge 1: marron

 "10001110" -- 31. table edge 2: oliverdrab

);

 constant COLOR_TABLE_B : colortable_type :=(

 "00110010", -- 1. table bed color : limegreen

 "00111111", -- 2. pool cue color

 "00000000", -- 3. yellow 1

 "00000000", -- 4. yellow 2

 "10110100", -- 5. yellow 3

 "11001101", -- 6. blue 1

 "11111111", -- 7. blue 2

 "11000110", -- 8. blue 3

 "00000000", -- 9. red 1

 "00000000", -- 10. red 2

 "01111010", -- 11. red 3

 "11001000", -- 12. purple 1

 "11101011", -- 13. purple 2

 "11101110", -- 14. purple 3

 "00000000", -- 15. orange 1

 "00000000", -- 16. orange 2

 "10110101", -- 17. orange 3

 "00000000", -- 18. green 1

 "00000000", -- 19. green 2

 "00110010", -- 20. green 3

 "00101101", -- 21. brown 1

 "00011110", -- 22. brown 2

 "01100000", -- 23. brown 3

 "00000000", -- 24. black 1

 "00101000", -- 25. black 2

 "01101001", -- 26. black 3

 "11100000", -- 27. while 1

 "11110101", -- 28. while 2

 "11111111", -- 29. while 3

 "00000000", -- 30. table edge 1: marron

 "00100011" -- 31. table edge 2: oliverdrab

);

 --VGA Ram

 type ram_type is array(127 downto 0) of

 std_logic_vector(15 downto 0);

 signal VGA_RAM : ram_type;

 signal vga_ram_address : unsigned(6 downto 0);

 signal x_coord, y_coord : unsigned(9 downto 0); --scan positions in screen

 signal level0_active, level1_active, level2_active, level3_active : std_logic; -- = 1 means

certain level has something to print

 --Level 0

 --Pool Table parameters

 constant TABLE1_HSTART : integer := 0;

 constant TABLE1_HEND : integer := 639;

 constant TABLE1_VSTART : integer := 140;

 constant TABLE1_VEND : integer := 479;

 constant TABLE2_HSTART : integer := 20;

 constant TABLE2_HEND : integer := 619;

 constant TABLE2_VSTART : integer := 155;

 constant TABLE2_VEND : integer := 464;

 constant TABLE3_HSTART : integer := 32;

 constant TABLE3_HEND : integer := 607;

 constant TABLE3_VSTART : integer := 166;

 constant TABLE3_VEND : integer := 453;

 signal table1 : std_logic; -- table areas

 signal table2 : std_logic; -- table areas

 signal table3 : std_logic; -- table areas

 -- strength bar

 constant SBAR_HSTART : integer := 197;

 constant SBAR_HEND : integer := 444;

 constant SBAR_VSTART : integer := 124;

 constant SBAR_VEND : integer := 138;

 signal SBAR_Strength : integer;

 signal Strength : unsigned(7 downto 0) := "00011100"; --!!from ram 32 levels use 5 bits

 signal sbar_h, sbar_v, sbar : std_logic; -- strength bar areas

 signal sstrengh_h, sstrengh_v, sstrengh : std_logic; -- strength bar areas

 -- Serve line

 constant SERVELINE_H : integer := 172;

 signal serveline_en : std_logic;

 signal serveline : std_logic;

 signal colorcode_level0 : unsigned(4 downto 0);

 --Level 1

 signal level1_address : unsigned(13 downto 0);

 signal level1_data, level1_data_vga : std_logic_vector(4 downto 0);

 signal level1_vga : std_logic;

 signal pocket_flag1, pocket_flag2 : std_logic_vector(5 downto 0);

 type pocket_eachaddrtype is array(0 to 5) of unsigned(10 downto 0);

 signal pocket_eachaddr : pocket_eachaddrtype;

 --Level 2

 type ball_type is array(0 to 195) of unsigned(1 downto 0);

 constant BallMask : ball_type :=(

 "00", "00","00","00","00","01","01","01","01","00", "00","00","00","00", --1

 "00", "00","00","01","01","01","01","01","01","01", "01","00","00","00", --2

 "00", "00","01","01","01","10","10","10","10","10", "01","01","00","00", --3

 "00", "01","01","01","10","10","10","10","10","10", "10","01","01","00", --4

 "00", "01","01","10","10","10","10","10","11","11", "10","10","01","00", --5

 "01", "01","01","10","10","10","10","11","11","11", "11","10","01","01", --6

 "01", "01","01","10","10","10","10","11","11","11", "11","10","01","01", --7

 "01", "01","01","10","10","10","10","10","11","11", "10","10","01","01", --8

 "01", "01","01","01","10","10","10","10","10","10", "10","01","01","01", --9

 "00", "01","01","01","01","10","10","10","10","10", "01","01","01","00", --10

 "00", "01","01","01","01","01","01","01","01","01", "01","01","01","00", --11

 "00", "00","01","01","01","01","01","01","01","01", "01","01","00","00", --12

 "00", "00","00","01","01","01","01","01","01","01", "01","00","00","00", --13

 "00", "00","00","00","00","01","01","01","01","00", "00","00","00","00" --14

);

 type ball_mask_addrtype is array(0 to 15) of integer;

 signal ball_mask_addr : ball_mask_addrtype;

 signal ball_mask_addr2 : ball_mask_addrtype;

 type ball_map_addrtype is array(0 to 15) of unsigned(9 downto 0);

 signal ball_map_addr : ball_map_addrtype;

 signal ball_map_address : unsigned(13 downto 0);

 --signal ball1_mask_addr : integer;

 signal ball_data : std_logic_vector(1 downto 0);

 signal ball_data_vga : integer;

 --signal ball1_map_addr : unsigned(9 downto 0);

 signal ball_mask_flag1 : std_logic_vector(15 downto 0);

 signal ball_mask_flag2 : std_logic_vector(15 downto 0);

 signal level2_vga : std_logic;

 signal ball_mask_color : integer;

 type ball_pos is array(0 to 15) of unsigned(15 downto 0);

 signal BALL_X : ball_pos;

 signal BALL_Y : ball_pos;

 type ball_bias is array(0 to 15) of unsigned(3 downto 0);

 signal BALL_BIAS_X : ball_bias;

 signal BALL_BIAS_Y : ball_bias;

 --Level 3 Pool cue

 signal cue_line_begin : unsigned(15 downto 0) := "0000000000001000";

 signal cue_line_end : unsigned(15 downto 0) := "0000000000011000";

 signal level3_vga : std_logic;

 --Level 4 Words

 type word_type is array(0 to 7) of unsigned(15 downto 0);

 signal Word_start_x : word_type;

 signal Word_start_y : word_type;

 type word_eachaddrtype is array(0 to 7) of unsigned(9 downto 0);

 signal Word_eachaddr : word_eachaddrtype;

 signal Word_address : unsigned(12 downto 0);

 signal Word_en : std_logic_vector(7 downto 0);

 signal Word_hl_en : std_logic_vector(7 downto 0); --hight light

 signal Word_hl : std_logic;

 signal Word_flag1, Word_flag2 : std_logic_vector(7 downto 0);

 signal Word_data : std_logic_vector(0 downto 0);

 signal Word_color : integer;

 signal level4_vga : std_logic;

 signal level4_active : std_logic;

begin

 x_coord <= Hcount - (HSYNC + HBACK_PORCH) + 1;

 y_coord <= Vcount - (VSYNC + VBACK_PORCH);

 CUERAM_clk <= clk;

 irq <= Interrupt;

 --25MHz clock generator

 CLOCK25: process(clk50)

 begin

 if rising_edge(clk50) then

 clk <= not clk;

 end if;

 end process;

 --VGA Ram

 vga_ram_address <= unsigned(address(6 downto 0));

 VGARAM : process(clk50)

 begin

 if rising_edge(clk50) then

 if reset = '1' then

 readdata <= (others => '0');

 else

 if chipselect = '1' then

 if read = '1' then

-- readdata <= VGA_RAM(to_integer(vga_ram_address));

 elsif write = '1' then

 VGA_RAM(to_integer(vga_ram_address)) <= writedata;

 end if;

 end if;

 end if;

 end if;

 end process VGARAM;

 Updata : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 Strength <= "00011100";

 for I in 0 to 15 loop

 BALL_X(I) <= "0000000000000000";

 BALL_Y(I) <= "0000000000000000";

 BALL_BIAS_X(I) <= "0000";

 BALL_BIAS_Y(I) <= "0000";

 end loop;

 Word_en <= "00000000";

 Word_hl_en <= "00000000";

 for I in 0 to 7 loop

 Word_start_x(I) <= "0000000000000000";

 Word_start_y(I) <= "0000000000000000";

 end loop;

 Interrupt <= '0';

 elsif (Hcount = 0 and Vcount = 0) then

 for I in 0 to 15 loop

 BALL_X(I) <= unsigned(VGA_RAM(4*I + 0));

 BALL_Y(I) <= unsigned(VGA_RAM(4*I + 1));

 if unsigned(VGA_RAM(4*I + 2)) <= 13 then

 BALL_BIAS_X(I) <= unsigned(VGA_RAM(4*I +

2)(3 downto 0));

 else

 BALL_BIAS_X(I) <= "0000";

 end if;

 if unsigned(VGA_RAM(4*I + 3)) <= 13 then

 BALL_BIAS_Y(I) <= unsigned(VGA_RAM(4*I +

3)(3 downto 0));

 else

 BALL_BIAS_Y(I) <= "0000";

 end if;

 end loop;

 Strength <= unsigned(VGA_RAM(64)(7 downto 0)); --Strength:

Addr 1 (7 to 0)

 serveline_en <= VGA_RAM(65)(0); --Enable show serveline

 Word_en <= VGA_RAM(66)(7 downto 0);

 Word_hl_en <= VGA_RAM(67)(7 downto 0);

 for I in 0 to 7 loop

 Word_start_x(I) <= unsigned(VGA_RAM(68 + 2*I));

 Word_start_y(I) <= unsigned(VGA_RAM(68 + 2*I + 1));

 end loop;

 Interrupt <= '1';

 else

 Interrupt <= '0';

 end if;

 end if;

 end process Updata;

 LEDR(17) <= Interrupt;

 -- Horizontal and vertical counters

 HCounter : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 Hcount <= (others => '0');

 elsif EndOfLine = '1' then

 Hcount <= (others => '0');

 else

 Hcount <= Hcount + 1;

 end if;

 end if;

 end process HCounter;

 EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

 VCounter: process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 Vcount <= (others => '0');

 elsif EndOfLine = '1' then

 if EndOfField = '1' then

 Vcount <= (others => '0');

 else

 Vcount <= Vcount + 1;

 end if;

 end if;

 end if;

 end process VCounter;

 EndOfField <= '1' when Vcount = VTOTAL - 1 else '0';

 -- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

 HSyncGen : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' or EndOfLine = '1' then

 vga_hsync <= '1';

 elsif Hcount = HSYNC - 1 then

 vga_hsync <= '0';

 end if;

 end if;

 end process HSyncGen;

 HBlankGen : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 vga_hblank <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH then

 vga_hblank <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then

 vga_hblank <= '1';

 end if;

 end if;

 end process HBlankGen;

 VSyncGen : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 vga_vsync <= '1';

 elsif EndOfLine ='1' then

 if EndOfField = '1' then

 vga_vsync <= '1';

 elsif Vcount = VSYNC - 1 then

 vga_vsync <= '0';

 end if;

 end if;

 end if;

 end process VSyncGen;

 VBlankGen : process (clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 vga_vblank <= '1';

 elsif EndOfLine = '1' then

 if Vcount = VSYNC + VBACK_PORCH - 1 then

 vga_vblank <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then

 vga_vblank <= '1';

 end if;

 end if;

 end if;

 end process VBlankGen;

 -- Rectangle generator

 -- Generate Table flags

 Level0_Gen : process (clk)

 variable tempStrength : unsigned(7 downto 0);

 begin

 if rising_edge(clk) then

 --serveline

 if reset = '1' then

 serveline <= '0';

 elsif serveline_en = '1' and x_coord = SERVELINE_H and y_coord >=

TABLE3_VSTART and y_coord <= TABLE3_VEND then

 serveline <= '1';

 else

 serveline <= '0';

 end if;

 --table1

 if reset = '1' then

 table1 <= '0';

 elsif x_coord >= TABLE1_HSTART and x_coord <= TABLE1_HEND and

y_coord >= TABLE1_VSTART and y_coord <= TABLE1_VEND then

 table1 <= '1';

 else

 table1 <= '0';

 end if;

 --table2

 if reset = '1' then

 table2 <= '0';

 elsif x_coord >= TABLE2_HSTART and x_coord <= TABLE2_HEND and

y_coord >= TABLE2_VSTART and y_coord <= TABLE2_VEND then

 table2 <= '1';

 else

 table2 <= '0';

 end if;

 --table3

 if reset = '1' then

 table3 <= '0';

 elsif x_coord >= TABLE3_HSTART and x_coord <= TABLE3_HEND and

y_coord >= TABLE3_VSTART and y_coord <= TABLE3_VEND then

 table3 <= '1';

 else

 table3 <= '0';

 end if;

 -- Strength Bar

 tempStrength(2 downto 0) := "000";

 tempStrength(7 downto 3) := Strength(4 downto 0);

 SBAR_Strength <= SBAR_HSTART + to_integer(tempStrength);

 if reset = '1' or y_coord = SBAR_VEND then

 sbar_v <= '0';

 sstrengh_v <= '0';

 elsif y_coord = SBAR_VSTART then

 sbar_v <= '1';

 sstrengh_v <= '1';

 end if;

 if reset = '1' then

 sbar <= '0';

 elsif x_coord >= SBAR_HSTART and x_coord <= SBAR_HEND and

y_coord >= SBAR_VSTART and y_coord <= SBAR_VEND then

 sbar <= '1';

 else

 sbar <= '0';

 end if;

 if reset = '1' then

 sstrengh <= '0';

 elsif x_coord >= SBAR_HSTART and x_coord <= SBAR_Strength and

y_coord >= SBAR_VSTART and y_coord <= SBAR_VEND then

 sstrengh <= '1';

 else

 sstrengh <= '0';

 end if;

 level0_active <= table1 or table2 or table3 or sbar or sstrengh;

 if serveline = '1' then

 colorcode_level0 <= "11101";

 elsif table3 = '1' then

 colorcode_level0 <= "00001";

 elsif table2 = '1' then

 colorcode_level0 <= "11111";

 elsif table1 = '1' then

 colorcode_level0 <= "11110";

 elsif sstrengh = '1' then

 colorcode_level0 <= "01001";

 elsif sbar = '1' then

 colorcode_level0 <= "10101";

 end if;

 end if;

 end process Level0_Gen;

 --Level 1

 Level1_rom_inst : Level1_rom port map(

 address => std_logic_vector(level1_address),

 clock => clk,

 q => level1_data

);

 Level1_FLAG_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 for I in 0 to 5 loop

 pocket_flag1(I) <= '0';

 end loop;

 else

 if(x_coord + 2 >= TABLE3_HSTART - 19 and x_coord + 2 <

TABLE3_HSTART + 16 and y_coord >= TABLE3_VSTART - 19 and y_coord <

TABLE3_VSTART + 16) then

 pocket_flag1(0) <= '1'; --pocket 1

 else

 pocket_flag1(0) <= '0';

 end if;

 if(x_coord + 2 >= TABLE3_HSTART + 272 and x_coord + 2 <

TABLE3_HSTART + 307 and y_coord >= TABLE3_VSTART - 23 and y_coord <

TABLE3_VSTART + 12) then

 pocket_flag1(1) <= '1'; --pocket 2

 else

 pocket_flag1(1) <= '0';

 end if;

 if(x_coord + 2 >= TABLE3_HEND - 16 and x_coord + 2 <

TABLE3_HEND + 19 and y_coord >= TABLE3_VSTART - 19 and y_coord <

TABLE3_VSTART + 16) then

 pocket_flag1(2) <= '1'; --pocket 3

 else

 pocket_flag1(2) <= '0';

 end if;

 if(x_coord + 2 >= TABLE3_HSTART - 19 and x_coord + 2 <

TABLE3_HSTART + 16 and y_coord >= TABLE3_VEND - 19 and y_coord <

TABLE3_VEND + 16) then

 pocket_flag1(3) <= '1'; --pocket 4

 else

 pocket_flag1(3) <= '0';

 end if;

 if(x_coord + 2 >= TABLE3_HSTART + 272 and x_coord + 2 <

TABLE3_HSTART + 307 and y_coord >= TABLE3_VEND and y_coord < TABLE3_VEND +

35) then

 pocket_flag1(4) <= '1'; --pocket 5

 else

 pocket_flag1(4) <= '0';

 end if;

 if(x_coord + 2 >= TABLE3_HEND - 16 and x_coord + 2 <

TABLE3_HEND + 19 and y_coord >= TABLE3_VEND - 16 and y_coord < TABLE3_VEND +

19) then

 pocket_flag1(5) <= '1'; --pocket 6

 else

 pocket_flag1(5) <= '0';

 end if;

 end if;

 end if;

 end process Level1_FLAG_Gen;

 Level1_AddrGen1 : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 for I in 0 to 5 loop

 pocket_eachaddr(I) <= "00000000000"; --11 bits

 end loop;

 else

 -- pocket 1

 if(x_coord = TABLE3_HSTART + 16 and y_coord = TABLE3_VSTART

+ 16) then

 pocket_eachaddr(0) <= "00000000000"; --11 bits

 elsif(x_coord + 1 >= TABLE3_HSTART - 19 and x_coord + 1 <

TABLE3_HSTART + 16 and y_coord >= TABLE3_VSTART - 19 and y_coord <

TABLE3_VSTART + 16) then

 pocket_eachaddr(0) <= pocket_eachaddr(0) + 1;

 end if;

 -- pocket 2

 if(x_coord = TABLE3_HSTART + 307 and y_coord =

TABLE3_VSTART + 12) then

 pocket_eachaddr(1) <= "00000000000"; --11 bits

 elsif(x_coord + 1 >= TABLE3_HSTART + 272 and x_coord + 1 <

TABLE3_HSTART + 307 and y_coord >= TABLE3_VSTART - 23 and y_coord <

TABLE3_VSTART + 12) then

 pocket_eachaddr(1) <= pocket_eachaddr(1) + 1;

 end if;

 -- pocket 3

 if(x_coord = TABLE3_HEND + 19 and y_coord = TABLE3_VSTART +

16) then

 pocket_eachaddr(2) <= "00000000000"; --11 bits

 elsif(x_coord + 1 >= TABLE3_HEND - 16 and x_coord + 1 <

TABLE3_HEND + 19 and y_coord >= TABLE3_VSTART - 19 and y_coord <

TABLE3_VSTART + 16) then

 pocket_eachaddr(2) <= pocket_eachaddr(2) + 1;

 end if;

 -- pocket 4

 if(x_coord = TABLE3_HSTART + 16 and y_coord = TABLE3_VSTART

+ 16) then

 pocket_eachaddr(3) <= "00000000000"; --11 bits

 elsif(x_coord + 1 >= TABLE3_HSTART - 19 and x_coord + 1 <

TABLE3_HSTART + 16 and y_coord >= TABLE3_VEND - 19 and y_coord <

TABLE3_VEND + 16) then

 pocket_eachaddr(3) <= pocket_eachaddr(3) + 1;

 end if;

 -- pocket 5

 if(x_coord = TABLE3_HSTART + 307 and y_coord = TABLE3_VEND

+ 35) then

 pocket_eachaddr(4) <= "00000000000"; --11 bits

 elsif(x_coord + 1 >= TABLE3_HSTART + 272 and x_coord + 1 <

TABLE3_HSTART + 307 and y_coord >= TABLE3_VEND and y_coord < TABLE3_VEND +

35) then

 pocket_eachaddr(4) <= pocket_eachaddr(4) + 1;

 end if;

 -- pocket 6

 if(x_coord = TABLE3_HEND + 19 and y_coord = TABLE3_VEND + 19)

then

 pocket_eachaddr(5) <= "00000000000"; --11 bits

 elsif(x_coord + 1 >= TABLE3_HEND - 16 and x_coord + 1 <

TABLE3_HEND + 19 and y_coord >= TABLE3_VEND - 16 and y_coord < TABLE3_VEND +

19) then

 pocket_eachaddr(5) <= pocket_eachaddr(5) + 1;

 end if;

 end if;

 end if;

 end process Level1_AddrGen1;

