Kanto Player
CSEE W4840 Final Report

Kavita Jain-Cocks Zhehao Mao
kj2264Q@columbia.edu zm2169@columbia.edu

Amrita Mazumdar Darien Nurse
am3210@columbia.edu don2102@columbia.edu

Jonathan Yu
Jjy2432@columbia.edu

May 15, 2013

1 Introduction

This project presents an audio player with frequency visualization, implemented on an Altera DE2 Cyclone
FPGA. The user is able to play audio files in a custom encoding from an SD card and view a nice visual-
ization of the audio frequencies on a VGA display, similar to the visualization on classic music players. Our
implementation uses hardware to handle audio output and frequency visualization, and software to handle
user interaction and system initialization. The user can interact with the system using switches for color
mixing and keyboard for fast forward, rewind, and track selection.

2 System Architecture

2.1 High-Level Overview

The following is a high-level overview for playing music and displaying visualizations using an Altera DE2
Cyclone FPGA.

NIOS II
PLL ——— everywhere

3
y

Avalon

[T y :
PS2
Keyboard \ SD Buffer
Conductor
A, l 1 y
VGA Visualizer |« FFT SD Card Audio »| Speaker

Display Controller [~ | Buffer Output

SD
Card

Figure 1: High-level block diagram of the full Kanto system.

e Data for the music is stored on the SD card in a time-domain format. When the FPGA starts up, SD
Controller peripheral performs a series of initialization steps to prepare the SD card for processing.
Once the SD card is ready, a signal is sent to the Conductor so that some cool stuff can start to
unfold.

e The Conductor peripheral, along with the NTOS peripheral, controls how and when data flows between
every other peripheral. When the Conductor receives the ready signal from the SD Controller,
the Conductor transfers control of the system to the NIOS so that software initialization can occur.

e Once the processor gets control, it reads in the first block, which is a track table containing the starting
block address and title of each song on the SD card. The track table is drawn on the VGA display
for user control, and sets up the selection and current track indicators. The processor then seeks to
the first track, reads in the first block of audio data, and then returns control to the Conductor.

3

The Audio Buffer operates on two blocks of memory in the block RAM. At any given time, the
Audio Buffer is reading data from one block while data is being written to the other. The data
being read is pushed to the audio codec at the audio sampling rate. The next block of data is already
written by the time the current audio data is finished being played. The buffer then reads from the
newly completed block and new data is written over the old data that was read in the previous block.

The FFT takes the same blocks of data that the Audio Buffer uses and performs a 256-point FFT.
The FFT converts the time-domain data to frequency-domain data and stores it in block RAM.

The Visualizer peripheral is used to display the frequencies calculated by the FFT visually. Since
humans can only hear certain frequencies, the Visualizer isolates and only displays the frequencies
detectable to the human ear, in this case the first 32 frequencies of the 256 calculated by the FFT.

When the Audio Buffer is done with one block, the Conductor triggers the SD card to read in
another block. On every fourth block read, the Conductor triggers the FFT unit to recompute the
frequency values. When the FFT unit is done, the conductor triggers the visualizer to refresh the
display.

Design Implementation

3.1 SD Card Controller

The SD card controller is responsible for initializing the SD card’s own built-in controller, sending read
commands to the SD card as necessary, and receiving the data and writing it to the audio buffer. It takes
as inputs the global clock and a 32-bit SD block address to read, and it sends write data, write address, and
write enable to the audio buffer.

SPI Bus Protocol

SD cards support three communication protocols: SPI bus mode, 1-bit SD bus mode, and 4-bit SD bus
mode. Our implementation uses the SPI bus, which is the simplest; the controller acts as the master device,
and the SD card acts as a single slave. The signals on the SPI bus are:

e SCLK - clock, controlled by the master
e MOSTI - master out, slave in
e MISO - master in, slave out

e CS - chip select (active low)

The controller communicates with the SD card by sending commands over SPI. The controller must first

send a sequence of commands to initialize the SD card. Once the SD card is initialized and ready, the
controller waits for a signal telling it to perform a read. Once the signal is sent, the controller sends the read
command with the SD card block address as argument and then reads the response from the SD card.

CMD8 CMDO

Error
yes

ACMD41

no

no yes
Ready CMD17

Figure 2: Flowchart of the commands sent by the SD Card
Controller.

SD Card Data Formatting

Support for standard filesystems is not implemented. However, there is support for multiple song files. SD
cards are addressed as 512-byte blocks. As such, the first 512 bytes of the SD card is dedicated to metadata;
it contains the start addresses for each song on the SD card.

The songs themselves are in 16-bit raw PCM format, written to the SD card end to end and aligned to
512 byte boundaries. The start addresses of each song, as discussed earlier, are contained in the metadata
block. A script was developed, mkauimg.py, for converting audio files to the appropriate format to be
written to an SD card and is included in the appendix.

3.2 Audio Buffer

The audio buffer controls playback of the audio data. It contains a RAM holding 512 16-bit values and a
unit that speaks to the Wolfson WM8731 audio codec on the DE2 board.

From SD Card To Audio Codec

——> Audio RAM UL
Interface

Figure 3: High-level block diagram of the Audio Buffer unit.

The audio codec interface reads in a 16-bit sample from the audio RAM and transmits the bits serially

to the audio codec. Once the last bit has been transmitted, the next sample is requested from the audio
RAM.

The audio RAM is effectively split in two so that the audio codec interface plays samples from one half
while the SD card writes to the other. This is the reason why the RAM is chosen to hold 512 samples, since
one SD card block is 512 bytes, or 256 samples. Once the audio codec interface plays sample 255 or 511
(indexed from 0), it sends a signal indicating that the SD card controller should read in another block.

3.3 FFT Unit

The FFT unit is used to compute the discrete frequency transform of a set of audio samples to be visualized.

We use the basic Cooley-Tukey FFT algorithm with a radix of 16 to compute the frequency transform
of a given sample. The number of frequencies N computed by the FFT was chosen to be 256. The radix
size and number of frequencies were chosen to optimize for space and time. The basic DFT is defined by the
equation:

N—1 -
Xy = Z Tpe” Nk (1)
n=0

The index k is an integer from 0 to N — 1. Thus, the result of the transform is a sequence of N complex
numbers.

According to the Cooley-Tukey algorithm, we split our original input into 16 different parts and perform a
DFT on each individual component. We can then recombine the individual DFT outputs in 4 recombination
stages, using the following equation for each stage:

X =

_2nj g .
{ By + e~ k0, if k < N/2 2

By njo— e MNP0, o if k> NJ2.

The FFT hardware consists of two types of pipelines, one for the DFT, and another for the recombination.

= \\
S
M
: :
o
n J t
t ; E
r

u t
o
| t
|
e
r

i i

Figure 4: Block diagram of the DFT Unit pipeline

The DFT pipeline computes a 16-point DFT according to equation 1.

write
addr

even

Complex
II
Complex

Subtract

Frequency
Domain cJ |
— RAM —

low

high

Complex
Mult

write

done

Figure 5: Block diagram of the textttRecombination Unit pipeline

The recombination unit computes 32 parts of the recombinational step according to equation 2. The
upper and lower parts, Xy and Xy /2, are computed in parallel. This allows us to re-use the odd term

The complex multiplier in the recombination unit performs its computation in two pipelined steps, as
follows.

ax *ay
ax — - '7 az
X bx * by
bx L
ax * by
X .
[=] .

ay * bx

ay X

by

o

Figure 6: Block diagram of the Complex Multiplier unit used
for recombination.

Our top-level FFT block uses two DFT units, a recombination unit, two RAMs (one for time domain data
and one for frequency domain data), four ROMs for the recombination, one ROM for the DFT coefficients,
and a control unit to set all the multiplexers and control the flow of computation.

DFT
MUX —
Time Domain A T
A Frequency
RAM Domain
DFT RAM
MUX >
DFT Recomb
ROM —
Controller]

|
— 1 tt—

Recomb Recomb Recomb Recomb
ROM-16 ROM-32 ROM-64 ROM-128

Figure 7: Top-level block diagram of the FFT unit.

The DFT ROM holds 256 32-bit values, each one of which represents a complex number (higher 16 bits
for real part and lower 16 bits for imaginary part). These values represent the constant coefficients in the
DFT equation e~ *F "k as 16-bit fixed-point precision numbers. Each value is addressed by an 8-bit address,
where the highest four bits represent the value of k and the lowest four bits represent the value n.

Similarly, the 4 recombination ROMs have 16, 32, 64, or 128 fixed point imaginary values. These
correspond to the constant coefficients e FF from equation 2. The ROMs have 4-bit addresses, so only 16
values can be accessed during a single recombination step. For the larger ROMs, a select input set by the
controller control which chunk of 16 values can be addressed.

The controller, in response to an external start signal, triggers 16 DFT computations, with 2 computations
running in parallel at a time. This is followed by 4 stages of recombination. Each recombination stage uses
a different ROM and consists of 8 steps (32 out of 256 outputs are computed on each step).

The multipliers used in this design all use the dedicated multiplier circuitry on the Cyclone II. All RAMs
and ROMs use the dual-port M4K block RAM.

3.4 Visualizer

There are two main tasks that the vizualizer needs to accomplish. The first is sequentially reading in the
data produced by the FFT and the other is displaying that data on the VGA. Originally all 256 different
frequencies were being displayed however after initial designs the decision made was to include data for the
first 32 frequencies on the display since these are the hearable frequencies. The reading process requires
two states, a holding state and a reading state. The transition to reading happens when the FFT sends a
”done” signal which means that the data is in place to be read. For display purposes, the 32 frequencies are
placed into 16 bins, 2 per bin, each of which corresponds to one of sixteen bars located horizontally across
the screen. The height of these bars is decided by summing the amplitude of the two frequencies contained
in the bin and then scaling this value to the necessary height for the screen.