 Level1_AddrGen2 : process(clk)

 begin

 if rising_edge(clk) then

 -- Generate ball address

 if reset = '1' then

 level1_address <= "00000000000000"; -- 14 bits

 elsif pocket_flag1(0) = '1' then

 level1_address(13 downto 3) <= pocket_eachaddr(0);

 level1_address(2 downto 0) <= "000";

 elsif pocket_flag1(1) = '1' then

 level1_address(13 downto 3) <= pocket_eachaddr(1);

 level1_address(2 downto 0) <= "001";

 elsif pocket_flag1(2) = '1' then

 level1_address(13 downto 3) <= pocket_eachaddr(2);

 level1_address(2 downto 0) <= "010";

 elsif pocket_flag1(3) = '1' then

 level1_address(13 downto 3) <= pocket_eachaddr(3);

 level1_address(2 downto 0) <= "011";

 elsif pocket_flag1(4) = '1' then

 level1_address(13 downto 3) <= pocket_eachaddr(4);

 level1_address(2 downto 0) <= "100";

 elsif pocket_flag1(5) = '1' then

 level1_address(13 downto 3) <= pocket_eachaddr(5);

 level1_address(2 downto 0) <= "101";

 else

 level1_address <= "00000000000000"; -- 14 bits

 end if;

 pocket_flag2 <= pocket_flag1;

 end if;

 end process Level1_AddrGen2;

 Level1_ActiveFGen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level1_active <= '0';

 else

 level1_active <= pocket_flag2(0) or pocket_flag2(1) or pocket_flag2(2) or

 pocket_flag2(3) or

pocket_flag2(4) or pocket_flag2(5);

 end if;

 end if;

 end process Level1_ActiveFGen;

 Level1_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level1_vga <= '0';

 elsif (level1_active = '1' and (not (level1_data = "00000"))) then

 level1_vga <= '1';

 else

 level1_vga <= '0';

 end if;

 level1_data_vga <= level1_data;

 end if;

 end process Level1_Gen;

 --Level 2

 BALLMaskFLAG_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 ball_mask_flag1 <= "0000000000000000";

 else

 for I in 0 to 15 loop

 if (x_coord + 2>= BALL_X(I) - 7 and x_coord + 2< BALL_X(I) +

7 and y_coord>= BALL_Y(I) - 7 and y_coord< BALL_Y(I) + 7) then

 ball_mask_flag1(I) <= '1';

 else

 ball_mask_flag1(I) <= '0';

 end if;

 end loop;

 end if;

 end if;

 end process BALLMaskFLAG_Gen;

 Ball_mask_AddrGen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 for I in 0 to 15 loop

 ball_mask_addr(I) <= -1;

 ball_mask_addr2(I) <= -1;

 end loop;

 else

 for I in 0 to 15 loop

 if (x_coord = BALL_X(I) + 7 and y_coord = BALL_Y(I) + 7) then

 ball_mask_addr(I) <= -1;

 elsif (x_coord + 1+ 7 >= BALL_X(I) and x_coord + 1 <

BALL_X(I) + 7 and y_coord + 7 >= BALL_Y(I) and y_coord < BALL_Y(I) + 7) then

 ball_mask_addr(I) <= ball_mask_addr(I) + 1;

 end if;

 if (x_coord = BALL_X(I) + 7 and y_coord = BALL_Y(I) + 7) then

 ball_mask_addr2(I) <= -1;

 elsif (x_coord + 2+ 7 >= BALL_X(I) and x_coord + 2 <

BALL_X(I) + 7 and y_coord + 7 >= BALL_Y(I) and y_coord < BALL_Y(I) + 7) then

 ball_mask_addr2(I) <= ball_mask_addr2(I) + 1;

 end if;

 end loop;

 end if;

 end if;

 end process Ball_mask_AddrGen;

 Ball_map_AddrGen1 : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 for I in 0 to 15 loop

 ball_map_addr(I) <= "0000000000"; --10 bits

 end loop;

 else

 for I in 0 to 15 loop

 if (x_coord + BALL_BIAS_X(I) = BALL_X(I) + 20 and y_coord

+ BALL_BIAS_Y(I) = BALL_Y(I) + 20) then

 ball_map_addr(I) <= "0000000000";

 elsif (x_coord + 1 + BALL_BIAS_X(I) + 7>= BALL_X(I) and

x_coord + 1 + BALL_BIAS_X(I) < BALL_X(I) + 20 and y_coord + BALL_BIAS_Y(I) + 7>=

BALL_Y(I) and y_coord + BALL_BIAS_Y(I)< BALL_Y(I) + 20) then

 ball_map_addr(I) <= ball_map_addr(I) + 1;

 end if;

 end loop;

 end if;

 end if;

 end process Ball_map_AddrGen1;

 Ball_map_AddrGen2 : process(clk)

 begin

 if rising_edge(clk) then

 -- Generate ball address

 if reset = '1' then

 ball_map_address <= "00000000000000"; --14 bits

 --elsif ball_mask_flag1(15) = '1' and (not(BallMask(ball_mask_addr(15) + 1) =

"00")) then --ball number 16

 elsif ball_mask_flag1(15) = '1' and (not(BallMask(ball_mask_addr2(15)) = "00"))

then --ball number 16

 ball_map_address(13 downto 4) <= ball_map_addr(15);

 ball_map_address(3 downto 0) <= "1111";

 --elsif ball_mask_flag1(0) = '1' and (not(BallMask(ball_mask_addr(0) + 1) =

"00")) then --ball number 1

 elsif ball_mask_flag1(0) = '1' and (not(BallMask(ball_mask_addr2(0)) = "00"))

then --ball number 1

 ball_map_address(13 downto 4) <= ball_map_addr(0);

 ball_map_address(3 downto 0) <= "0000";

 --elsif ball_mask_flag1(1) = '1' and (not(BallMask(ball_mask_addr(1) + 1) =

"00")) then --ball number 2

 elsif ball_mask_flag1(1) = '1' and (not(BallMask(ball_mask_addr2(1)) = "00"))

then --ball number 2

 ball_map_address(13 downto 4) <= ball_map_addr(1);

 ball_map_address(3 downto 0) <= "0001";

 --elsif ball_mask_flag1(2) = '1' and (not(BallMask(ball_mask_addr(2) + 1) =

"00")) then --ball number 3

 elsif ball_mask_flag1(2) = '1' and (not(BallMask(ball_mask_addr2(2)) = "00"))

then --ball number 3

 ball_map_address(13 downto 4) <= ball_map_addr(2);

 ball_map_address(3 downto 0) <= "0010";

 --elsif ball_mask_flag1(3) = '1' and (not(BallMask(ball_mask_addr(3) + 1) =

"00")) then --ball number 4

 elsif ball_mask_flag1(3) = '1' and (not(BallMask(ball_mask_addr2(3)) = "00"))

then --ball number 4

 ball_map_address(13 downto 4) <= ball_map_addr(3);

 ball_map_address(3 downto 0) <= "0011";

 --elsif ball_mask_flag1(4) = '1' and (not(BallMask(ball_mask_addr(4) + 1) =

"00")) then --ball number 5

 elsif ball_mask_flag1(4) = '1' and (not(BallMask(ball_mask_addr2(4)) = "00"))

then --ball number 5

 ball_map_address(13 downto 4) <= ball_map_addr(4);

 ball_map_address(3 downto 0) <= "0100";

 --elsif ball_mask_flag1(5) = '1' and (not(BallMask(ball_mask_addr(5) + 1) =

"00")) then --ball number 6

 elsif ball_mask_flag1(5) = '1' and (not(BallMask(ball_mask_addr2(5)) = "00"))

then --ball number 6

 ball_map_address(13 downto 4) <= ball_map_addr(5);

 ball_map_address(3 downto 0) <= "0101";

 --elsif ball_mask_flag1(6) = '1' and (not(BallMask(ball_mask_addr(6) + 1) =

"00")) then --ball number 7

 elsif ball_mask_flag1(6) = '1' and (not(BallMask(ball_mask_addr2(6)) = "00"))

then --ball number 7

 ball_map_address(13 downto 4) <= ball_map_addr(6);

 ball_map_address(3 downto 0) <= "0110";

 --elsif ball_mask_flag1(7) = '1' and (not(BallMask(ball_mask_addr(7) + 1) =

"00")) then --ball number 8

 elsif ball_mask_flag1(7) = '1' and (not(BallMask(ball_mask_addr2(7)) = "00"))

then --ball number 8

 ball_map_address(13 downto 4) <= ball_map_addr(7);

 ball_map_address(3 downto 0) <= "0111";

 --elsif ball_mask_flag1(8) = '1' and (not(BallMask(ball_mask_addr(8) + 1) =

"00")) then --ball number 9

 elsif ball_mask_flag1(8) = '1' and (not(BallMask(ball_mask_addr2(8)) = "00"))

then --ball number 9

 ball_map_address(13 downto 4) <= ball_map_addr(8);

 ball_map_address(3 downto 0) <= "1000";

 --elsif ball_mask_flag1(9) = '1' and (not(BallMask(ball_mask_addr(9) + 1) =

"00")) then --ball number 10

 elsif ball_mask_flag1(9) = '1' and (not(BallMask(ball_mask_addr2(9)) = "00"))

then --ball number 10

 ball_map_address(13 downto 4) <= ball_map_addr(9);

 ball_map_address(3 downto 0) <= "1001";

 --elsif ball_mask_flag1(10) = '1' and (not(BallMask(ball_mask_addr(10) + 1) =

"00")) then --ball number 11

 elsif ball_mask_flag1(10) = '1' and (not(BallMask(ball_mask_addr2(10)) = "00"))

then --ball number 11

 ball_map_address(13 downto 4) <= ball_map_addr(10);

 ball_map_address(3 downto 0) <= "1010";

 --elsif ball_mask_flag1(11) = '1' and (not(BallMask(ball_mask_addr(11) + 1) =

"00")) then --ball number 12

 elsif ball_mask_flag1(11) = '1' and (not(BallMask(ball_mask_addr2(11)) = "00"))

then --ball number 12

 ball_map_address(13 downto 4) <= ball_map_addr(11);

 ball_map_address(3 downto 0) <= "1011";

 --elsif ball_mask_flag1(12) = '1' and (not(BallMask(ball_mask_addr(12) + 1) =

"00")) then --ball number 13

 elsif ball_mask_flag1(12) = '1' and (not(BallMask(ball_mask_addr2(12)) = "00"))

then --ball number 13

 ball_map_address(13 downto 4) <= ball_map_addr(12);

 ball_map_address(3 downto 0) <= "1100";

 --elsif ball_mask_flag1(13) = '1' and (not(BallMask(ball_mask_addr(13) + 1) =

"00")) then --ball number 14

 elsif ball_mask_flag1(13) = '1' and (not(BallMask(ball_mask_addr2(13)) = "00"))

then --ball number 14

 ball_map_address(13 downto 4) <= ball_map_addr(13);

 ball_map_address(3 downto 0) <= "1101";

 --elsif ball_mask_flag1(14) = '1' and (not(BallMask(ball_mask_addr(14) + 1) =

"00")) then --ball number 15

 elsif ball_mask_flag1(14) = '1' and (not(BallMask(ball_mask_addr2(14)) = "00"))

then --ball number 15

 ball_map_address(13 downto 4) <= ball_map_addr(14);

 ball_map_address(3 downto 0) <= "1110";

 else

 ball_map_address <= "00000000000000";

 end if;

 ball_mask_flag2 <= ball_mask_flag1;

 end if;

 end process Ball_map_AddrGen2;

 Ball_Map_inst : Ball_Map_rom port map(

 address => std_logic_vector(ball_map_address),

 clock => clk,

 q => ball_data

);

 Ball_mask_colorGen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 ball_mask_color <= 0;

 elsif (ball_mask_flag2(15) = '1' and (not(BallMask(ball_mask_addr(15)) =

"00"))) then -- ball num 16

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(15))) +

26;

 elsif (ball_mask_flag2(0) = '1' and (not(BallMask(ball_mask_addr(0)) =

"00"))) then -- ball num 1

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(0))) + 2;

 elsif (ball_mask_flag2(1) = '1' and (not(BallMask(ball_mask_addr(1)) =

"00"))) then -- ball num 2

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(1))) + 5;

 elsif (ball_mask_flag2(2) = '1' and (not(BallMask(ball_mask_addr(2)) =

"00"))) then -- ball num 3

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(2))) + 8;

 elsif (ball_mask_flag2(3) = '1' and (not(BallMask(ball_mask_addr(3)) =

"00"))) then -- ball num 4

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(3))) +

11;

 elsif (ball_mask_flag2(4) = '1' and (not(BallMask(ball_mask_addr(4)) =

"00"))) then -- ball num 5

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(4))) +

14;

 elsif (ball_mask_flag2(5) = '1' and (not(BallMask(ball_mask_addr(5)) =

"00"))) then -- ball num 6

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(5))) +

17;

 elsif (ball_mask_flag2(6) = '1' and (not(BallMask(ball_mask_addr(6)) =

"00"))) then -- ball num 7

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(6))) +

20;

 elsif (ball_mask_flag2(7) = '1' and (not(BallMask(ball_mask_addr(7)) =

"00"))) then -- ball num 8

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(7))) +

23;

 elsif (ball_mask_flag2(8) = '1' and (not(BallMask(ball_mask_addr(8)) =

"00"))) then -- ball num 9

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(8))) + 2;

 elsif (ball_mask_flag2(9) = '1' and (not(BallMask(ball_mask_addr(9)) =

"00"))) then -- ball num 10

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(9))) + 5;

 elsif (ball_mask_flag2(10) = '1' and (not(BallMask(ball_mask_addr(10)) =

"00"))) then -- ball num 11

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(10))) +

8;

 elsif (ball_mask_flag2(11) = '1' and (not(BallMask(ball_mask_addr(11)) =

"00"))) then -- ball num 12

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(11))) +

11;

 elsif (ball_mask_flag2(12) = '1' and (not(BallMask(ball_mask_addr(12)) =

"00"))) then -- ball num 13

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(12))) +

14;

 elsif (ball_mask_flag2(13) = '1' and (not(BallMask(ball_mask_addr(13)) =

"00"))) then -- ball num 14

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(13))) +

17;

 elsif (ball_mask_flag2(14) = '1' and (not(BallMask(ball_mask_addr(14)) =

"00"))) then -- ball num 15

 ball_mask_color <= to_integer(BallMask(ball_mask_addr(14))) +

20;

 else

 ball_mask_color <= 0;

 end if;

 end if;

 end process Ball_mask_colorGen;

 Level2_ActiveFGen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level2_active <= '0';

 else

 level2_active <= ball_mask_flag2(0) or ball_mask_flag2(1) or

ball_mask_flag2(2) or ball_mask_flag2(3) or

 ball_mask_flag2(4) or

ball_mask_flag2(5) or ball_mask_flag2(6) or ball_mask_flag2(7) or

 ball_mask_flag2(8) or

ball_mask_flag2(9) or ball_mask_flag2(10) or ball_mask_flag2(11) or

 ball_mask_flag2(12) or

ball_mask_flag2(13) or ball_mask_flag2(14) or ball_mask_flag2(15);

 end if;

 end if;

 end process Level2_ActiveFGen;

 Level2_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level2_vga <= '0';

 elsif ((level2_active = '1') and (not (ball_mask_color = 0))) then

-- elsif (level2_active = '1') then

 level2_vga <= '1';

 else

 level2_vga <= '0';

 end if;

 if reset = '1' then

 ball_data_vga <= 0;

 elsif ball_data(1) = '1' then

 if ball_data(0) = '0' then

 ball_data_vga <= 24; --black

 elsif ball_data(0) = '1' then

 ball_data_vga <= 29; --while

 end if;

 else --ball_data(1) = '0'

 ball_data_vga <= ball_mask_color;

 end if;

 end if;

 end process Level2_Gen;

 --Level 3

 --level 3

 PoolCueRAM : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 CUERAM_addr <= "000000000"; -- 9 bits std_logic_vector

 cue_line_begin <= "0000000000000000";

 cue_line_end <= "0000000000000000";

 else

 CUERAM_addr <= std_logic_vector(y_coord(8 downto 0));

 cue_line_begin <= unsigned(CUERAM_q(31 downto 16));

 cue_line_end <= unsigned(CUERAM_q(15 downto 0));

 end if;

 end if;

 end process PoolCueRAM;

 Level3_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level3_vga <= '0';

 --cue_line_begin <= "0000"

 else

 if (x_coord >= cue_line_begin and x_coord < cue_line_end) then

 level3_vga <= '1';

 else

 level3_vga <= '0';

 end if;

 end if;

 end if;

 end process Level3_Gen;

 --Level 4

 Words_rom_inst : Words_rom port map(

 address => std_logic_vector(Word_address),

 clock => clk,

 q => Word_data

);

 Word_FLAG_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 Word_flag1 <= (others => '0');

 else

 for I in 0 to 7 loop

 if(Word_en(I) = '1' and x_coord + 2 >= Word_start_x(I) and

x_coord + 2 < Word_start_x(I) + 40 and y_coord >= Word_start_y(I) and y_coord <

Word_start_y(I) + 16) then

 Word_flag1(I) <= '1';

 else

 Word_flag1(I) <= '0';

 end if;

 end loop;

 end if;

 end if;

 end process Word_FLAG_Gen;

 Word_AddrGen1 : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 for I in 0 to 7 loop

 Word_eachaddr(I) <= (others => '0');

 end loop;

 else

 for I in 0 to 7 loop

 if(x_coord = Word_start_x(I) + 40 and y_coord = Word_start_y(I) + 16)

then

 Word_eachaddr(I) <= (others => '0');

 elsif(x_coord + 1 >= Word_start_x(I) and x_coord + 1 <

Word_start_x(I) + 40 and y_coord >= Word_start_y(I) and y_coord < Word_start_y(I) + 16)

then

 Word_eachaddr(I) <= Word_eachaddr(I) + 1;

 end if;

 end loop;

 end if;

 end if;

 end process Word_AddrGen1;

 Word_AddrGen2 : process(clk)

 begin

 if rising_edge(clk) then

 -- Generate ball address

 if reset = '1' then

 Word_address <= (others => '0');

 elsif word_flag1(0) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(0);

 Word_address(2 downto 0) <= "000";

 Word_hl <= Word_hl_en(0);

 elsif word_flag1(1) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(1);

 Word_address(2 downto 0) <= "001";

 Word_hl <= Word_hl_en(1);

 elsif word_flag1(2) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(2);

 Word_address(2 downto 0) <= "010";

 Word_hl <= Word_hl_en(2);

 elsif word_flag1(3) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(3);

 Word_address(2 downto 0) <= "011";

 Word_hl <= Word_hl_en(3);

 elsif word_flag1(4) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(4);

 Word_address(2 downto 0) <= "100";

 Word_hl <= Word_hl_en(4);

 elsif word_flag1(5) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(5);

 Word_address(2 downto 0) <= "101";

 Word_hl <= Word_hl_en(5);

 elsif word_flag1(6) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(6);

 Word_address(2 downto 0) <= "110";

 Word_hl <= Word_hl_en(6);

 elsif word_flag1(7) = '1' then

 Word_address(12 downto 3) <= Word_eachaddr(7);

 Word_address(2 downto 0) <= "111";

 Word_hl <= Word_hl_en(7);

 else

 Word_address <= (others => '0');

 Word_hl <= '0';

 end if;

 Word_flag2 <= Word_flag1;

 end if;

 end process Word_AddrGen2;

 Level4_ActiveFGen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level4_active <= '0';

 else

 level4_active <= word_flag2(0) or word_flag2(1) or word_flag2(2) or

 word_flag2(3) or

word_flag2(4) or word_flag2(5) or

 word_flag2(6) or

word_flag2(7);

 end if;

 end if;

 end process Level4_ActiveFGen;

 Level4_Gen : process(clk)

 begin

 if rising_edge(clk) then

 if reset = '1' then

 level4_vga <= '0';

 Word_color <= 0;

 elsif level4_active = '1' then

 if Word_data = "1" then

 level4_vga <= '1';

 Word_color <= 24;

 elsif Word_hl = '1' then

 level4_vga <= '1';

 Word_color <= 15;

 else

 level4_vga <= '0';

 end if;

 else

 level4_vga <= '0';

 end if;

 end if;

 end process Level4_Gen;

 -- Registered video signals going to the video DAC

 VideoOut: process (clk, reset)

 begin

 VGA_R(1 downto 0) <= "00";

 VGA_G(1 downto 0) <= "00";

 VGA_B(1 downto 0) <= "00";

 if reset = '1' then

 VGA_R(9 downto 2) <= "00000000";

 VGA_G(9 downto 2) <= "00000000";

 VGA_B(9 downto 2) <= "00000000";

 elsif clk'event and clk = '1' then

 if vga_hblank = '1' or vga_vblank ='1' then

 VGA_R(9 downto 2) <= "00000000";

 VGA_G(9 downto 2) <= "00000000";

 VGA_B(9 downto 2) <= "00000000";

 elsif level4_vga = '1' then

 VGA_R(9 downto 2) <= COLOR_TABLE_R(Word_color);

 VGA_G(9 downto 2) <= COLOR_TABLE_G(Word_color);

 VGA_B(9 downto 2) <= COLOR_TABLE_B(Word_color);

 elsif level3_vga = '1' then

 VGA_R(9 downto 2) <= COLOR_TABLE_R(2);

 VGA_G(9 downto 2) <= COLOR_TABLE_G(2);

 VGA_B(9 downto 2) <= COLOR_TABLE_B(2);

 elsif level2_vga = '1' then

 VGA_R(9 downto 2) <= COLOR_TABLE_R(ball_data_vga);

 VGA_G(9 downto 2) <= COLOR_TABLE_G(ball_data_vga);

 VGA_B(9 downto 2) <= COLOR_TABLE_B(ball_data_vga);

 elsif level1_vga = '1' then

 VGA_R(9 downto 2) <=

COLOR_TABLE_R(to_integer(unsigned(level1_data_vga)));

 VGA_G(9 downto 2) <= COLOR_TABLE_G(to_integer(unsigned(level1_data_vga)));

 VGA_B(9 downto 2) <= COLOR_TABLE_B(to_integer(unsigned(level1_data_vga)));

 elsif level0_active = '1' then

 VGA_R(9 downto 2) <= COLOR_TABLE_R(to_integer(colorcode_level0));

 VGA_G(9 downto 2) <= COLOR_TABLE_G(to_integer(colorcode_level0));

 VGA_B(9 downto 2) <= COLOR_TABLE_B(to_integer(colorcode_level0));

 else --background color

 VGA_R(9 downto 2) <= COLOR_TABLE_R(5);

 VGA_G(9 downto 2) <= COLOR_TABLE_G(5);

 VGA_B(9 downto 2) <= COLOR_TABLE_B(5);

 end if;

 end if;

 end process VideoOut;

 VGA_CLK <= clk;

 VGA_HS <= not vga_hsync;

 VGA_VS <= not vga_vsync;

 VGA_SYNC <= '0';

 VGA_BLANK <= not (vga_hsync or vga_vsync);

end rtl;

-- Pool Cue Ram Controller

--Editor: Jiawan Zhang

--Data: 2013

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity PoolCue_ram_controller is port(

 chipselect : in std_LOGIC;

 writedata : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

 wraddress : IN STD_LOGIC_VECTOR (8 DOWNTO 0);

 clk_50 : IN STD_LOGIC;

 write : IN STD_LOGIC;

 CUE_rdaddress : IN STD_LOGIC_VECTOR (8 DOWNTO 0);

 CUE_rdclock : IN STD_LOGIC ;

 CUE_q : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)

);

end entity PoolCue_ram_controller;

architecture blockram of PoolCue_ram_controller is

component PoolCue_ram IS

 PORT

 (

 data : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

 rdaddress : IN STD_LOGIC_VECTOR (8 DOWNTO 0);

 rdclock : IN STD_LOGIC ;

 wraddress : IN STD_LOGIC_VECTOR (8 DOWNTO 0);

 wrclock : IN STD_LOGIC;

 wren : IN STD_LOGIC;

 q : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)

);

end component PoolCue_ram;

signal inter_CUE_rdaddress : std_logic_vector(8 downto 0);

signal inter_CUE_rdclock : std_logic;

signal inter_CUE_q : std_logic_vector(31 downto 0);

begin

 the_PoolCue_ram : PoolCue_ram port map(

 data => writedata,

 wraddress => wraddress,

 wrclock => clk_50,

 wren => write,

 rdaddress => inter_CUE_rdaddress,

 rdclock => inter_CUE_rdclock,

 q => inter_CUE_q

);

 inter_CUE_rdaddress <= CUE_rdaddress;

 inter_CUE_rdclock <= CUE_rdclock;

 CUE_q <= inter_CUE_q;

end blockram;

-- Keyboard Controller

--

-- Simple (receive-only) PS/2 controller for the Altera Avalon bus

--

-- Presents a two-word interface:

--

-- Byte 0: LSB is a status bit: 1 = data received, 0 = no new data

-- Byte 4: least significant byte is received data,

-- reading it clears the input register

--

-- Make sure "Slave addressing" in the interfaces tab of SOPC Builder's

-- "New Component" dialog is set to "Register" mode.

--

--

-- Stephen A. Edwards and Yingjian Gu

-- Columbia University, sedwards@cs.columbia.edu

--

-- From an original by Bert Cuzeau

-- (c) ALSE. http://www.alse-fr.com

--

--

-- --

-- Simplified PS/2 Controller (kbd, mouse...)

-- --

-- Only the Receive function is implemented !

-- (c) ALSE. http://www.alse-fr.com

-- Author : Bert Cuzeau.

-- Fully synchronous solution, same Filter on PS2_Clk.

-- Still as compact as "Plain_wrong"...

-- Possible improvement : add TIMEOUT on PS2_Clk while shifting

-- Note: PS2_Data is resynchronized though this should not be

-- necessary (qualified by Fall_Clk and does not change at that time).

-- Note the tricks to correctly interpret 'H' as '1' in RTL simulation.

-- Editor Zeshi Wang

-- Data: 2013

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity PS2_Ctrl is

 port(

 Clk : in std_logic; -- System Clock

 Reset : in std_logic; -- System Reset

 PS2_Clk : in std_logic; -- Keyboard Clock Line

 PS2_Data : in std_logic; -- Keyboard Data Line

 DoRead : in std_logic; -- From outside when reading the scan code

 Scan_Err : out std_logic; -- To outside : Parity or Overflow error

 Scan_DAV : out std_logic; -- To outside when a scan code has arrived

 Scan_Code : out std_logic_vector(7 downto 0) -- Eight bits Data Out

);

end PS2_Ctrl;

architecture rtl of PS2_Ctrl is

 signal PS2_Datr : std_logic;

 subtype Filter_t is std_logic_vector(7 downto 0);

 signal Filter : Filter_t;

 signal Fall_Clk : std_logic;

 signal Bit_Cnt : unsigned (3 downto 0);

 signal Parity : std_logic;

 signal Scan_DAVi : std_logic;

 signal S_Reg : std_logic_vector(8 downto 0);

 signal PS2_Clk_f : std_logic;

 Type State_t is (Idle, Shifting);

 signal State : State_t;

begin

 Scan_DAV <= Scan_DAVi;

-- This filters digitally the raw clock signal coming from the keyboard :

-- * Eight consecutive PS2_Clk=1 makes the filtered_clock go high

-- * Eight consecutive PS2_Clk=0 makes the filtered_clock go low

-- Implies a (FilterSize+1) x Tsys_clock delay on Fall_Clk wrt Data

-- Also in charge of the re-synchronization of PS2_Data

 process (Clk)

 begin

 if rising_edge(Clk) then

 if Reset = '1' then

 PS2_Datr <= '0';

 PS2_Clk_f <= '0';

 Filter <= (others => '0');

 Fall_Clk <= '0';

 else

 PS2_Datr <= PS2_Data and PS2_Data; -- also turns 'H' into '1'

 Fall_Clk <= '0';

 Filter <= (PS2_Clk and PS2_CLK) & Filter(Filter'high downto 1);

 if Filter = Filter_t'(others=>'1') then

 PS2_Clk_f <= '1';

 elsif Filter = Filter_t'(others=>'0') then

 PS2_Clk_f <= '0';

 if PS2_Clk_f = '1' then

 Fall_Clk <= '1';

 end if;

 end if;

 end if;

 end if;

 end process;

-- This simple State Machine reads in the Serial Data

-- coming from the PS/2 peripheral.

 process(Clk)

 begin

 if rising_edge(Clk) then

 if Reset = '1' then

 State <= Idle;

 Bit_Cnt <= (others => '0');

 S_Reg <= (others => '0');

 Scan_Code <= (others => '0');

 Parity <= '0';

 Scan_DAVi <= '0';

 Scan_Err <= '0';

 else

 if DoRead = '1' then

 Scan_DAVi <= '0'; -- note: this assgnmnt can be overriden

 end if;

 case State is

 when Idle =>

 Parity <= '0';

 Bit_Cnt <= (others => '0');

 -- note that we do not need to clear the Shift Register

 if Fall_Clk='1' and PS2_Datr='0' then -- Start bit

 Scan_Err <= '0';

 State <= Shifting;

 end if;

 when Shifting =>

 if Bit_Cnt >= 9 then

 if Fall_Clk = '1' then -- Stop Bit

 -- Error is (wrong Parity) or (Stop='0') or Overflow

 Scan_Err <= (not Parity) or (not PS2_Datr) or Scan_DAVi;

 Scan_Davi <= '1';

 Scan_Code <= S_Reg(7 downto 0);

 State <= Idle;

 end if;

 elsif Fall_Clk = '1' then

 Bit_Cnt <= Bit_Cnt + 1;

 S_Reg <= PS2_Datr & S_Reg (S_Reg'high downto 1); -- Shift right

 Parity <= Parity xor PS2_Datr;

 end if;

 when others => -- never reached

 State <= Idle;

 end case;

 --Scan_Err <= '0'; -- to create a deliberate error

 end if;

 end if;

 end process;

end rtl;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_ps2 is

 port (

 avs_s1_clk : in std_logic;

 avs_s1_reset : in std_logic;

 avs_s1_address : in std_logic;

 avs_s1_read : in std_logic;

 avs_s1_chipselect : in std_logic;

 avs_s1_readdata : out std_logic_vector(7 downto 0);

 PS2_Clk : in std_logic;

 PS2_Data : in std_logic

);

end de2_ps2;

architecture rtl of de2_ps2 is

 signal Data : std_logic_vector(7 downto 0);

 signal DataAvailable : std_logic;

 signal DoRead : std_logic;

begin

 U1: entity work.PS2_CTRL port map(

 Clk => avs_s1_clk,

 Reset => avs_s1_reset,

 DoRead => DoRead,

 PS2_Clk => PS2_Clk,

 PS2_Data => PS2_Data,

 Scan_Code => Data,

 Scan_DAV => DataAvailable);

 process (avs_s1_clk)

 begin

 if rising_edge(avs_s1_clk) then

 DoRead <= avs_s1_read and avs_s1_chipselect and avs_s1_address;

 end if;

 end process;

 process (Data, DataAvailable, avs_s1_address, avs_s1_chipselect)

 begin

 if avs_s1_chipselect = '1' then

 if avs_s1_address = '1' then

 avs_s1_readdata <= Data;

 else

 avs_s1_readdata <= "0000000" & DataAvailable;

 end if;

 else

 avs_s1_readdata <= "00000000";

 end if;

 end process;

end rtl;

-- Audio Controller

--Editor: Zeshi Wang

--Data: 2013

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_wm8731_audio is

port (

 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)

 reset_n : in std_logic;

 data : in std_logic_vector(7 downto 0) := "00000000";

 write : in std_logic;

 chipselect : in std_logic;

 -- Audio interface signals

 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock

 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data

 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock

 AUD_DACDAT : out std_logic; -- Audio CODEC DAC Data

 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock

);

end de2_wm8731_audio;

architecture rtl of de2_wm8731_audio is

 signal lrck : std_logic;

 signal bclk : std_logic;

 signal xck : std_logic;

 signal lrck_divider : unsigned(15 downto 0);

 signal bclk_divider : unsigned(11 downto 0);

 signal set_bclk : std_logic;

 signal set_lrck : std_logic;

 signal clr_bclk : std_logic;

 signal lrck_lat : std_logic;

 signal shift_out : unsigned(15 downto 0);

 signal start_audio : std_logic_vector(3 downto 0);

 type count_type is array(0 to 3) of unsigned(11 downto 0);

 signal count : count_type;

 --signal ram_address : count_type;

 signal data_in : std_logic_vector(15 downto 0);

 signal ram_address : std_logic_vector(13 downto 0);

component sound_rom IS

 PORT

 (

 address : IN STD_LOGIC_VECTOR (13 DOWNTO 0);

 clock : IN STD_LOGIC := '1';

 q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);

END component;

begin

 ROM : sound_rom port map(

 address => ram_address,

 clock => clk,

 q => data_in

);

 -- LRCK divider

 -- Audio chip main clock is 18.432MHz / Sample rate 48KHz

 -- Divider is 18.432 MHz / 48KHz = 192 (X"C0")

 -- Left justify mode set by I2C controller

 --Set start_audio signal

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 start_audio <= (others => '0');

 else

 for I in 0 to 3 loop

 if (write = '1' and chipselect = '1' and data(I) = '1') then

 start_audio(I) <= '1';

 elsif count(I) = x"08ae" then

 start_audio(I) <= '0';

 end if;

 end loop;

 end if;

 end if;

 end process;

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 lrck_divider <= (others => '0');

 elsif lrck_divider = X"08FF" then -- "C0" minus 1

 lrck_divider <= X"0000";

 else

 lrck_divider <= lrck_divider + 1;

 end if;

 end if;

 end process;

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 bclk_divider <= (others => '0');

 elsif bclk_divider = X"08F" or set_lrck = '1' then

 bclk_divider <= X"000";

 else

 bclk_divider <= bclk_divider + 1;

 end if;

 end if;

 end process;

 set_lrck <= '1' when lrck_divider = X"08FF" else '0';

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 lrck <= '0';

 elsif set_lrck = '1' then

 lrck <= not lrck;

 end if;

 end if;

 end process;

process(clk)

 begin

 if rising_edge(clk) then

 lrck_lat <= lrck;

 end if;

 end process;

 -- BCLK divider

 set_bclk <= '1' when bclk_divider(11 downto 0) = X"047" else '0';

 clr_bclk <= '1' when bclk_divider(11 downto 0) = X"08F" else '0';

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 bclk <= '0';

 elsif set_lrck = '1' or clr_bclk = '1' then

 bclk <= '0';

 elsif set_bclk = '1' then

 bclk <= '1';

 end if;

 end if;

 end process;

 -- Audio data shift output

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 shift_out <= (others => '0');

 elsif (start_audio(0) or start_audio(1) or start_audio(2) or start_audio(3)) = '1' then

 if set_lrck = '1' then

 shift_out <= unsigned(data_in);

 elsif clr_bclk = '1' then

 shift_out <= shift_out (14 downto 0) & '0';

 end if;

 else

 shift_out <= (others => '0');

 end if;

 end if;

 end process;

 -- Audio outputs

 AUD_ADCLRCK <= lrck;

 AUD_DACLRCK <= lrck;

 AUD_DACDAT <= shift_out(15);

 AUD_BCLK <= bclk;

 -- ram address counter

 -- counter for ball_hit audio

-- Update count

 process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 for I in 0 to 3 loop

 count(I) <= (others => '0');

 end loop;

 elsif lrck_lat = '1' and lrck = '0' then

 for I in 0 to 3 loop

 if count(I) = x"8ae" then

 count(I) <= (others => '0');

 elsif (start_audio(I) = '1') then

 count(I) <= count(I) + 1;

 end if;

 end loop;

 end if;

 end if;

 end process;

 --Update Address

 process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 ram_address <= (others => '0');

 elsif start_audio(0) = '1' then

 ram_address(13 downto 2) <= std_logic_vector(count(0));

 ram_address(1 downto 0) <= "00";

 elsif start_audio(1) = '1' then

 ram_address(13 downto 2) <= std_logic_vector(count(1));

 ram_address(1 downto 0) <= "01";

 elsif start_audio(2) = '1' then

 ram_address(13 downto 2) <= std_logic_vector(count(2));

 ram_address(1 downto 0) <= "10";

 elsif start_audio(3) = '1' then

 ram_address(13 downto 2) <= std_logic_vector(count(3));

 ram_address(1 downto 0) <= "11";

 else

 ram_address <= (others => '0');

 end if;

 end if;

 end process;

end architecture;

-- SRAM_Controller

--Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your

--use of Altera Corporation's design tools, logic functions and other

--software and tools, and its AMPP partner logic functions, and any

--output files any of the foregoing (including device programming or

--simulation files), and any associated documentation or information are

--expressly subject to the terms and conditions of the Altera Program

--License Subscription Agreement or other applicable license agreement,

--including, without limitation, that your use is for the sole purpose

--of programming logic devices manufactured by Altera and sold by Altera

--or its authorized distributors. Please refer to the applicable

--agreement for further details.

-- turn off superfluous VHDL processor warnings

-- altera message_level Level1

-- altera message_off 10034 10035 10036 10037 10230 10240 10030

-- Editor: Zeshi Wang

-- Data: 2013

library altera;

use altera.altera_europa_support_lib.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity sram is

 port (

 -- inputs:

 signal address : IN STD_LOGIC_VECTOR (17 DOWNTO 0);

 signal byteenable : IN STD_LOGIC_VECTOR (1 DOWNTO 0);

 signal chipselect : IN STD_LOGIC;

 signal read : IN STD_LOGIC;

 signal write : IN STD_LOGIC;

 signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

 -- outputs:

 signal SRAM_ADDR : OUT STD_LOGIC_VECTOR (17 DOWNTO 0);

 signal SRAM_CE_N : OUT STD_LOGIC;

 signal SRAM_DQ : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);

 signal SRAM_LB_N : OUT STD_LOGIC;

 signal SRAM_OE_N : OUT STD_LOGIC;

 signal SRAM_UB_N : OUT STD_LOGIC;

 signal SRAM_WE_N : OUT STD_LOGIC;

 signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);

end entity sram;

architecture europa of sram is

component de2_sram_controller is

 port (

 -- inputs:

 signal address : IN STD_LOGIC_VECTOR (17 DOWNTO 0);

 signal byteenable : IN STD_LOGIC_VECTOR (1 DOWNTO 0);

 signal chipselect : IN STD_LOGIC;

 signal read : IN STD_LOGIC;

 signal write : IN STD_LOGIC;

 signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);

 -- outputs:

 signal SRAM_ADDR : OUT STD_LOGIC_VECTOR (17 DOWNTO 0);

 signal SRAM_CE_N : OUT STD_LOGIC;

 signal SRAM_DQ : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);

 signal SRAM_LB_N : OUT STD_LOGIC;

 signal SRAM_OE_N : OUT STD_LOGIC;

 signal SRAM_UB_N : OUT STD_LOGIC;

 signal SRAM_WE_N : OUT STD_LOGIC;

 signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);

end component de2_sram_controller;

 signal internal_SRAM_ADDR : STD_LOGIC_VECTOR (17 DOWNTO 0);

 signal internal_SRAM_CE_N : STD_LOGIC;

 signal internal_SRAM_LB_N : STD_LOGIC;

 signal internal_SRAM_OE_N : STD_LOGIC;

 signal internal_SRAM_UB_N : STD_LOGIC;

 signal internal_SRAM_WE_N : STD_LOGIC;

 signal internal_readdata : STD_LOGIC_VECTOR (15 DOWNTO 0);

begin

 --the_de2_sram_controller, which is an e_instance

 the_de2_sram_controller : de2_sram_controller

 port map(

 SRAM_ADDR => internal_SRAM_ADDR,

 SRAM_CE_N => internal_SRAM_CE_N,

 SRAM_DQ => SRAM_DQ,

 SRAM_LB_N => internal_SRAM_LB_N,

 SRAM_OE_N => internal_SRAM_OE_N,

 SRAM_UB_N => internal_SRAM_UB_N,

 SRAM_WE_N => internal_SRAM_WE_N,

 readdata => internal_readdata,

 address => address,

 byteenable => byteenable,

 chipselect => chipselect,

 read => read,

 write => write,

 writedata => writedata

);

 --vhdl renameroo for output signals

 SRAM_ADDR <= internal_SRAM_ADDR;

 --vhdl renameroo for output signals

 SRAM_CE_N <= internal_SRAM_CE_N;

 --vhdl renameroo for output signals

 SRAM_LB_N <= internal_SRAM_LB_N;

 --vhdl renameroo for output signals

 SRAM_OE_N <= internal_SRAM_OE_N;

 --vhdl renameroo for output signals

 SRAM_UB_N <= internal_SRAM_UB_N;

 --vhdl renameroo for output signals

 SRAM_WE_N <= internal_SRAM_WE_N;

 --vhdl renameroo for output signals

 readdata <= internal_readdata;

end europa;

--**

library ieee;

use ieee.std_logic_1164.all;

entity de2_sram_controller is

 port (

 signal chipselect : in std_logic;

 signal write, read : in std_logic;

 signal address : in std_logic_vector(17 downto 0);

 signal readdata : out std_logic_vector(15 downto 0);

 signal writedata : in std_logic_vector(15 downto 0);

 signal byteenable : in std_logic_vector(1 downto 0);

 signal SRAM_DQ : inout std_logic_vector(15 downto 0);

 signal SRAM_ADDR : out std_logic_vector(17 downto 0);

 signal SRAM_UB_N, SRAM_LB_N : out std_logic;

 signal SRAM_WE_N, SRAM_CE_N : out std_logic;

 signal SRAM_OE_N : out std_logic

);

end de2_sram_controller;

architecture dp of de2_sram_controller is

begin

 SRAM_DQ <= writedata when write = '1'

 else (others => 'Z');

 readdata <= SRAM_DQ;

 SRAM_ADDR <= address;

 SRAM_UB_N <= not byteenable(1);

 SRAM_LB_N <= not byteenable(0);

 SRAM_WE_N <= not write;

 SRAM_CE_N <= not chipselect;

 SRAM_OE_N <= not read;

end dp;

-- irTimer

-- Editor: Jiawan Zhang

-- Data: 2013

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity irTimer is port (

 clk_50 : in std_logic;

 reset : in std_logic;

 chipselect : in std_logic;

 read : in std_logic;

 write : in std_logic;

 address : in std_logic;

 readdata : out std_logic_vector(15 downto 0);

 writedata : in std_logic_vector(15 downto 0);

 irq : out std_logic);

end irTimer;

architecture rtl of irTimer is

 signal counter : unsigned(15 downto 0);

 --signal ms : unsigned(15 downto 0);

 signal data : std_logic_vector(15 downto 0);

begin

 process(clk_50)

 begin

 if rising_edge(clk_50) then

 if reset = '1' then

 readdata <= (others => '0');

 counter <= (others => '0');

 else

 if chipselect = '1' and address = '0' then

 if write = '1' then

 counter <= unsigned(writedata);

 elsif read = '1' then

 readdata <= std_logic_vector(counter);

 if not (counter = x"0000") then

 counter <= counter - x"0001";

 end if;

 end if;

 else

 if not (counter = x"0000") then

 counter <= counter - x"0001";

 end if;

 end if;

 end if;

 end if;

 end process;

 process (clk_50)

 begin

 if rising_edge(clk_50) then

 if reset = '1' then

 irq <= '0';

 else

 if counter = 0 then

 irq <= '1';

 elsif chipselect = '1' and write = '1' then

 irq <= '0';

 end if;

 end if;

 end if;

 end process;

end rtl;

Software Codes:

-- Main function for Pool Game

//Editors: XunChi Wu; Yuhan Zhang; Jiawan Zhang; Zeshi Wang

//Data: 2013

#include <stdio.h>

#include <io.h>

#include <system.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "poolcue.h"

#include "poolball.h"

#include "keyboard.h"

#define VC_MAX 3200

#define ACC 100

#define pi 3.1415926

#define angle_trans 0.05236 //

#define zero 0.0001

#define n_zero -0.0001

#define sq_zero 0.01

#define PRODUCT 0.34 // PRODUCT = dx * vc , when dx = min(zero), vc = vc_max

#define edge_acc 0.95

//Audio

//1 = loud; 2 = low

#define IOWR_AUDIO_EN(data)\

 IOWR_8DIRECT(AUDIO_0_BASE, 0, data);

//Write to vga ram

#define IOWR_VGA_STRENGTHBAR(data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, 128, data)

#define SERVELINE_EN(flag)\

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, 130, flag)

//Words

//Enable

//6:WIN! ; 5: GAME ; 4: NEW ; 3: network ; 2: single ; 1: PLR 2 ; 0: PLR1

#define IOWR_VGA_WORD_EN(data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, 132, data)

#define IOWR_VGA_WORD_HL_EN(data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, 134, data)

#define IOWR_VGA_WORD_POS_X(n, data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, (68 + 2*n)*2, data)

#define IOWR_VGA_WORD_POS_Y(n, data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, (69 + 2*n)*2, data)

struct balltype

{

 int pos_x,pos_y;

 int vc_x, vc_y;

 int count_x, count_y;

 short int dir_x, dir_y;

 short int flag;

 float dx, dy;

 int force_move;

 int bias_x, bias_y;

}ball[16];

int hole[6][2]={{24,158},{320,154},{615,158},

 {24,461},{320,465},{615,461}};

int player=0;

int change=1;

int oops = 0;

int plball[2]={0,0};

int i_0 =0;

int i_1 =0;

int ex = 1;

int cue_ready = 0;

int angle = 0;

int strength = 0;

int release = 0;

int begin_flag;

float swtich_d;

int dir_strength = 1;

void decide_movement(int ball_num)

{

 if((ball[ball_num].dx * ball[ball_num].dx + ball[ball_num].dy * ball[ball_num].dy) >=

zero) //if the ball speed hasn't reached the stopping threshold

 {

 //decide the moving direction of X axis(either rolling forward or backward)

 if(ball[ball_num].dx >= zero)

 {

 ball[ball_num].vc_x = (int)(PRODUCT / ball[ball_num].dx);

 //velocity of X axis

 ball[ball_num].dir_x = 1; //ball is rolling forward

 }

 else if (ball[ball_num].dx <= n_zero)

 {

 ball[ball_num].vc_x = - (int)(PRODUCT / ball[ball_num].dx);

 ball[ball_num].dir_x = -1; //ball is rolling backward

 }

 else //indicating ball stops in X axis

 {

 ball[ball_num].vc_x = VC_MAX + 1;

 ball[ball_num].dir_x = 0;

 ball[ball_num].dx = 0;

 }

 //decide the moving direction of Y axis(either rolling forward or backward)

 if(ball[ball_num].dy >= zero)

 {

 ball[ball_num].vc_y = (int)(PRODUCT / ball[ball_num].dy);

 //velocity of Y axis

 ball[ball_num].dir_y = 1; //ball is rolling forward

 }

 else if (ball[ball_num].dy <= n_zero)

 {

 ball[ball_num].vc_y = - (int)(PRODUCT / ball[ball_num].dy);

 ball[ball_num].dir_y = -1; //ball is rolling backward

 }

 else //indicating ball stops in Y axis

 {

 ball[ball_num].vc_y = VC_MAX + 1;

 ball[ball_num].dir_y = 0;

 ball[ball_num].dy = 0;

 }

 }

 else //if the ball speed has reached the stopping threshold, then

both direction stopped moving

 {

 ball[ball_num].vc_x = VC_MAX + 1;

 ball[ball_num].dir_x = 0;

 ball[ball_num].dx = 0;

 ball[ball_num].vc_y = VC_MAX + 1;

 ball[ball_num].dir_y = 0;

 ball[ball_num].dy = 0;

 }

 //assigning the count for the ball

 if(ball[ball_num].vc_x < ball[ball_num].count_x)

 {

 ball[ball_num].count_x = ball[ball_num].vc_x;

 }

 if(ball[ball_num].vc_y < ball[ball_num].count_y)

 {

 ball[ball_num].count_y = ball[ball_num].vc_y;

 }

}

void dir_change(int i, char axle, int change_to) //force the direction to be the one we

want(change_to)

{

 if(axle == 'x')

 {

 if((change_to == 1 && ball[i].dx < 0) || (change_to == -1 && ball[i].dx > 0))

 {

 ball[i].dx = -ball[i].dx;

 }

 }

 else if(axle == 'y')

 {

 if((change_to == 1 && ball[i].dy < 0) || (change_to == -1 && ball[i].dy > 0))

 {

 ball[i].dy = -ball[i].dy;

 }

 }

}

void detect_bound_edge(int i)

{

 int hit_flag = 0;

 float dis_v_sq;

 if(ball[i].pos_x < 45 && ball[i].pos_y < 179) //left_up pocket area

 {

 if(39 - ball[i].pos_x > 179 - ball[i].pos_y)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', 1);

 dir_change(i, 'y', -1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(173 - ball[i].pos_y > 45 - ball[i].pos_x)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', -1);

 dir_change(i, 'y', 1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else if(ball[i].pos_x > 594 && ball[i].pos_y < 179) //right_up pocket area

 {

 if(ball[i].pos_x - 600 > 179 - ball[i].pos_y)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', -1);

 dir_change(i, 'y', -1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(173 - ball[i].pos_y > ball[i].pos_x - 594)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', 1);

 dir_change(i, 'y', 1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else if(ball[i].pos_x < 45 && ball[i].pos_y > 440) //left_down pocket area

 {

 if(39 - ball[i].pos_x > ball[i].pos_y - 440)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', 1);

 dir_change(i, 'y', 1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(ball[i].pos_y - 446 > 45 - ball[i].pos_x)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', -1);

 dir_change(i, 'y', -1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else if(ball[i].pos_x > 594 && ball[i].pos_y > 440) //right_down pocket area

 {

 if(ball[i].pos_x - 600 > ball[i].pos_y - 440)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', -1);

 dir_change(i, 'y', 1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(ball[i].pos_y - 446 > ball[i].pos_x - 594)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', 1);

 dir_change(i, 'y', -1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else

 {

 if(ball[i].pos_x <= 39) //left edge

 {

 ball[i].pos_x = 39;

 dir_change(i, 'x', 1);

 ball[i].dx *= edge_acc;

 //ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 if(ball[i].pos_x >= 600) //right edge

 {

 ball[i].pos_x = 600;

 dir_change(i, 'x', -1);

 ball[i].dx *= edge_acc;

 //ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 if(ball[i].pos_y <= 173) //up edge

 {

 if(ball[i].pos_y > 168) //up_mid pocket area

 {

 if(ball[i].pos_x < 336 && ball[i].pos_x > 304)

 {

 if(173 - ball[i].pos_y > ball[i].pos_x - 304) //slide edge

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', 1);

 dir_change(i, 'y', 1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 }

 else if(173 - ball[i].pos_y > 336 - ball[i].pos_x)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', -1);

 dir_change(i, 'y', 1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 }

 }

 else //up edge normal area

 {

 ball[i].pos_y = 173;

 dir_change(i, 'y', 1);

 //ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else //if the ball lands near the upper mid-hole and not pocket, debug

 {

 if(ball[i].pos_x >= 325) //vertical edge of the upper mid-hole

 {

 ball[i].pos_x = 325;

 dir_change(i, 'x', -1);

 ball[i].dx *= edge_acc;

 //ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(ball[i].pos_x <= 315)

 {

 //ball[i].pos_x = 315;

 dir_change(i, 'x', 1);

 ball[i].dx *= edge_acc;

 //ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 }

 if(ball[i].pos_y >= 446) //down edge

 {

 if(ball[i].pos_y < 451) //down_mid pocket area

 {

 if(ball[i].pos_x < 336 && ball[i].pos_x > 304)

 {

 if(ball[i].pos_y - 446 > ball[i].pos_x - 304)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', 1);

 dir_change(i, 'y', -1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(ball[i].pos_y - 446 > 336 - ball[i].pos_x)

 {

 swtich_d = ball[i].dx;

 ball[i].dx = ball[i].dy;

 ball[i].dy = swtich_d;

 dir_change(i, 'x', -1);

 dir_change(i, 'y', -1);

 ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else //normal

 {

 ball[i].pos_y = 446;

 dir_change(i, 'y', -1);

 //ball[i].dx *= edge_acc;

 ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 else

 {

 if(ball[i].pos_x >= 325)

 {

 //ball[i].pos_x = 325;

 dir_change(i, 'x', -1);

 ball[i].dx *= edge_acc;

 //ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 else if(ball[i].pos_x <= 315)

 {

 ball[i].pos_x = 315;

 dir_change(i, 'x', 1);

 ball[i].dx *= edge_acc;

 //ball[i].dy *= edge_acc;

 decide_movement (i);

 hit_flag = 1;

 }

 }

 }

 }

 if(hit_flag == 1) // display the audio

 {

 dis_v_sq = ball[i].dx * ball[i].dx + ball[i].dy * ball[i].dy;

 if(dis_v_sq > 0.05)

 {

 IOWR_AUDIO_EN(4);

 }

 else if(dis_v_sq > 0)

 {

 IOWR_AUDIO_EN(8);

 }

 }

}

void bound_balls(int b1,int b2) //main function for ball collision

{

 float s1=100,s2=100,s,d1,d2,x,y,dx1,dx2,dy1,dy2;

 float dis_v_sq;

 int dis1_x, dis2_x;

 int dis1_y, dis2_y;

 x = ball[b2].pos_x - ball[b1].pos_x;

 y = ball[b2].pos_y - ball[b1].pos_y;

 if(!(fabs(ball[b1].dx) < zero && fabs(ball[b1].dy) < zero))

 {

 s1 = atan2(ball[b1].dy,ball[b1].dx);

 }

 if(!(fabs(ball[b2].dx) < zero && fabs(ball[b2].dy) < zero))

 {

 s2 = atan2(ball[b2].dy,ball[b2].dx);

 }

 s = atan2(y,x);

 if(s1!=100 && fabs(s-s1) < pi/2)

 {

 d1=sqrt(ball[b1].dx * ball[b1].dx + ball[b1].dy * ball[b1].dy)*cos(s-s1);

 dx1= d1*cos(s);

 dy1= d1*sin(s);

 ball[b1].dx -= dx1;

 ball[b1].dy -= dy1;

 ball[b2].dx += dx1;

 ball[b2].dy += dy1;

 dis_v_sq = dx1*dx1 + dy1*dy1; //display the audio

 if(dis_v_sq > 0.02)

 {

 IOWR_AUDIO_EN(1);

 }

 else if(dis_v_sq > 0)

 {

 IOWR_AUDIO_EN(2);

 }

 }

 if(s2 != 100 && fabs(s-s2) > pi/2)

 {

 d2=sqrt(ball[b2].dx * ball[b2].dx + ball[b2].dy * ball[b2].dy)*cos(pi-(s-s2));

 dx2= d2*cos(pi-s);

 dy2= d2*sin(pi-s);

 ball[b1].dx += dx2;

 ball[b1].dy += dy2;

 ball[b2].dx -= dx2;

 ball[b2].dy -= dy2;

 dis_v_sq = dx1*dx1 + dy1*dy1;

 if(dis_v_sq > 0.05)

 {

 IOWR_AUDIO_EN(1);

 }

 else if(dis_v_sq > 0)

 {

 IOWR_AUDIO_EN(2);

 }

 }

 //velocity decrease

 ball[b1].dx *= 0.90;

 ball[b1].dy *= 0.90;

 ball[b2].dx *= 0.90;

 ball[b2].dy *= 0.90;

 decide_movement (b1);

 decide_movement (b2);

 //if two balls overlap, then force both balls move one pixel.

 if(x*x + y*y < 196)

 {

 if(x > 0)

 {

 dis2_x = 1;

 dis1_x = -1;

 }

 else

 {

 dis2_x = -1;

 dis1_x = 1;

 }

 if(y > 0)

 {

 dis2_y = 1;

 dis1_y = -1;

 }

 else

 {

 dis2_y = -1;

 dis1_y = 1;

 }

 moveball(b1, &ball[b1].pos_x, &ball[b1].pos_y, dis1_x, dis1_y, &ball[b1].bias_x,

&ball[b1].bias_y);

 moveball(b2, &ball[b2].pos_x, &ball[b2].pos_y, dis2_x, dis2_y, &ball[b2].bias_x,

&ball[b2].bias_y);

 ball[b2].force_move = 1;

 IOWR_AUDIO_EN(2);

 }

}

void win(int b) // main function for winning condition, and player changing rule.

{

 int i,m=0;

 if(b==7) // if the black ball pockets

 {

 ex = 0;

 ball[b].pos_x = 120;

 ball[b].pos_y = 48;

 placeball(b, ball[b].pos_x, ball[b].pos_y, 0, 0, &ball[b].bias_x, &ball[b].bias_y);

 if(plball[player]==0) // if player directly pocket the black ball without pocketing

his balls first

 {

 IOWR_VGA_WORD_EN(67);

 IOWR_VGA_WORD_POS_X(0, 52);

 IOWR_VGA_WORD_POS_Y(0, 60);

 IOWR_VGA_WORD_POS_X(1, 52);

 IOWR_VGA_WORD_POS_Y(1, 90);

 //IOWR_VGA_WORD_POS_X(2, 550);

 //IOWR_VGA_WORD_POS_Y(2, 40);

 if(player == 0)

 {

 IOWR_VGA_WORD_HL_EN(64);

 IOWR_VGA_WORD_POS_X(6, 10);

 IOWR_VGA_WORD_POS_Y(6, 90);

 }

 else

 {

 IOWR_VGA_WORD_HL_EN(64);

 IOWR_VGA_WORD_POS_X(6, 10);

 IOWR_VGA_WORD_POS_Y(6, 60);

 }

 }

 else

 {

 for(i = plball[player]-1; i < plball[player]+6; i++)

 {

 if(ball[i].flag==1) // if player doesn't pocket all his balls before

pocketing black ball

 {

 m=1;

 break;

 }

 }

 if(m)

 {

 printf("win player: %d",!player);

 IOWR_VGA_WORD_EN(67);

 IOWR_VGA_WORD_POS_X(0, 52);

 IOWR_VGA_WORD_POS_Y(0, 60);

 IOWR_VGA_WORD_POS_X(1, 52);

 IOWR_VGA_WORD_POS_Y(1, 90);

 //IOWR_VGA_WORD_POS_X(2, 550);

 //IOWR_VGA_WORD_POS_Y(2, 40);

 if(player == 0)

 {

 IOWR_VGA_WORD_HL_EN(64);

 IOWR_VGA_WORD_POS_X(6, 10);

 IOWR_VGA_WORD_POS_Y(6, 60);

 }

 else

 {

 IOWR_VGA_WORD_HL_EN(64);

 IOWR_VGA_WORD_POS_X(6, 10);

 IOWR_VGA_WORD_POS_Y(6, 90);

 }

 }

 else

 {

 printf("win player: %d",player);

 IOWR_VGA_WORD_EN(71);

 IOWR_VGA_WORD_POS_X(0, 52);

 IOWR_VGA_WORD_POS_Y(0, 60);

 IOWR_VGA_WORD_POS_X(1, 52);

 IOWR_VGA_WORD_POS_Y(1, 90);

 //IOWR_VGA_WORD_POS_X(2, 550);

 //IOWR_VGA_WORD_POS_Y(2, 40);

 if(player == 0)

 {

 IOWR_VGA_WORD_HL_EN(64);

 IOWR_VGA_WORD_POS_X(6, 10);

 IOWR_VGA_WORD_POS_Y(6, 90);

 }

 else

 {

 IOWR_VGA_WORD_HL_EN(64);

 IOWR_VGA_WORD_POS_X(6, 10);

 IOWR_VGA_WORD_POS_Y(6, 60);

 }

 }

 }

 }

 else if(b==15) //if the cue ball pockets

 {

 oops = 1;

 ball[b].pos_x = 100;

 ball[b].pos_y = 48;

 placeball(b, ball[b].pos_x, ball[b].pos_y, 0, 0, &ball[b].bias_x, &ball[b].bias_y);

 }

 else if(plball[player]==0) //if player first pockets a ball, then he has to pocket the

same type balls afterwards

 {

 if(b >=0 && b < 7)

 {

 plball[player]=1;

 plball[!player]=9;

 if(player == 0)

 {

 ball[b].pos_x = 100 + 17 * i_0;

 ball[b].pos_y = 68;

 placeball(b, ball[b].pos_x, ball[b].pos_y, 0, 0, &ball[b].bias_x,

&ball[b].bias_y);

 i_0 ++;

 }

 else

 {

 ball[b].pos_x = 100 + 17 * i_1;

 ball[b].pos_y = 98;

 placeball(b, ball[b].pos_x, ball[b].pos_y, 0, 0, &ball[b].bias_x,

&ball[b].bias_y);

 i_1 ++;

 }

 }

 else if(b >= 8&&b<15)

 {

 plball[player]=9;

 plball[!player]=1;

 if(player == 0)

 {

 ball[b].pos_x = 100 + 17 * i_0;

 ball[b].pos_y = 68;

 placeball(b, ball[b].pos_x, ball[b].pos_y, 0, 0, &ball[b].bias_x,

&ball[b].bias_y);

 i_0 ++;

 }

 else

 {

 ball[b].pos_x = 100 + 17 * i_1;

 ball[b].pos_y = 98;

 placeball(b, ball[b].pos_x, ball[b].pos_y, 0, 0, &ball[b].bias_x,

&ball[b].bias_y);

 i_1 ++;

 }

 }

 change=0;

 }

}

void place_cue_ball() //function for placing the cue ball along the serve line. press space to

confirm placement

{

 int i;

 int f;

 int buff;

 SERVELINE_EN(1);

 angle = 60;

 buff = strength;

 while(cue_ready == 0)

 {

 get_key(&strength, &dir_strength, &angle, &release);

 ball[15].pos_x = 172;

 ball[15].pos_y = 446 + (int)(-2.3 * angle);

 placeball(15, ball[15].pos_x, ball[15].pos_y, 0, 0, &ball[15].bias_x,

&ball[15].bias_y);

 if(strength != buff)

 {

 f = 1;

 for(i = 0; i < 15; i++)

 {

 if(ball[i].pos_x >= 158 && ball[i].pos_x <= 186) // if the cue ball

you want to place overlap with other balls, then placement is forbidden

 {

 if(ball[i].pos_y >= (ball[15].pos_y - 14) && ball[i].pos_y

<= (ball[15].pos_y + 14))

 {

 f = 0;

 buff = strength;

 }

 }

 }

 if(f)

 {

 cue_ready =1;

 begin_flag = 0;

 ball[15].flag = 1;

 SERVELINE_EN(0);

 print_poolcue(ball[15].pos_x, ball[15].pos_y, 60);

 }

 }

 }

 angle = 60;

}

void ball_initial() // initialize all the balls on the table.

{

 int i;

 int ballxy_triangle[15][2]={{3,4},{1,-3},{-1,2},{-3,-1},

 {3,-4},{3,-2},{1,-1},{-1,0},

 {-5,0},{1,1},{3,0},{-3,1},

 {-1,-2},{1,3},{3,2},};

 // initialize the position of the balls

 for(i = 0; i < 15; i++) // initialize the position of the 15 balls

 {

 ball[i].pos_x = 500 + ballxy_triangle[i][0]*8;

 ball[i].pos_y = 310 + ballxy_triangle[i][1]*8;

 placeball(i, ball[i].pos_x, ball[i].pos_y, 0, 0, &ball[i].bias_x, &ball[i].bias_y);

 ball[i].flag = 1;

 ball[i].force_move = 0;

 }

 ball[15].pos_x = 172;

 ball[15].pos_y = 310;

 placeball(15, ball[15].pos_x, ball[15].pos_y, 0, 0, &ball[15].bias_x, &ball[15].bias_y);

 ball[15].flag = 1;

 // initialize the speed and direction of the balls

 for(i = 0; i < 16; i++)

 {

 ball[i].vc_x = VC_MAX + 1;

 ball[i].vc_y = VC_MAX + 1;

 ball[i].count_x = 0;

 ball[i].count_y = 0;

 ball[i].dir_x = 1;

 ball[i].dir_y = 1;

 ball[i].dx = 0;

 ball[i].dy = 0;

 }

 // initialize the strength bar

 strength = 16;

 IOWR_VGA_STRENGTHBAR(16);

 //initialize pool cue

 print_poolcue(ball[15].pos_x, ball[15].pos_y, 60);

}

int main()

{

 printf("Hello from Nios II!\n");

 int i;

 int j;

 int ff;

 float temp_angle;

 int acc_count = 0;

 short int move_flag;

 short int bias_x;

 short int bias_y;

 int dis_x;

 int dis_y;

 int hole_dis_x;

 int hole_dis_y;

 while(1)

 {

 //start:

 angle = 60;

 strength = 0;

 release = 0;

 cue_ready = 0;

 i_0 = 0;

 i_1 = 0;

 begin_flag = 0;

 oops = 0;

 //display "NEW GAME"

 IOWR_VGA_WORD_EN(48);

 IOWR_VGA_WORD_HL_EN(48);

 IOWR_VGA_WORD_POS_X(4, 280);

 IOWR_VGA_WORD_POS_Y(4, 60);

 IOWR_VGA_WORD_POS_X(5, 320);

 IOWR_VGA_WORD_POS_Y(5, 60);

 ball_initial();

 //start2: wait for the user to press the enter to confirm game start.

 while(release == 0)

 {

 get_key(&strength, &dir_strength, &angle, &release);

 //if(release == 0) //wait for player to press "return"

 //{

 //goto start2;

 //}

 }

 release = 0;

 //display main screen printouts

 IOWR_VGA_WORD_EN(3);

 IOWR_VGA_WORD_HL_EN(1);

 IOWR_VGA_WORD_POS_X(0, 52);

 IOWR_VGA_WORD_POS_Y(0, 60);

 IOWR_VGA_WORD_POS_X(1, 52);

 IOWR_VGA_WORD_POS_Y(1, 90);

 //IOWR_VGA_WORD_POS_X(2, 550);

 //IOWR_VGA_WORD_POS_Y(2, 40);

 //IOWR_VGA_WORD_POS_X(3, 550);

 //IOWR_VGA_WORD_POS_Y(3, 60);

 // wait for the user to place the cue ball, press space to confirm.

 place_cue_ball();

 while(cue_ready)

 {

 while(ex) // if the game doesn't meet termination condition.

 {

 while(begin_flag == 0) // wait for user to adjust the cue ball

direction and strength.press enter to confirm

 {

 cx = ball[15].pos_x;

 cy = ball[15].pos_y;

 release = 0;

 get_key(&strength, &dir_strength, &angle, &release);

 print_poolcue(cx, cy, angle);

 IOWR_VGA_STRENGTHBAR(strength);

 if (release == 1)

 {

 begin_flag = 1;

 temp_angle = angle_trans * angle;

 ball[15].dx= - (strength + 1) * sq_zero *

cos(temp_angle);

 ball[15].dy= - (strength + 1) * sq_zero *

sin(temp_angle);

 decide_movement (15);

 ball[15].count_x = ball[15].vc_x;

 ball[15].count_y = ball[15].vc_y;

 }

 }

 // cue ball release, game enter the physical collision and movement

phase.

 while(begin_flag == 1)

 {

 release = 0;

 for(i = 15; i >= 0; i--)

 {

 if(ball[i].flag != 0)

 {

 move_flag = 0;

 //Update (Position update) counter. the

larger the count number, the slower the ball moves.

 if(ball[i].count_x > 0)

 {

 ball[i].count_x --;

 bias_x = 0;

 }

 else if(ball[i].vc_x <=

VC_MAX)

 {

 ball[i].count_x =

ball[i].vc_x;

 move_flag = 1;

 if(ball[i].dir_x == 1)

 {

 bias_x = 1;

 }

 else if(ball[i].dir_x ==

-1)

 {

 bias_x = -1;

 }

 else

 {

 bias_x = 0;

 }

 }

 else

 {

 bias_x = 0;

 }

 if(ball[i].count_y > 0)

 {

 ball[i].count_y --;

 bias_y = 0;

 }

 else if(ball[i].vc_y <=

VC_MAX)

 {

 ball[i].count_y =

ball[i].vc_y;

 move_flag = 1;

 if(ball[i].dir_y == 1)

 {

 bias_y = 1;

 }

 else if(ball[i].dir_y ==

-1)

 {

 bias_y = -1;

 }

 else

 {

 bias_y = 0;

 }

 }

 else

 {

 bias_y = 0;

 }

 //Update positions

 if(move_flag ||

ball[i].force_move)

 {

 if(move_flag)

 {

 moveball(i,

&ball[i].pos_x, &ball[i].pos_y, bias_x, bias_y, &ball[i].bias_x, &ball[i].bias_y);

 }

 ball[i].force_move =

0;

 //detect and handle

the situation when a ball hits edge

 detect_bound_edge(i);

 //detect and handle

the situation when a ball hits other balls

 for(j = 15; j >= 0; j--)

 {

 if(j != i)

 {

 dis_x =

abs(ball[i].pos_x - ball[j].pos_x);

 dis_y =

abs(ball[i].pos_y - ball[j].pos_y);

 if(dis_x < 14 || dis_y < 14)

 {

 if(dis_x * dis_x + dis_y * dis_y <= 196)

 {

 bound_balls(i, j);

 }

 }

 }

 }

 //detect and handle

the situation when a ball pockets

 for(j = 0; j < 6; j++)

 {

 hole_dis_x =

ball[i].pos_x - hole[j][0];

 hole_dis_y =

ball[i].pos_y - hole[j][1];

 if(hole_dis_x

* hole_dis_x + hole_dis_y * hole_dis_y <= 144)

 {

 //printf("pocketed!\n");

 ball[i].flag = 0;

 if(plball[player]!=0 && oops == 0) // if player pocket before and it's not the cue ball

pocketed

 {

 if(i >= (plball[player]-1) && i <= plball[player]+5) // if player is pocketing his balls, then

no need to switch turn

 {

 change=0;

 if(player == 0)

 {

 ball[i].pos_x = 100 + 17 * i_0;

 ball[i].pos_y = 68;

 placeball(i, ball[i].pos_x, ball[i].pos_y, 0, 0, &ball[i].bias_x, &ball[i].bias_y);

 i_0 ++;

 }

 else

 {

 ball[i].pos_x = 100 + 17 * i_1;

 ball[i].pos_y = 98;

 placeball(i, ball[i].pos_x, ball[i].pos_y, 0, 0, &ball[i].bias_x, &ball[i].bias_y);

 i_1 ++;

 }

 }

 else if (i >= (plball[!player]-1) && i <= plball[!player]+5) // if player is

pocketing other's balls, then need to switch turn

 {

 change=1;

 if(player == 0)

 {

 ball[i].pos_x = 100 + 17 * i_1;

 ball[i].pos_y = 98;

 placeball(i, ball[i].pos_x, ball[i].pos_y, 0, 0, &ball[i].bias_x, &ball[i].bias_y);

 i_1 ++;

 }

 else

 {

 ball[i].pos_x = 100 + 17 * i_0;

 ball[i].pos_y = 68;

 placeball(i, ball[i].pos_x, ball[i].pos_y, 0, 0, &ball[i].bias_x, &ball[i].bias_y);

 i_0 ++;

 }

 }

 }

 win(i);

 }

 }

 }

 }

 //this function is used to regulate the overall loop

time to be a fixed value.

 while(IORD_16DIRECT(IRTIMER_0_BASE,

0) != 0)

 {

 }

 IOWR_16DIRECT(IRTIMER_0_BASE, 0, 3000);

 } //16 ball

 //Update Speed (dx,dy)

 if(acc_count >= ACC)

 {

 acc_count = 0;

 for(i = 16; i >= 0; i--)

 {

 ball[i].dx = ball[i].dx * 0.95;

 ball[i].dy = ball[i].dy * 0.95;

 decide_movement(i);

 }

 }

 else

 {

 acc_count ++;

 }

 ff=1;

 for(j = 15; j >= 0; j--)

 {

 if(!(ball[j].dx == 0 && ball[j].dy ==0) &&

ball[j].flag == 1) //if there're still balls moving

 {

 ff=0;

 break;

 }

 }

 if(ff) //if all the balls have stopped

 {

 begin_flag = 0;

 release = 0;

 if(ex == 1)

 {

 if(change == 1)

 {

 player=!player;

 strength = 16;

 dir_strength = 1;

 if(player == 0)

 {

 IOWR_VGA_WORD_HL_EN(5);

 }

 else

 {

 IOWR_VGA_WORD_HL_EN(6);

 }

 }

 }

 change=1;

 if(oops == 1) //see if the cue ball is

pocketed.

 {

 cue_ready = 0;

 place_cue_ball();

 change=1;

 oops = 0;

 }

 }

 }

 } //End: while(ex)

 get_key(&strength, &dir_strength, &angle, &release);

 if(release == 1)

 {

 release = 0;

 ex = 1;

 break;

 //goto start;

 }

 //}

 } //End: while(cue_ready)

 }

 return 0;

}

-- Keyboard.h

/*

 * keyboard.h

 *

 * Created on: Apr 21, 2013

 * Author: Zeshi Wang

 */

#ifndef KEYBOARD_H_

#define KEYBOARD_H_

#include <io.h>

#include <system.h>

#include <stdio.h>

unsigned char code;

int cx,cy;

int strength_increase = 1;

void get_key(int *strength, int *dir_strength, int *angle, int *release)

{

 int temp_strength = 0;

 int temp_angle = 0;

 int temp_release = 0;

 strength_increase = *dir_strength;

 temp_strength = *strength;

 temp_angle = *angle;

 temp_release = *release;

 while(IORD_8DIRECT(DE2_PS2_0_BASE,1) != 0x5a)

 {

 while(!IORD_8DIRECT(DE2_PS2_0_BASE, 0));

 code = IORD_8DIRECT(DE2_PS2_0_BASE,1);

 //printf("polled status is %x \n" , IORD_8DIRECT(DE2_PS2_0_BASE,

1));

 //printf("code is %x \n", code);

 switch(code)

 {

 case 0x29: // Space

 if(temp_strength == 31)

 {

 strength_increase = -1;

 }

 else if(temp_strength == 0)

 {

 strength_increase = 1;

 }

 temp_strength = temp_strength + strength_increase;

 break;

 case 0x6B: // LEFT Key

 temp_angle = temp_angle - 1;

 if(temp_angle < 0)

 temp_angle = 119;

 if(temp_angle > 119)

 temp_angle = 0;

 break;

 case 0x75: // UP Key

 temp_angle = temp_angle + 10;

 if(temp_angle < 0)

 temp_angle = 119;

 if(temp_angle > 119)

 temp_angle = 0;

 break;

 case 0x72: // DOWN Key

 temp_angle = temp_angle - 10;

 if(temp_angle < 0)

 temp_angle = 119;

 if(temp_angle > 119)

 temp_angle = 0;

 break;

 case 0x74: // RIGHT Key

 temp_angle = temp_angle + 1;

 if(temp_angle < 0)

 temp_angle = 119;

 if(temp_angle > 119)

 temp_angle = 0;

 break;

 case 0x5a: //enter

 temp_release = 1;

 break;

 case 0x76: //escape

 break;

 default:

 break;

 }

 break;

 }

 *strength = temp_strength;

 *angle = temp_angle;

 *release = temp_release;

 *dir_strength = strength_increase;

}

#endif /* KEYBOARD_H_ */

-- poolcue.h

/*

 * poolcue.h

 *

 * Created on: Apr 3, 2013

 * Author: Jiawan Zhang

 */

#ifndef POOLCUE_H_

#define POOLCUE_H_

//---

#include <io.h>

#include <system.h>

#include <stdio.h>

#define IOWR_CUERAM(line,data)\

 IOWR_32DIRECT(POOLCUE_RAM_CONTROLLER_0_BASE, line*4, data)

alt_u16 CueBegin[31][355] = {

 {205,77,39,15,15,15,15,39,77,205,0,

0,

0,

0,

0,

0,

0,

0,0,0,0},

 {0,0,0,0,15,15,15,15,34,39,53,72,77,91,110,129,148,167,186,205,205,224,243,262,282,3

01,320,339,0

,0

,0

,0

,0

,0

,0},

 {0,0,0,0,15,15,15,15,19,29,38,39,48,57,67,76,76,86,95,105,114,124,133,143,152,162,171

,181,190,200,203,209,219,228,238,247,257,266,276,285,295,304,314,323,333,342,0,0,0,0,0,0,0,

0,

0,

0,

0,

0,

0,0},

 {0,0,0,0,0,15,15,15,15,21,27,33,38,39,46,52,58,65,71,76,77,84,90,96,103,109,115,121,12

8,134,140,147,153,159,166,172,178,185,191,197,202,203,210,216,222,229,235,241,248,254,260

,267,273,279,286,292,298,305,311,317,323,330,336,342,0,

0,

0,

0,

0,

0,

0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,15,15,15,14,17,21,26,31,35,38,40,45,49,54,59,63,68,73,75,78,82,87,92,96,101,

106,110,115,120,125,129,134,139,143,148,153,157,162,167,172,176,181,186,190,195,200,200,2

04,209,214,219,223,228,233,237,242,247,251,256,261,266,270,275,280,284,289,294,299,303,30

8,313,317,322,327,331,336,341,0

,0

,0

,0

,0

,0},

 {0,0,0,0,0,0,15,15,14,14,18,22,25,29,33,36,37,40,44,48,51,55,59,62,66,70,74,74,77,81,85

,88,92,96,100,103,107,111,115,118,122,126,129,133,137,141,144,148,152,156,159,163,167,171,

174,178,182,185,189,193,197,197,200,204,208,211,215,219,223,226,230,234,238,241,245,249,2

53,256,260,264,267,271,275,279,282,286,290,294,297,301,305,309,312,316,320,323,327,331,33

5,338,0

,0

,0

,0

,0},

 {0,0,0,0,0,0,15,15,14,14,15,19,22,25,28,31,34,37,37,40,43,46,49,52,55,58,61,65,68,71,72

,74,77,80,83,86,89,92,95,98,101,104,107,111,114,117,120,123,126,129,132,135,138,141,144,14

7,151,154,157,160,163,166,169,172,175,178,181,184,187,191,194,194,197,200,203,206,209,212

,215,218,221,224,227,230,233,237,240,243,246,249,252,255,258,261,264,267,270,274,277,280,

283,286,289,292,295,298,301,304,307,310,314,317,320,323,326,329,332,0,0,0,0,0,0,0,0,0,0,0,0,

0,

0,

0,

0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,15,14,14,14,16,19,22,24,27,29,32,35,36,37,40,42,45,47,50,53,55,58,60,63,

66,68,71,71,73,76,79,81,84,86,89,92,94,97,99,102,105,107,110,112,115,118,120,123,125,128,13

1,133,136,138,141,144,146,149,151,154,157,159,162,164,167,170,172,175,177,180,183,185,188

,190,190,193,196,198,201,203,206,209,211,214,216,219,222,224,227,229,232,235,237,240,242,

245,248,250,253,255,258,261,263,266,268,271,274,276,279,282,284,287,289,292,295,297,300,3

02,305,308,310,313,315,318,321,323,326,0,

0,

0,

0,

0,0},

 {0,0,0,0,0,0,0,15,14,14,13,15,17,19,21,24,26,28,30,33,35,35,37,39,41,44,46,48,50,53,55,

57,59,62,64,66,68,69,70,73,75,77,79,82,84,86,88,91,93,95,97,100,102,104,106,109,111,113,115,

118,120,122,124,127,129,131,133,136,138,140,142,145,147,149,151,154,156,158,160,162,165,1

67,169,171,174,176,178,180,183,185,186,187,189,191,194,196,198,200,203,205,207,209,212,21

4,216,218,221,223,225,227,230,232,234,236,239,241,243,245,248,250,252,254,257,259,261,263

,266,268,270,272,275,277,279,281,284,286,288,290,293,295,297,299,302,304,306,308,311,313,

315,317,0,

0,

0,

0,

0,0},

 {0,0,0,0,0,0,0,0,14,14,13,13,15,17,19,21,23,25,27,29,31,33,34,35,37,39,41,43,45,46,48,5

0,52,54,56,58,60,62,64,66,68,68,70,72,74,76,78,80,82,84,85,87,89,91,93,95,97,99,101,103,105,1

07,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,138,140,142,144,146,148,15

0,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,181,181,183,185,187,189,191

,193,195,197,199,201,203,205,207,209,211,213,215,217,219,221,223,225,227,229,230,232,234,

236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,2

80,282,283,285,287,289,291,293,295,297,299,301,303,305,307,309,311,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,

0,

0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,14,13,13,14,16,17,19,21,23,24,26,28,30,31,33,33,35,36,38,40,41,43,45,

47,48,50,52,54,55,57,59,60,62,64,66,65,67,69,71,72,74,76,78,79,81,83,84,86,88,90,91,93,95,97,

98,100,102,104,105,107,109,110,112,114,116,117,119,121,123,124,126,128,130,131,133,135,13

6,138,140,142,143,145,147,149,150,152,154,155,157,159,161,162,164,166,168,169,171,173,175

,176,176,178,179,181,183,185,186,188,190,192,193,195,197,199,200,202,204,205,207,209,211,

212,214,216,218,219,221,223,224,226,228,230,231,233,235,237,238,240,242,244,245,247,249,2

50,252,254,256,257,259,261,263,264,266,268,270,271,273,275,276,278,280,282,283,285,287,28

9,290,292,294,296,297,299,301,302,0,

0,

0,

0,0},

 {0,0,0,0,0,0,0,0,0,14,13,13,13,14,16,17,19,21,22,24,25,27,28,30,31,32,33,34,36,37,39,40,

42,43,45,46,48,50,51,53,54,56,57,59,60,62,63,63,65,66,68,69,71,72,74,75,77,78,80,82,83,85,86,

88,89,91,92,94,95,97,99,100,102,103,105,106,108,109,111,112,114,115,117,119,120,122,123,12

5,126,128,129,131,132,134,135,137,139,140,142,143,145,146,148,149,151,152,154,155,157,159

,160,162,163,165,166,168,169,170,171,172,174,175,177,178,180,181,183,184,186,188,189,191,

192,194,195,197,198,200,201,203,204,206,208,209,211,212,214,215,217,218,220,221,223,224,2

26,228,229,231,232,234,235,237,238,240,241,243,245,246,248,249,251,252,254,255,257,258,26

0,261,263,265,266,268,269,271,272,274,275,277,278,280,281,283,285,286,288,289,291,292,0,0,

0,

0,

0,0},

 {0,0,0,0,0,0,0,0,0,14,13,13,12,13,15,16,17,19,20,22,23,24,26,27,28,30,31,31,32,34,35,36,

38,39,40,42,43,45,46,47,49,50,52,53,54,56,57,58,60,61,61,62,64,65,66,68,69,70,72,73,75,76,77,

79,80,81,83,84,86,87,88,90,91,92,94,95,97,98,99,101,102,103,105,106,108,109,110,112,113,114

,116,117,119,120,121,123,124,126,127,128,130,131,132,134,135,137,138,139,141,142,143,145,

146,148,149,150,152,153,154,156,157,159,160,161,163,164,164,165,166,168,169,171,172,173,1

75,176,177,179,180,182,183,184,186,187,188,190,191,193,194,195,197,198,200,201,202,204,20

5,206,208,209,211,212,213,215,216,217,219,220,222,223,224,226,227,228,230,231,233,234,235

,237,238,239,241,242,244,245,246,248,249,250,252,253,255,256,257,259,260,261,263,264,266,

267,268,270,271,272,274,275,277,278,279,281,282,0,

0,

0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,13,13,12,12,14,15,16,17,18,20,21,22,23,25,26,27,28,30,30,30,32,33,3

4,35,37,38,39,40,42,43,44,45,47,48,49,50,51,53,54,55,56,58,59,59,60,61,62,63,65,66,67,68,70,7

1,72,73,75,76,77,78,80,81,82,83,84,86,87,88,89,91,92,93,94,96,97,98,99,101,102,103,104,105,1

07,108,109,110,112,113,114,115,117,118,119,120,122,123,124,125,126,128,129,130,131,133,13

4,135,136,138,139,140,141,143,144,145,146,147,149,150,151,152,154,155,156,157,157,158,159

,161,162,163,164,166,167,168,169,171,172,173,174,175,177,178,179,180,182,183,184,185,187,

188,189,190,192,193,194,195,196,198,199,200,201,203,204,205,206,208,209,210,211,213,214,2

15,216,217,219,220,221,222,224,225,226,227,229,230,231,232,234,235,236,237,238,240,241,24

2,243,245,246,247,248,250,251,252,253,255,256,257,258,259,261,262,263,264,266,267,268,269

,271,273,0,

0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,13,12,11,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,29,30,31

,32,33,34,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,56,57,58,60,61,62,63,64,

65,66,67,68,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,90,91,92,93,94,95,96,97,98,

100,101,102,103,104,105,106,107,108,110,111,112,113,114,115,116,117,118,120,121,122,123,1

24,125,126,127,128,130,131,132,133,134,135,136,137,138,140,141,142,143,144,145,146,147,14

8,150,151,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171

,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,

197,198,199,200,201,202,204,205,206,207,208,209,210,211,212,214,215,216,217,218,219,220,2

21,222,224,225,226,227,228,229,230,231,232,234,235,236,237,238,239,240,241,242,244,245,24

6,247,248,249,250,251,252,254,255,256,257,258,259,0,

0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,13,12,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,27,28

,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,53,54,55,56,57,58,

59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,

90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,

115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,1

37,138,139,140,141,142,143,143,143,144,145,146,147,148,149,150,151,152,153,154,155,156,15

7,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179

,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,

202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,2

24,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,24

6,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,13,12,11,11,12,13,14,14,15,16,17,18,19,20,21,22,23,23,24,25,26,26

,27,28,28,29,30,31,32,33,34,35,36,37,37,38,39,40,41,42,43,44,45,46,46,47,48,49,50,51,50,51,52,

53,54,55,56,57,58,59,59,60,61,62,63,64,65,66,67,68,68,69,70,71,72,73,74,75,76,77,78,78,79,80,

81,82,83,84,85,86,87,87,88,89,90,91,92,93,94,95,96,96,97,98,99,100,101,102,103,104,105,105,1

06,107,108,109,110,111,112,113,114,114,115,116,117,118,119,120,121,122,123,123,124,125,12

6,127,128,129,130,131,132,132,133,134,135,136,136,136,137,138,139,140,141,142,143,144,145

,145,146,147,148,149,150,151,152,153,154,154,155,156,157,158,159,160,161,162,163,163,164,

165,166,167,168,169,170,171,172,173,173,174,175,176,177,178,179,180,181,182,182,183,184,1

85,186,187,188,189,190,191,191,192,193,194,195,196,197,198,199,200,200,201,202,203,204,20

5,206,207,208,209,209,210,211,212,213,214,215,216,217,218,218,219,220,221,222,223,224,225

,226,227,227,228,229,230,231,232,233,235,0,

0,

0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,12,10,10,11,12,13,13,14,15,16,17,17,18,19,20,21,21,22,23,24,25,

24,25,26,27,27,28,29,30,31,32,32,33,34,35,36,36,37,38,39,40,40,41,42,43,44,44,45,46,47,48,47,

48,49,50,50,51,52,53,54,55,55,56,57,58,59,59,60,61,62,63,63,64,65,66,67,67,68,69,70,71,72,72,

73,74,75,76,76,77,78,79,80,80,81,82,83,84,84,85,86,87,88,89,89,90,91,92,93,93,94,95,96,97,97,

98,99,100,101,101,102,103,104,105,106,106,107,108,109,110,110,111,112,113,114,114,115,116

,117,118,118,119,120,121,122,123,123,124,125,126,127,127,127,128,129,129,130,131,132,133,

133,134,135,136,137,137,138,139,140,141,141,142,143,144,145,146,146,147,148,149,150,150,1

51,152,153,154,154,155,156,157,158,158,159,160,161,162,163,163,164,165,166,167,167,168,16

9,170,171,171,172,173,174,175,176,176,177,178,179,180,180,181,182,183,184,184,185,186,187

,188,188,189,190,191,192,193,193,194,195,196,197,197,198,199,200,201,201,202,203,204,205,

205,206,207,208,209,210,210,211,212,213,214,214,215,216,217,218,218,219,221,0,0,0,0,0,0,0,0

,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,12,10,9,10,11,12,12,13,14,15,15,16,17,17,18,19,20,20,21,22,23,2

3,23,23,24,25,26,26,27,28,29,29,30,31,31,32,33,34,34,35,36,37,37,38,39,39,40,41,42,42,43,44,4

5,44,45,45,46,47,48,48,49,50,51,51,52,53,53,54,55,56,56,57,58,59,59,60,61,61,62,63,64,64,65,6

6,67,67,68,69,69,70,71,72,72,73,74,75,75,76,77,77,78,79,80,80,81,82,83,83,84,85,85,86,87,88,8

8,89,90,91,91,92,93,93,94,95,96,96,97,98,99,99,100,101,101,102,103,104,104,105,106,106,107,

108,109,109,110,111,112,112,113,114,114,115,116,117,117,118,119,119,119,120,121,121,122,1

23,123,124,125,126,126,127,128,129,129,130,131,131,132,133,134,134,135,136,136,137,138,13

9,139,140,141,142,142,143,144,144,145,146,147,147,148,149,150,150,151,152,152,153,154,155

,155,156,157,158,158,159,160,160,161,162,163,163,164,165,166,166,167,168,168,169,170,171,

171,172,173,174,174,175,176,176,177,178,179,179,180,181,182,182,183,184,184,185,186,187,1

87,188,189,190,190,191,192,192,193,194,195,195,196,197,198,198,199,200,200,201,202,203,20

3,204,206,208,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,10,9,9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,19,20,20,21,2

2,21,22,23,23,24,24,25,26,26,27,28,28,29,30,30,31,32,32,33,34,34,35,36,36,37,37,38,39,39,40,4

1,41,41,41,42,43,43,44,45,45,46,47,47,48,49,49,50,51,51,52,53,53,54,54,55,56,56,57,58,58,59,6

0,60,61,62,62,63,64,64,65,65,66,67,67,68,69,69,70,71,71,72,73,73,74,75,75,76,77,77,78,78,79,8

0,80,81,82,82,83,84,84,85,86,86,87,88,88,89,90,90,91,91,92,93,93,94,95,95,96,97,97,98,99,99,1

00,101,101,102,103,103,104,104,105,106,106,107,108,108,109,110,110,110,110,111,112,112,11

3,114,114,115,116,116,117,118,118,119,120,120,121,121,122,123,123,124,125,125,126,127,127

,128,129,129,130,131,131,132,132,133,134,134,135,136,136,137,138,138,139,140,140,141,142,

142,143,144,144,145,145,146,147,147,148,149,149,150,151,151,152,153,153,154,155,155,156,1

57,157,158,158,159,160,160,161,162,162,163,164,164,165,166,166,167,168,168,169,170,170,17

1,171,172,173,173,174,175,175,176,177,177,178,179,179,180,181,181,182,182,183,184,184,185

,186,186,187,188,188,189,191,191,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,10,9,9,9,10,10,11,12,12,13,13,14,15,15,16,16,17,17,18,19,19,20

,20,20,20,21,21,22,23,23,24,24,25,25,26,27,27,28,28,29,30,30,31,31,32,32,33,34,34,35,35,36,36,

37,38,38,38,38,39,39,40,41,41,42,42,43,43,44,45,45,46,46,47,47,48,49,49,50,50,51,51,52,53,53,

54,54,55,56,56,57,57,58,58,59,60,60,61,61,62,62,63,64,64,65,65,66,66,67,68,68,69,69,70,71,71,

72,72,73,73,74,75,75,76,76,77,77,78,79,79,80,80,81,81,82,83,83,84,84,85,86,86,87,87,88,88,89,

90,90,91,91,92,92,93,94,94,95,95,96,97,97,98,98,99,99,100,101,101,101,101,102,102,103,103,1

04,105,105,106,106,107,107,108,109,109,110,110,111,112,112,113,113,114,114,115,116,116,11

7,117,118,118,119,120,120,121,121,122,122,123,124,124,125,125,126,127,127,128,128,129,129

,130,131,131,132,132,133,133,134,135,135,136,136,137,138,138,139,139,140,140,141,142,142,

143,143,144,144,145,146,146,147,147,148,148,149,150,150,151,151,152,153,153,154,154,155,1

55,156,157,157,158,158,159,159,160,161,161,162,162,163,163,164,165,165,166,166,167,168,16

8,169,169,170,170,171,172,172,173,173,174,176,177,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,10,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,

18,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,

33,33,34,34,35,34,35,35,36,36,37,37,38,38,39,39,40,41,41,42,42,43,43,44,44,45,45,46,46,47,47,

48,48,49,49,50,50,51,51,52,52,53,53,54,54,55,55,56,56,57,57,58,58,59,59,60,60,61,61,62,62,63,

63,64,64,65,65,66,66,67,68,68,69,69,70,70,71,71,72,72,73,73,74,74,75,75,76,76,77,77,78,78,79,

79,80,80,81,81,82,82,83,83,84,84,85,85,86,86,87,87,88,88,89,89,90,90,91,91,92,91,92,92,93,93,

94,94,95,95,96,96,97,97,98,98,99,100,100,101,101,102,102,103,103,104,104,105,105,106,106,1

07,107,108,108,109,109,110,110,111,111,112,112,113,113,114,114,115,115,116,116,117,117,11

8,118,119,119,120,120,121,121,122,122,123,123,124,124,125,125,126,127,127,128,128,129,129

,130,130,131,131,132,132,133,133,134,134,135,135,136,136,137,137,138,138,139,139,140,140,

141,141,142,142,143,143,144,144,145,145,146,146,147,147,148,148,149,149,150,150,151,151,1

52,153,153,154,154,155,155,156,156,157,157,158,159,161,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,10,8,7,8,8,9,9,10,10,11,11,11,12,12,13,13,14,14,15,15,15,16,16,

17,16,17,17,18,18,18,19,19,20,20,21,21,22,22,22,23,23,24,24,25,25,26,26,26,27,27,28,28,29,29,

30,30,30,31,31,31,31,32,32,32,33,33,34,34,35,35,36,36,36,37,37,38,38,39,39,40,40,40,41,41,42,

42,43,43,44,44,44,45,45,46,46,47,47,48,48,48,49,49,50,50,51,51,52,52,52,53,53,54,54,55,55,56,

56,56,57,57,58,58,59,59,60,60,61,61,61,62,62,63,63,64,64,65,65,65,66,66,67,67,68,68,69,69,69,

70,70,71,71,72,72,73,73,73,74,74,75,75,76,76,77,77,77,78,78,79,79,80,80,81,81,81,82,82,82,82,

83,83,83,84,84,85,85,86,86,87,87,87,88,88,89,89,90,90,91,91,91,92,92,93,93,94,94,95,95,95,96,

96,97,97,98,98,99,99,99,100,100,101,101,102,102,103,103,103,104,104,105,105,106,106,107,10

7,107,108,108,109,109,110,110,111,111,112,112,112,113,113,114,114,115,115,116,116,116,117

,117,118,118,119,119,120,120,120,121,121,122,122,123,123,124,124,124,125,125,126,126,127,

127,128,128,128,129,129,130,130,131,131,132,132,132,133,133,134,134,135,135,136,136,136,1

37,137,138,138,139,139,140,140,140,141,141,143,144,0,

0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,7,7,8,8,8,9,9,10,10,10,11,11,11,12,12,13,13,13,14,14,15,15,

15,15,15,15,16,16,17,17,17,18,18,18,19,19,20,20,20,21,21,22,22,22,23,23,23,24,24,25,25,25,26,

26,27,27,27,28,27,27,28,28,29,29,29,30,30,30,31,31,32,32,32,33,33,34,34,34,35,35,35,36,36,37,

37,37,38,38,39,39,39,40,40,40,41,41,42,42,42,43,43,44,44,44,45,45,45,46,46,47,47,47,48,48,49,

49,49,50,50,50,51,51,52,52,52,53,53,53,54,54,55,55,55,56,56,57,57,57,58,58,58,59,59,60,60,60,

61,61,62,62,62,63,63,63,64,64,65,65,65,66,66,67,67,67,68,68,68,69,69,70,70,70,71,71,72,72,72,

73,72,72,73,73,74,74,74,75,75,75,76,76,77,77,77,78,78,79,79,79,80,80,80,81,81,82,82,82,83,83,

84,84,84,85,85,85,86,86,87,87,87,88,88,89,89,89,90,90,90,91,91,92,92,92,93,93,93,94,94,95,95,

95,96,96,97,97,97,98,98,98,99,99,100,100,100,101,101,102,102,102,103,103,103,104,104,105,1

05,105,106,106,107,107,107,108,108,108,109,109,110,110,110,111,111,112,112,112,113,113,11

3,114,114,115,115,115,116,116,117,117,117,118,118,118,119,119,120,120,120,121,121,122,122

,122,123,123,123,124,124,126,126,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,12,13,13,13,1

3,13,13,14,14,14,15,15,15,16,16,16,17,17,17,18,18,18,19,19,19,20,20,20,21,21,21,22,22,22,22,2

3,23,23,24,24,24,24,24,24,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,30,30,30,31,31,31,31,3

2,32,32,33,33,33,34,34,34,35,35,35,36,36,36,37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,4

2,42,43,43,43,44,44,44,44,45,45,45,46,46,46,47,47,47,48,48,48,49,49,49,50,50,50,51,51,51,52,5

2,52,53,53,53,54,54,54,55,55,55,56,56,56,57,57,57,57,58,58,58,59,59,59,60,60,60,61,61,61,62,6

2,62,63,63,62,63,63,63,64,64,64,65,65,65,66,66,66,67,67,67,67,68,68,68,69,69,69,70,70,70,71,7

1,71,72,72,72,73,73,73,74,74,74,75,75,75,76,76,76,77,77,77,78,78,78,79,79,79,80,80,80,80,81,8

1,81,82,82,82,83,83,83,84,84,84,85,85,85,86,86,86,87,87,87,88,88,88,89,89,89,90,90,90,91,91,9

1,92,92,92,93,93,93,93,94,94,94,95,95,95,96,96,96,97,97,97,98,98,98,99,99,99,100,100,100,101,

101,101,102,102,102,103,103,103,104,104,104,105,105,105,106,106,106,106,107,107,107,109,1

10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,11,11,11,11,12,11,11,1

1,12,12,12,12,13,13,13,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,18,18,19,19,19,19,2

0,20,20,21,20,20,20,21,21,21,21,22,22,22,22,23,23,23,24,24,24,24,25,25,25,25,26,26,26,26,27,2

7,27,28,28,28,28,29,29,29,29,30,30,30,30,31,31,31,32,32,32,32,33,33,33,33,34,34,34,34,35,35,3

5,36,36,36,36,37,37,37,37,38,38,38,39,39,39,39,40,40,40,40,41,41,41,41,42,42,42,43,43,43,43,4

4,44,44,44,45,45,45,45,46,46,46,47,47,47,47,48,48,48,48,49,49,49,49,50,50,50,51,51,51,51,52,5

2,52,52,53,52,52,52,53,53,53,54,54,54,54,55,55,55,55,56,56,56,56,57,57,57,58,58,58,58,59,59,5

9,59,60,60,60,61,61,61,61,62,62,62,62,63,63,63,63,64,64,64,65,65,65,65,66,66,66,66,67,67,67,6

7,68,68,68,69,69,69,69,70,70,70,70,71,71,71,72,72,72,72,73,73,73,73,74,74,74,74,75,75,75,76,7

6,76,76,77,77,77,77,78,78,78,78,79,79,79,80,80,80,80,81,81,81,81,82,82,82,82,83,83,83,84,84,8

4,84,85,85,85,85,86,86,86,87,87,87,87,88,88,88,88,89,89,89,89,90,91,91,93,0,0,0,0,0,0,0,0,0,0,0

},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,5,5,6,6,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,9,10,10,10,9,9,10,10,1

0,10,11,11,11,11,11,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,15,16,16,16,16,16,1

7,17,16,16,17,17,17,17,17,18,18,18,18,18,19,19,19,19,20,20,20,20,20,21,21,21,21,21,22,22,22,2

2,22,23,23,23,23,24,24,24,24,24,25,25,25,25,25,26,26,26,26,27,27,27,27,27,28,28,28,28,28,29,2

9,29,29,29,30,30,30,30,31,31,31,31,31,32,32,32,32,32,33,33,33,33,34,34,34,34,34,35,35,35,35,3

5,36,36,36,36,37,37,37,37,37,38,38,38,38,38,39,39,39,39,39,40,40,40,40,41,41,41,41,41,42,42,4

2,42,42,42,42,42,42,43,43,43,43,43,44,44,44,44,44,45,45,45,45,45,46,46,46,46,47,47,47,47,47,4

8,48,48,48,48,49,49,49,49,50,50,50,50,50,51,51,51,51,51,52,52,52,52,52,53,53,53,53,54,54,54,5

4,54,55,55,55,55,55,56,56,56,56,57,57,57,57,57,58,58,58,58,58,59,59,59,59,60,60,60,60,60,61,6

1,61,61,61,62,62,62,62,62,63,63,63,63,64,64,64,64,64,65,65,65,65,65,66,66,66,66,67,67,67,67,6

7,68,68,68,68,68,69,69,69,69,70,70,70,70,70,71,71,71,71,71,72,72,72,73,73,75,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,7,8,8,8,8,8,8,9,

9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,13,12,13,13,1

3,13,13,13,14,14,14,14,14,14,14,15,15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17,18,18,1

8,18,18,18,18,19,19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,21,22,22,22,22,22,22,23,2

3,23,23,23,23,24,24,24,24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,27,27,27,2

8,28,28,28,28,28,29,29,29,29,29,29,30,30,30,30,30,30,30,31,31,31,31,31,31,32,32,32,32,32,31,3

2,32,32,32,32,32,32,33,33,33,33,33,33,34,34,34,34,34,34,35,35,35,35,35,35,35,36,36,36,36,36,3

6,37,37,37,37,37,37,38,38,38,38,38,38,39,39,39,39,39,39,39,40,40,40,40,40,40,41,41,41,41,41,4

1,42,42,42,42,42,42,42,43,43,43,43,43,43,44,44,44,44,44,44,45,45,45,45,45,45,45,46,46,46,46,4

6,46,47,47,47,47,47,47,48,48,48,48,48,48,48,49,49,49,49,49,49,50,50,50,50,50,50,51,51,51,51,5

1,51,51,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,54,55,56,57,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,6,6,6,6,6,6,6,6,

6,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10

,10,10,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,14,

14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,17,17,17,

17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,19,19,20,20,20,20,20,20,

20,20,20,20,21,21,21,21,21,21,21,21,21,22,22,22,22,21,21,21,21,21,21,22,22,22,22,22,22,22,22,

22,23,23,23,23,23,23,23,23,23,23,24,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,25,25,26,

26,26,26,26,26,26,26,26,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,29,29,29,29,

29,29,29,29,29,29,30,30,30,30,30,30,30,30,30,31,31,31,31,31,31,31,31,31,31,32,32,32,32,32,32,

32,32,32,33,33,33,33,33,33,33,33,33,33,34,34,34,34,34,34,34,34,34,34,35,35,35,35,35,35,35,35,

35,36,36,36,36,36,36,36,36,37,39,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,

6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,

9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,1

1,1

1,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,1

3,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,1

4,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,1

6,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,18,18,18,18,1

8,18,18,18,18,18,18,18,18,19,19,20},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,2,2,2,2,2,2,2,

2,1,

1,

1,

1,1,0,

0,

0,1,1,2}

};

alt_u16 CueEnd[31][355] = {

 {352,354,355,355,355,355,355,355,354,352,0,

0,

0,

0,

0,

0,

0,

0,0,0,0,0,0,0,0,0},

 {0,0,0,0,48,86,110,129,148,167,186,225,244,263,282,301,320,339,352,354,355,355,355,

355,354,354,353,351,0,

0,

0,

0,

0,

0,

0,0},

 {0,0,0,0,19,29,47,57,67,86,96,105,115,124,134,143,153,162,172,181,191,206,219,229,23

8,248,257,267,276,286,295,305,314,324,334,343,351,352,352,353,353,353,353,353,353,350,0,0,

0,

0,

0,

0,

0,

0,0},

 {0,0,0,0,0,21,27,35,46,53,59,65,73,84,91,97,103,109,116,122,128,135,141,147,154,160,1

66,173,179,185,192,199,211,217,223,230,236,242,248,255,261,267,274,280,286,293,299,305,31

2,318,324,331,337,343,348,349,350,351,351,351,351,350,350,347,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,

0,

0,

0,

0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,17,22,26,31,38,45,50,55,59,64,69,76,83,88,92,97,102,107,111,116,121,125,13

0,135,140,144,149,154,158,163,168,172,177,182,187,191,196,205,210,215,220,224,229,234,238

,243,248,253,257,262,267,271,276,281,285,290,295,300,304,309,314,318,323,328,332,337,342,

345,347,347,348,348,347,347,347,347,343,0

,0

,0

,0

,0

,0},

 {0,0,0,0,0,0,18,22,26,30,33,40,45,48,52,56,60,63,67,71,77,82,86,89,93,97,101,104,108,1

12,116,119,123,127,131,134,138,142,145,149,153,157,160,164,168,172,175,179,183,187,190,19

4,201,205,209,213,217,220,224,228,231,235,239,243,246,250,254,258,261,265,269,272,276,280

,284,287,291,295,299,302,306,310,314,317,321,325,328,332,336,340,341,343,343,344,343,343,

343,343,341,339,0

,0

,0

,0

,0

,0,0,0,0},

 {0,0,0,0,0,0,16,19,22,25,28,31,35,41,44,47,50,53,56,59,62,65,69,72,78,81,84,87,90,93,96

,100,103,106,109,112,115,118,121,124,127,130,133,136,140,143,146,149,152,155,158,161,164,

167,170,173,176,180,183,186,189,192,196,201,204,207,210,214,217,220,223,226,229,232,235,2

38,241,244,247,250,254,257,260,263,266,269,272,275,278,281,284,287,290,294,297,300,303,30

6,309,312,315,318,321,324,327,330,334,337,336,338,339,338,338,338,337,337,335,0,0,0,0,0,0,0

,0

,0

,0

,0

,0},

 {0,0,0,0,0,0,0,17,20,22,25,28,30,33,35,41,43,46,49,51,54,56,59,62,64,67,69,74,77,80,83,

85,88,90,93,96,98,101,103,106,109,111,114,116,119,122,124,127,129,132,135,137,140,143,145,

148,150,153,156,158,161,163,166,169,171,174,176,179,182,184,187,189,194,197,200,203,205,2

08,210,213,216,218,221,223,226,229,231,234,236,239,242,244,247,250,252,255,257,260,263,26

5,268,270,273,276,278,281,283,286,289,291,294,296,299,302,304,307,309,312,315,317,320,322

,325,328,330,330,332,332,332,332,332,331,331,328,0

,0

,0

,0

,0},

 {0,0,0,0,0,0,0,16,18,20,22,25,27,29,31,34,37,40,43,45,47,49,52,54,56,58,61,63,65,67,70,

74,77,79,81,83,86,88,90,92,95,97,99,101,104,106,108,110,113,115,117,119,122,124,126,128,13

1,133,135,137,139,142,144,146,148,151,153,155,157,160,162,164,166,169,171,173,175,178,180

,182,184,187,191,194,196,198,200,203,205,207,209,212,214,216,218,221,223,225,227,230,232,

234,236,239,241,243,245,248,250,252,254,256,259,261,263,265,268,270,272,274,277,279,281,2

83,286,288,290,292,295,297,299,301,304,306,308,310,313,315,317,319,322,324,324,325,326,32

6,325,325,324,324,0

,0

,0

,0

,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,16,18,20,22,24,26,28,30,32,34,38,40,42,44,46,48,50,52,54,56,58,60,62,6

4,66,68,71,74,76,78,80,82,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,11

9,121,123,125,127,129,131,133,135,136,138,140,142,144,146,148,150,152,154,156,158,160,162

,164,166,168,170,172,174,176,178,180,182,185,188,190,192,194,196,198,200,201,203,205,207,

209,211,213,215,217,219,221,223,225,227,229,231,233,235,237,239,241,243,245,247,249,251,2

53,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,29

6,298,300,302,304,305,307,309,311,313,315,316,317,317,318,318,317,317,316,314,0,0,0,0,0,0,0

,0

,0

,0

,0},

 {0,0,0,0,0,0,0,0,0,17,19,20,22,24,25,27,29,31,32,34,38,40,41,43,45,47,48,50,52,53,55,57,

59,60,62,64,66,67,71,73,74,76,78,80,81,83,85,87,88,90,92,94,95,97,99,100,102,104,106,107,109

,111,113,114,116,118,120,121,123,125,126,128,130,132,133,135,137,139,140,142,144,146,147,

149,151,152,154,156,158,159,161,163,165,166,168,170,171,173,175,177,178,182,184,186,187,1

89,191,193,194,196,198,199,201,203,205,206,208,210,212,213,215,217,219,220,222,224,225,22

7,229,231,232,234,236,238,239,241,243,244,246,248,250,251,253,255,257,258,260,262,264,265

,267,269,270,272,274,276,277,279,281,283,284,286,288,290,291,293,295,296,298,300,302,303,

305,307,308,308,309,310,309,308,308,307,306,0,

0,

0,

0,0},

 {0,0,0,0,0,0,0,0,0,16,17,19,20,22,23,25,26,28,29,31,33,35,37,39,41,42,44,45,47,48,50,51,

53,54,56,57,59,61,62,64,65,69,70,72,73,75,76,78,79,81,82,84,85,87,89,90,92,93,95,96,98,99,101

,102,104,106,107,109,110,112,113,115,116,118,119,121,122,124,126,127,129,130,132,133,135,

136,138,139,141,142,144,146,147,149,150,152,153,155,156,158,159,161,162,164,166,167,169,1

70,172,173,177,178,180,181,183,184,186,187,189,190,192,194,195,197,198,200,201,203,204,20

6,207,209,211,212,214,215,217,218,220,221,223,224,226,227,229,231,232,234,235,237,238,240

,241,243,244,246,247,249,251,252,254,255,257,258,260,261,263,264,266,267,269,271,272,274,

275,277,278,280,281,283,284,286,288,289,291,292,294,295,297,298,298,300,299,300,299,299,2

98,297,0,

0,

0,

0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,15,16,17,19,20,21,23,24,26,27,28,30,31,32,36,37,38,40,41,42,44,45,47,

48,49,51,52,53,55,56,58,59,60,62,63,65,68,69,70,72,73,74,76,77,79,80,81,83,84,85,87,88,90,91,

92,94,95,96,98,99,101,102,103,105,106,107,109,110,112,113,114,116,117,118,120,121,123,124,

125,127,128,129,131,132,134,135,136,138,139,140,142,143,145,146,147,149,150,152,153,154,1

56,157,158,160,161,163,164,165,167,168,171,172,174,175,177,178,179,181,182,183,185,186,18

8,189,190,192,193,195,196,197,199,200,201,203,204,206,207,208,210,211,212,214,215,217,218

,219,221,222,223,225,226,228,229,230,232,233,234,236,237,239,240,241,243,244,245,247,248,

250,251,252,254,255,256,258,259,261,262,263,265,266,267,269,270,272,273,274,276,277,278,2

80,281,283,284,285,287,288,288,289,289,290,289,288,288,286,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0

,0

,0},

 {0,0,0,0,0,0,0,0,0,0,15,16,17,19,20,21,22,24,25,26,27,29,30,31,33,35,36,38,39,40,41,42,4

4,45,46,47,49,50,51,52,54,55,56,57,59,60,61,63,65,66,68,69,70,71,72,74,75,76,77,79,80,81,82,8

4,85,86,87,89,90,91,92,93,95,96,97,98,100,101,102,103,105,106,107,108,110,111,112,113,114,1

16,117,118,119,121,122,123,124,126,127,128,129,131,132,133,134,135,137,138,139,140,142,14

3,144,145,147,148,149,150,152,153,154,155,156,158,159,160,161,164,165,167,168,169,170,172

,173,174,175,177,178,179,180,182,183,184,185,186,188,189,190,191,193,194,195,196,198,199,

200,201,203,204,205,206,207,209,210,211,212,214,215,216,217,219,220,221,222,223,225,226,2

27,228,230,231,232,233,235,236,237,238,240,241,242,243,244,246,247,248,249,251,252,253,25

4,256,257,258,259,261,262,263,264,265,267,268,269,270,272,273,274,275,277,278,277,279,278

,278,278,277,276,274,0,

0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,15,16,17,19,20,21,22,23,24,25,26,27,29,30,31,33,34,36,37,38,39,40

,41,42,43,44,46,47,48,49,50,51,52,53,54,56,57,58,59,61,63,64,65,66,67,68,69,70,72,73,74,75,76,

77,78,79,80,82,83,84,85,86,87,88,89,90,91,93,94,95,96,97,98,99,100,101,103,104,105,106,107,1

08,109,110,111,113,114,115,116,117,118,119,120,121,123,124,125,126,127,128,129,130,131,13

3,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,153,154,155,156,159

,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,179,180,181,182,183,

184,185,186,187,189,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,2

08,210,211,212,213,214,215,216,217,218,220,221,222,223,224,225,226,227,228,230,231,232,23

3,234,235,236,237,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257

,258,260,261,262,263,264,265,266,266,267,267,267,266,265,263,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0

,0},

 {0,0,0,0,0,0,0,0,0,0,0,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,33,34,35,36,37

,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,

70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,

123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,1

45,146,147,148,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,16

9,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191

,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,

214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,2

36,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,253,254,254,25

4,253,252,250,

0,

0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,14,14,15,16,17,18,19,20,21,22,23,23,24,25,26,27,28,29,31,32,33,34

,35,36,36,37,38,39,40,41,42,43,44,45,46,46,47,48,49,50,51,52,53,54,55,57,58,59,59,60,61,62,63,

64,65,66,67,68,68,69,70,71,72,73,74,75,76,77,77,78,79,80,81,82,83,84,85,86,86,87,88,89,90,91,

92,93,94,95,95,96,97,98,99,100,101,102,103,104,104,105,106,107,108,109,110,111,112,113,113

,114,115,116,117,118,119,120,121,122,122,123,124,125,126,127,128,129,130,131,131,132,133,

134,135,136,137,138,139,140,140,142,144,145,145,146,147,148,149,150,151,152,153,154,154,1

55,156,157,158,159,160,161,162,163,163,164,165,166,167,168,169,170,171,172,172,173,174,17

5,176,177,178,179,180,181,181,182,183,184,185,186,187,188,189,190,190,191,192,193,194,195

,196,197,198,199,199,200,201,202,203,204,205,206,207,208,208,209,210,211,212,213,214,215,

216,217,217,218,219,220,221,222,223,224,225,226,226,227,228,229,230,231,232,233,234,235,2

35,236,237,238,239,240,241,240,241,241,241,240,239,238,0,

0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,14,14,15,16,17,18,19,19,20,21,22,23,23,24,25,26,27,27,30,30,31,

32,33,34,34,35,36,37,38,38,39,40,41,42,42,43,44,45,46,47,47,48,49,50,51,51,52,54,55,56,57,58,

58,59,60,61,62,62,63,64,65,66,66,67,68,69,70,70,71,72,73,74,75,75,76,77,78,79,79,80,81,82,83,

83,84,85,86,87,87,88,89,90,91,92,92,93,94,95,96,96,97,98,99,100,100,101,102,103,104,104,105,

106,107,108,109,109,110,111,112,113,113,114,115,116,117,117,118,119,120,121,121,122,123,1

24,125,126,126,127,128,129,130,130,131,132,133,135,136,137,137,138,139,140,141,141,142,14

3,144,145,145,146,147,148,149,150,150,151,152,153,154,154,155,156,157,158,158,159,160,161

,162,162,163,164,165,166,167,167,168,169,170,171,171,172,173,174,175,175,176,177,178,179,

179,180,181,182,183,184,184,185,186,187,188,188,189,190,191,192,192,193,194,195,196,196,1

97,198,199,200,201,201,202,203,204,205,205,206,207,208,209,209,210,211,212,213,213,214,21

5,216,217,218,218,219,220,221,222,222,223,224,225,226,226,227,227,228,227,227,226,224,222

,0

,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,13,14,14,15,16,17,17,18,19,19,20,21,22,22,23,24,25,25,26,28,29,

29,30,31,32,32,33,34,35,35,36,37,37,38,39,40,40,41,42,42,43,44,45,45,46,47,48,48,49,51,52,52,

53,54,55,55,56,57,58,58,59,60,60,61,62,63,63,64,65,66,66,67,68,68,69,70,71,71,72,73,74,74,75,

76,76,77,78,79,79,80,81,82,82,83,84,84,85,86,87,87,88,89,90,90,91,92,92,93,94,95,95,96,97,97,

98,99,100,100,101,102,103,103,104,105,105,106,107,108,108,109,110,111,111,112,113,113,114

,115,116,116,117,118,119,119,120,121,121,122,123,124,124,125,127,128,129,129,130,131,131,

132,133,134,134,135,136,137,137,138,139,139,140,141,142,142,143,144,145,145,146,147,147,1

48,149,150,150,151,152,152,153,154,155,155,156,157,158,158,159,160,160,161,162,163,163,16

4,165,166,166,167,168,168,169,170,171,171,172,173,174,174,175,176,176,177,178,179,179,180

,181,182,182,183,184,184,185,186,187,187,188,189,190,190,191,192,192,193,194,195,195,196,

197,198,198,199,200,200,201,202,203,203,204,205,206,206,207,208,208,209,210,211,211,212,2

13,212,213,213,213,212,210,209,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,13,14,14,15,16,16,17,17,18,19,19,20,21,21,22,23,23,24,25,26,2

7,28,28,29,30,30,31,32,32,33,34,34,35,36,36,37,37,38,39,39,40,41,41,42,43,43,44,45,45,46,48,4

8,49,50,50,51,52,52,53,54,54,55,56,56,57,58,58,59,59,60,61,61,62,63,63,64,65,65,66,67,67,68,6

9,69,70,70,71,72,72,73,74,74,75,76,76,77,78,78,79,80,80,81,82,82,83,83,84,85,85,86,87,87,88,8

9,89,90,91,91,92,93,93,94,95,95,96,96,97,98,98,99,100,100,101,102,102,103,104,104,105,106,1

06,107,108,108,109,109,110,111,111,112,113,113,114,115,115,116,117,118,119,120,120,121,12

2,122,123,124,124,125,126,126,127,128,128,129,129,130,131,131,132,133,133,134,135,135,136

,137,137,138,139,139,140,141,141,142,142,143,144,144,145,146,146,147,148,148,149,150,150,

151,152,152,153,154,154,155,155,156,157,157,158,159,159,160,161,161,162,163,163,164,165,1

65,166,166,167,168,168,169,170,170,171,172,172,173,174,174,175,176,176,177,178,178,179,17

9,180,181,181,182,183,183,184,185,185,186,187,187,188,189,189,190,191,191,192,192,193,194

,194,195,196,196,197,198,198,198,198,198,197,196,193,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,12,13,13,14,15,15,16,16,17,17,18,19,19,20,20,21,21,22,23,23,2

5,25,26,27,27,28,28,29,30,30,31,31,32,32,33,34,34,35,35,36,36,37,38,38,39,39,40,41,41,42,42,4

3,44,45,46,46,47,47,48,49,49,50,50,51,51,52,53,53,54,54,55,56,56,57,57,58,58,59,60,60,61,61,6

2,62,63,64,64,65,65,66,66,67,68,68,69,69,70,71,71,72,72,73,73,74,75,75,76,76,77,77,78,79,79,8

0,80,81,81,82,83,83,84,84,85,86,86,87,87,88,88,89,90,90,91,91,92,92,93,94,94,95,95,96,97,97,9

8,98,99,99,100,101,101,102,102,103,103,104,105,105,106,106,107,107,108,110,110,111,112,11

2,113,113,114,114,115,116,116,117,117,118,118,119,120,120,121,121,122,122,123,124,124,125

,125,126,127,127,128,128,129,129,130,131,131,132,132,133,133,134,135,135,136,136,137,138,

138,139,139,140,140,141,142,142,143,143,144,144,145,146,146,147,147,148,148,149,150,150,1

51,151,152,153,153,154,154,155,155,156,157,157,158,158,159,159,160,161,161,162,162,163,16

3,164,165,165,166,166,167,168,168,169,169,170,170,171,172,172,173,173,174,174,175,176,176

,177,177,178,178,179,180,180,181,181,182,183,182,183,183,183,181,179,178,0,0,0,0,0,0,0,0,0,0

,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,2

2,23,24,24,25,25,26,26,27,27,28,28,29,30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,38,38,3

9,39,40,40,42,42,43,43,44,44,45,45,46,46,47,47,48,48,49,49,50,51,51,52,52,53,53,54,54,55,55,5

6,56,57,57,58,58,59,59,60,60,61,61,62,62,63,63,64,64,65,65,66,66,67,67,68,68,69,69,70,70,71,7

1,72,72,73,73,74,74,75,75,76,76,77,78,78,79,79,80,80,81,81,82,82,83,83,84,84,85,85,86,86,87,8

7,88,88,89,89,90,90,91,91,92,92,93,93,94,94,95,95,96,96,97,97,98,98,99,101,101,102,102,103,1

03,104,104,105,105,106,106,107,107,108,108,109,109,110,110,111,111,112,112,113,113,114,11

4,115,115,116,116,117,117,118,118,119,119,120,120,121,121,122,122,123,123,124,124,125,126

,126,127,127,128,128,129,129,130,130,131,131,132,132,133,133,134,134,135,135,136,136,137,

137,138,138,139,139,140,140,141,141,142,142,143,143,144,144,145,145,146,146,147,147,148,1

48,149,149,150,150,151,151,152,153,153,154,154,155,155,156,156,157,157,158,158,159,159,16

0,160,161,161,162,162,163,163,164,164,165,165,166,166,167,166,167,166,167,165,163,0,0,0,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,11,11,12,12,13,13,14,14,15,15,15,16,16,17,17,18,18,19,19,19,2

0,20,22,22,23,23,24,24,25,25,25,26,26,27,27,28,28,29,29,29,30,30,31,31,32,32,33,33,33,34,34,3

5,35,36,36,37,38,39,39,39,40,40,41,41,42,42,43,43,43,44,44,45,45,46,46,47,47,47,48,48,49,49,5

0,50,51,51,51,52,52,53,53,54,54,55,55,55,56,56,57,57,58,58,59,59,59,60,60,61,61,62,62,63,63,6

3,64,64,65,65,66,66,67,67,67,68,68,69,69,70,70,71,71,71,72,72,73,73,74,74,75,75,75,76,76,77,7

7,78,78,79,79,80,80,80,81,81,82,82,83,83,84,84,84,85,85,86,86,87,87,88,88,88,89,89,90,91,92,9

2,93,93,94,94,94,95,95,96,96,97,97,98,98,98,99,99,100,100,101,101,102,102,102,103,103,104,1

04,105,105,106,106,106,107,107,108,108,109,109,110,110,110,111,111,112,112,113,113,114,11

4,114,115,115,116,116,117,117,118,118,118,119,119,120,120,121,121,122,122,122,123,123,124

,124,125,125,126,126,126,127,127,128,128,129,129,130,130,130,131,131,132,132,133,133,134,

134,134,135,135,136,136,137,137,138,138,138,139,139,140,140,141,141,142,142,142,143,143,1

44,144,145,145,146,146,146,147,147,148,148,149,149,150,150,150,150,150,150,150,148,146,0,

0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,11,12,12,12,13,13,13,14,14,15,15,15,16,16,17,17,17,18,18,

18,19,20,21,21,21,22,22,23,23,23,24,24,25,25,25,26,26,26,27,27,28,28,28,29,29,30,30,30,31,31,

31,32,32,33,33,33,35,35,36,36,36,37,37,37,38,38,39,39,39,40,40,41,41,41,42,42,42,43,43,44,44,

44,45,45,46,46,46,47,47,47,48,48,49,49,49,50,50,51,51,51,52,52,52,53,53,54,54,54,55,55,56,56,

56,57,57,57,58,58,59,59,59,60,60,61,61,61,62,62,62,63,63,64,64,64,65,65,66,66,66,67,67,67,68,

68,69,69,69,70,70,71,71,71,72,72,72,73,73,74,74,74,75,75,76,76,76,77,77,77,78,78,79,79,79,80,

80,82,82,82,83,83,83,84,84,85,85,85,86,86,87,87,87,88,88,88,89,89,90,90,90,91,91,92,92,92,93,

93,93,94,94,95,95,95,96,96,97,97,97,98,98,98,99,99,100,100,100,101,101,102,102,102,103,103,

103,104,104,105,105,105,106,106,107,107,107,108,108,108,109,109,110,110,110,111,111,112,1

12,112,113,113,113,114,114,115,115,115,116,116,116,117,117,118,118,118,119,119,120,120,12

0,121,121,121,122,122,123,123,123,124,124,125,125,125,126,126,126,127,127,128,128,128,129

,129,130,130,130,131,131,131,132,132,133,133,133,134,133,133,134,133,131,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,11,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,16,

17,17,17,19,19,19,20,20,20,21,21,21,22,22,22,23,23,23,24,24,24,25,25,25,26,26,26,27,27,27,27,

28,28,28,29,29,29,30,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,36,37,37,37,38,38,38,39,

39,39,40,40,40,41,41,41,42,42,42,43,43,43,43,44,44,44,45,45,45,46,46,46,47,47,47,48,48,48,49,

49,49,50,50,50,51,51,51,52,52,52,53,53,53,54,54,54,55,55,55,56,56,56,56,57,57,57,58,58,58,59,

59,59,60,60,60,61,61,61,62,62,62,63,63,63,64,64,64,65,65,65,66,66,66,67,67,67,68,68,68,69,69,

69,69,70,70,70,72,72,72,73,73,73,74,74,74,75,75,75,76,76,76,77,77,77,78,78,78,79,79,79,80,80,

80,81,81,81,82,82,82,83,83,83,84,84,84,85,85,85,85,86,86,86,87,87,87,88,88,88,89,89,89,90,90,

90,91,91,91,92,92,92,93,93,93,94,94,94,95,95,95,96,96,96,97,97,97,97,98,98,98,99,99,99,100,10

0,100,101,101,101,102,102,102,103,103,103,104,104,104,105,105,105,106,106,106,107,107,107

,108,108,108,109,109,109,110,110,110,110,111,111,111,112,112,112,113,113,113,114,114,114,

115,115,115,116,116,116,117,117,116,117,115,114,111,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,10,10,10,11,11,11,11,12,12,12,13,13,13,13,14,14,14,14,15,

15,15,16,17,17,17,18,18,18,18,19,19,19,19,20,20,20,21,21,21,21,22,22,22,22,23,23,23,24,24,24,

24,25,25,25,25,26,26,26,26,28,28,28,29,29,29,29,30,30,30,30,31,31,31,32,32,32,32,33,33,33,33,

34,34,34,34,35,35,35,36,36,36,36,37,37,37,37,38,38,38,38,39,39,39,40,40,40,40,41,41,41,41,42,

42,42,43,43,43,43,44,44,44,44,45,45,45,45,46,46,46,47,47,47,47,48,48,48,48,49,49,49,49,50,50,

50,51,51,51,51,52,52,52,52,53,53,53,53,54,54,54,55,55,55,55,56,56,56,56,57,57,57,58,58,58,58,

59,59,59,59,60,60,60,60,62,62,62,63,63,63,63,64,64,64,64,65,65,65,66,66,66,66,67,67,67,67,68,

68,68,68,69,69,69,70,70,70,70,71,71,71,71,72,72,72,72,73,73,73,74,74,74,74,75,75,75,75,76,76,

76,76,77,77,77,78,78,78,78,79,79,79,79,80,80,80,81,81,81,81,82,82,82,82,83,83,83,83,84,84,84,

85,85,85,85,86,86,86,86,87,87,87,87,88,88,88,89,89,89,89,90,90,90,90,91,91,91,91,92,92,92,93,

93,93,93,94,94,94,94,95,95,95,96,96,96,96,97,97,97,97,98,98,98,98,99,99,99,100,99,99,98,98,94

,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,9,9,10,10,10,10,11,11,11,11,11,12,12,12,12,12,13,13,13,13,

14,14,14,15,15,16,16,16,16,16,17,17,17,17,18,18,18,18,18,19,19,19,19,19,20,20,20,20,21,21,21,

21,21,22,22,22,22,22,23,23,24,24,24,25,25,25,25,26,26,26,26,26,27,27,27,27,27,28,28,28,28,29,

29,29,29,29,30,30,30,30,30,31,31,31,31,32,32,32,32,32,33,33,33,33,33,34,34,34,34,34,35,35,35,

35,36,36,36,36,36,37,37,37,37,37,38,38,38,38,39,39,39,39,39,40,40,40,40,40,41,41,41,41,42,42,

42,42,42,43,43,43,43,43,44,44,44,44,44,45,45,45,45,46,46,46,46,46,47,47,47,47,47,48,48,48,48,

49,49,49,49,49,50,50,50,50,50,52,52,52,52,53,53,53,53,53,54,54,54,54,54,55,55,55,55,55,56,56,

56,56,57,57,57,57,57,58,58,58,58,58,59,59,59,59,60,60,60,60,60,61,61,61,61,61,62,62,62,62,63,

63,63,63,63,64,64,64,64,64,65,65,65,65,65,66,66,66,66,67,67,67,67,67,68,68,68,68,68,69,69,69,

69,70,70,70,70,70,71,71,71,71,71,72,72,72,72,72,73,73,73,73,74,74,74,74,74,75,75,75,75,75,76,

76,76,76,77,77,77,77,77,78,78,78,78,78,79,79,79,79,80,80,80,80,80,81,81,81,81,81,82,82,81,81,

81,81,77,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12

,12,13,14,14,14,14,14,14,14,15,15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17,17,18,18,18,

18,18,18,19,19,19,19,19,20,21,21,21,21,21,21,21,22,22,22,22,22,22,23,23,23,23,23,23,24,24,24,

24,24,24,24,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,27,27,28,28,28,28,28,28,28,29,29,

29,29,29,29,30,30,30,30,30,30,31,31,31,31,31,31,31,32,32,32,32,32,32,33,33,33,33,33,33,34,34,

34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,37,37,37,37,37,38,38,38,38,38,38,39,

39,39,39,39,39,40,40,40,40,40,41,42,42,42,42,42,42,42,43,43,43,43,43,43,44,44,44,44,44,44,45,

45,45,45,45,45,45,46,46,46,46,46,46,47,47,47,47,47,47,48,48,48,48,48,48,48,49,49,49,49,49,49,

50,50,50,50,50,50,51,51,51,51,51,51,51,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,54,54,

54,55,55,55,55,55,55,56,56,56,56,56,56,57,57,57,57,57,57,57,58,58,58,58,58,58,59,59,59,59,59,

59,60,60,60,60,60,60,61,61,61,61,61,61,61,62,62,62,62,62,62,63,63,63,63,63,63,64,64,64,64,64,

63,63,63,61,0,0,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,8,8,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,11,12,

12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,15,15,15,15,

15,15,15,15,15,17,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,

19,19,19,20,20,20,20,20,20,20,20,20,21,21,21,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,

23,23,23,23,23,23,23,23,23,23,24,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,25,25,26,26,

26,26,26,26,26,26,26,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,29,29,29,29,29,

29,29,29,29,29,30,30,30,31,31,31,31,31,31,32,32,32,32,32,32,32,32,32,32,33,33,33,33,33,33,33,

33,33,34,34,34,34,34,34,34,34,34,34,35,35,35,35,35,35,35,35,35,36,36,36,36,36,36,36,36,36,36,

37,37,37,37,37,37,37,37,37,38,38,38,38,38,38,38,38,38,38,39,39,39,39,39,39,39,39,39,40,40,40,

40,40,40,40,40,40,40,41,41,41,41,41,41,41,41,41,42,42,42,42,42,42,42,42,42,42,43,43,43,43,43,

43,43,43,43,44,44,44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,45,46,46,46,46,46,46,46,46,

45,45,45,0,0},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10,

10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,

12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,

14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,

16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,18,

18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,19,19,19,19,19,19,

19,19,19,19,19,19,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,22,22,22,22,22,22,

22,22,22,22,22,22,22,22,22,22,22,22,22,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,

23,24,25,25,25,25,25,25,25,25,25,25,

25,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,27,27,27,

27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,27,27,26,

24},

 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,8,8,8,8,8,8,8,8,

8,9,

9,

9,

9,9,10,

10,

10,

10,

10,9,9,8}

};

//angle >=120 : clean pool cue

void print_poolcue(int x, int y, int angle)

{

 //(x, y) position of the top of the cue; angle 0-119, clockwise

 int line;

 int line_addr;

 int datain;

 int new_angle;

 if(angle >= 0 && angle < 30)

 {

 line_addr = 0;

 for(line = y - 5; line < 0; line++)

 {

 line_addr++;

 }

 for(line = 0; line < y - 5; line++)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 }

 while((line < y + 350) & (line < 480))

 {

 if(CueEnd[angle][line_addr] != 0)

 {

 if (CueBegin[angle][line_addr] + x < 5)

 {

 datain = 0;

 if (CueEnd[angle][line_addr] + x >= 5)

 {

 datain = (datain << 16) + CueEnd[angle][line_addr]

+ x - 5;

 }

 }

 else if (CueEnd[angle][line_addr] + x > 645)

 {

 if (CueBegin[angle][line_addr] + x > 645)

 {

 datain = 640;

 }

 else

 {

 datain = CueBegin[angle][line_addr] + x - 5;

 }

 datain = (datain << 16) + 640;

 }

 else

 {

 datain = CueBegin[angle][line_addr] + x - 5;

 datain = (datain << 16) + CueEnd[angle][line_addr] + x - 5;

 }

 }

 else

 {

 datain = 0;

 }

 IOWR_CUERAM(line, datain);

 line ++;

 line_addr++;

 //printf("Write %d to %d\n", datain, line);

 }

 while(line < 480)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 line ++;

 }

 }

 else if(angle >= 30 && angle < 60)

 {

 new_angle = 60 - angle;

 line_addr = 0;

 for(line = y - 5; line < 0; line++)

 {

 line_addr++;

 }

 for(line = 0; line < y - 5; line++)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 }

 while((line < y + 350) & (line < 480))

 {

 if(CueEnd[new_angle][line_addr] != 0)

 {

 if (CueEnd[new_angle][line_addr] - x > 6)

 {

 datain = 0;

 if (CueBegin[new_angle][line_addr] - x <= 6)

 {

 datain = (datain << 16) + x -

CueBegin[new_angle][line_addr] + 6;

 }

 }

 else if (x - CueBegin[new_angle][line_addr] > 635)

 {

 if (x - CueEnd[new_angle][line_addr] > 635)

 {

 datain = 640;

 }

 else

 {

 datain = x - CueEnd[new_angle][line_addr] + 6;

 }

 datain = (datain << 16) + 640;

 }

 else

 {

 datain = x - CueEnd[new_angle][line_addr] + 6;

 datain = (datain << 16) + x -

CueBegin[new_angle][line_addr] + 6;

 }

 }

 else

 {

 datain = 0;

 }

 IOWR_CUERAM(line, datain);

 line ++;

 line_addr++;

 //printf("Write %d to %d\n", datain, line);

 }

 while(line < 480)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 line ++;

 }

 }

 else if(angle >= 60 && angle < 90)

 {

 new_angle = angle - 60;

 line_addr = 0;

 for(line = y + 5; line >= 480; line--)

 {

 line_addr++;

 }

 for(line = 479; line > y + 5; line--)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 }

 while((line > y - 350) & (line > -1))

 {

 if(CueEnd[new_angle][line_addr] != 0)

 {

 if (CueEnd[new_angle][line_addr] - x > 6)

 {

 datain = 0;

 if (CueBegin[new_angle][line_addr] - x <= 6)

 {

 datain = (datain << 16) + x -

CueBegin[new_angle][line_addr] + 6;

 }

 }

 else if (x - CueBegin[new_angle][line_addr] > 635)

 {

 if (x - CueEnd[new_angle][line_addr] > 635)

 {

 datain = 640;

 }

 else

 {

 datain = x - CueEnd[new_angle][line_addr] + 6;

 }

 datain = (datain << 16) + 640;

 }

 else

 {

 datain = x - CueEnd[new_angle][line_addr] + 6;

 datain = (datain << 16) + x -

CueBegin[new_angle][line_addr] + 6;

 }

 }

 else

 {

 datain = 0;

 }

 IOWR_CUERAM(line, datain);

 line --;

 line_addr++;

 //printf("Write %d to %d\n", datain, line);

 }

 while(line >= 0)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 line --;

 }

 }

 else if(angle >= 90 && angle < 120)

 {

 line_addr = 0;

 new_angle = 120 - angle;

 for(line = y + 5; line >= 480; line--)

 {

 line_addr++;

 }

 for(line = 479; line > y + 5; line--)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 }

 while((line > y - 350) & (line > -1))

 {

 if(CueEnd[new_angle][line_addr] != 0)

 {

 if (CueBegin[new_angle][line_addr] + x < 5)

 {

 datain = 0;

 if (CueEnd[new_angle][line_addr] + x >= 5)

 {

 datain = (datain << 16) +

CueEnd[new_angle][line_addr] + x - 5;

 }

 }

 else if (CueEnd[new_angle][line_addr] + x > 645)

 {

 if (CueBegin[new_angle][line_addr] + x > 645)

 {

 datain = 640;

 }

 else

 {

 datain = CueBegin[new_angle][line_addr] + x - 5;

 }

 datain = (datain << 16) + 640;

 }

 else

 {

 datain = CueBegin[new_angle][line_addr] + x - 5;

 datain = (datain << 16) + CueEnd[new_angle][line_addr] +

x - 5;

 }

 }

 else

 {

 datain = 0;

 }

 IOWR_CUERAM(line, datain);

 line --;

 line_addr++;

 //printf("Write %d to %d\n", datain, line);

 }

 while(line >= 0)

 {

 IOWR_CUERAM(line, 0);

 //printf("Write %d to %d\n", datain, line);

 line --;

 }

 }

 else

 {

 for(line = 0; line < 480; line ++)

 {

 IOWR_CUERAM(line, 0);

 }

 }

}

//--

#endif /* POOLCUE_H_ */

-- poolball.h

/*

 * poolball.h

 *

 * Created on: Apr 9, 2013

 * Author: Jiawan Zhang

 */

#ifndef POOLBALL_H_

#define POOLBALL_H_

//***

#include <io.h>

#include <system.h>

#include <stdio.h>

#define IOWR_VGA_BALL_POSITION_X(ballnum, data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, ((ballnum)*4 + 0)*2, data)

#define IOWR_VGA_BALL_POSITION_Y(ballnum, data) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, ((ballnum)*4 + 1)*2, data)

#define IOWR_VGA_BALL_BIAS_X(ballnum, bias_x) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, ((ballnum)*4 + 2)*2, bias_x)

#define IOWR_VGA_BALL_BIAS_Y(ballnum, bias_y) \

 IOWR_16DIRECT(DE2_VGA_RASTER_0_BASE, ((ballnum)*4 + 3)*2, bias_y)

//int BALL_BIAS_X[16];

//int BALL_BIAS_Y[16];

void placeball(int ballnum, int pos_x, int pos_y, int bias_x, int bias_y, int* BiasX, int* BiasY)

{

 //BALL_BIAS_X[ballnum] = bias_x;

 //BALL_BIAS_Y[ballnum] = bias_y;

 IOWR_VGA_BALL_POSITION_X(ballnum, pos_x);

 IOWR_VGA_BALL_POSITION_Y(ballnum, pos_y);

 IOWR_VGA_BALL_BIAS_X(ballnum, bias_x);

 IOWR_VGA_BALL_BIAS_Y(ballnum, bias_y);

 *BiasX = bias_x;

 *BiasY = bias_y;

}

void moveball(int ballnum, int *pos_x, int *pos_y, int flag_x, int flag_y, int* BiasX, int* BiasY)

{

//flag_x = 0, no moving in x direction; = 1 move right 1 pixel in x direction; = -1 move left 1

pixel in x direction

//flag_y = 0, no moving in y direction; = 1 move down 1 pixel in y direction; = -1 move up 1

pixel in y direction

//ori_x, x position before moving; ori_y, y position before moving;

 int bias_x;

 int bias_y;

 int new_pos_x;

 int new_pos_y;

 bias_x = *BiasX;

 bias_y = *BiasY;

 new_pos_x = *pos_x + flag_x;

 new_pos_y = *pos_y + flag_y;

 bias_x = bias_x - flag_x;

 bias_y = bias_y - flag_y;

 if(bias_x < 0)

 {

 bias_x = 13;

 }

 else if(bias_x > 13)

 {

 bias_x = 0;

 }

 if(bias_y < 0)

 {

 bias_y = 13;

 }

 else if(bias_y > 13)

 {

 bias_y = 0;

 }

 IOWR_VGA_BALL_POSITION_X(ballnum, new_pos_x);

 IOWR_VGA_BALL_POSITION_Y(ballnum, new_pos_y);

 IOWR_VGA_BALL_BIAS_X(ballnum, bias_x);

 IOWR_VGA_BALL_BIAS_Y(ballnum, bias_y);

 *BiasX = bias_x;

 *BiasY = bias_y;

 *pos_x = new_pos_x;

 *pos_y = new_pos_y;

}

//***

#endif /* POOLBALL_H_ */