It was necessary to use two different clocks since the VGA display requires a 25.1 MHz clock. In this
case, a 25 MHz clock as used. There was no need to read in data on the slower clock and therefore the 50
MHz clock was used there so as to read the data as quickly as possible.

An additional feature that was added was the ability to change the color of the bars appearing on the
screen. Three switches corresponding to red, green, and blue allow the user to mix and match to create
different colors. The switches are active low so the default color when all switches are ”off” is white, so as to
be seen on the black background. In order to improve the accuracy of the display, adjustments were made

so that new data is only read in when data is not being drawn to the screen.

reset_data
FSM
clk_50 data_req_addr
data Data Array of size 16
310 i
clk_25
red Draw to VGA
green raw to
blue

Figure 8: Block diagram of Visualizer unit.

3.5 Software User Interface

This project was initially designed using only hardware components. The NIOS entity was added later in
order to give the system additional functionality. At startup, the software reads in the first block of data from
the SD card. This first block is divided into 64 byte chunks. The first four bytes in each chunk is a 32-bit
number which is the starting block address of that song. The next 60 bytes are a null-terminated string with
the track title. The very last 64 byte chunk simply has the block address of the end of the last song. If there
are fewer than 7 songs on the SD card, the remaining bytes in the block will all be zero. Once initialization
is finished, the NIOS software hands control over the system to the hardware conductor. It then goes into a
loop, during which it polls the current block address and the state of the FPGA push buttons. If the current
block address goes over the first block address of the next track, the track number is updated internally
as well as written to a set of seven-segment displays. The software also controls a frame-buffer used to fill
in the top part of the VGA display. It uses this frame-buffer, along with the PS/2 keyboard, to provide a
track-selection user interface display. This interface shows the different track titles and allows you to select
from them using the keyboard. Keyboard-controlled operations are navigating through available songs using
the j and k keys in conjunction with the Enter key, skipping forward and backwards through the available
tracks using n and p, fast-forward and rewinding using £ and b, and pausing and resuming playback using
the spacebar. If a new track is selected using the keyboard controls, the program takes control away from
the conductor, changes the block address to the start of the selected track, reads in that block, and then
returns control to the conductor.

Track 1 Address track_table[0]
Ut U Ui track_titles[0]
Track 1 Address track_table[1]
Track 1 Title track_titles[1]
o
o
o
| Audio End | track_table[N]
| 0 |
| 0 |
| 0 |
| 0 |
o
o
o

Figure 9: Visual representation of the track table used by the
NIOS component.

3.6 Miscellaneous Controller Components
The Conductor

The conductor unit handles system coordination and communication between modules, and is the primary
controller unit for the system. Typical system operation and data flow within the module is as follows:

e initial — When the system starts up, the conductor begins in the initial state. It waits for the
SD card to finish intialization (sd_ready is high) and then hands off control to the NIOS system for
system initialization and playback control in the cpuctrl state.

e cpuctrl — In this state, the NIOS system is handling user interaction. If the signal nios_readblock
is high, the conductor will trigger read of a single block of data from the SD card by entering the
trigger_sd state. Otherwise, if the nios_play signal is high, the system can begin or resume audio
playback by transistioning into the resume state. In this condition, the block address to be read from
is incremented.

e trigger_sd — This state is a transitional state to set sd_start high for one clock cycle. The conductor
immediately transistions from this state to wait_sd

e wait_sd — In this state, the module waits until the sd_ready flag is set high, indicating that a block
has been read and control can be returned to the CPU.

e resume — This state resets the £ft_counter signal to 0 before audio playback begins.

e playing — This state is the default state when playback is occurring. Depending on the status
signals, the conductor could switch into block_end or fft_end. If nios_play is set low, the conductor
switches to the initial state to return the SD card to CPU control.

e block_end — The conductor enters this state for one clock cycle after the audio buffer switches buffers.
It triggers a read from the SD card and, on every fourth block, triggers the FFT. The conductor also
increments the SD card block address.

e fft_end — The conductor enters this state when the FFT unit finishes computing (fft_done changes
from low to high). In this state, the visualizer reset is triggered.

sd_ready = 1
/ nios_play =0
fft_counter <= 11 |~

nios_play =1
/

blockaddr++
fft_done_last = 0
fft_done =1

/ ~

fft_counter <= 00

nios_readblock = 1 ab_SWal/)Ped =1

fft_counter++
blockaddr++

blockaddr <= nios_addr

block_end

trigger_sd
sd_ready = 1

Figure 10: Simplified State Diagram for the Conductor unit:
Mealy machine, using abstract transition descriptions and omit-
ting unused signals for compactness. ~ denotes a lack of outputs

Phase-Locked Loop for Multiple Clocks

The visualizer unit and audio playback required different clocks to drive their respective peripherals, but
also required clocks to synchronize communication with other modules in the kanto system. To most easily
configure these clocks, a Phase-Locked Loop (PLL) was generated from an Altera Megafunction. The PLL
was used to generate a 50MHz clock for general system synchronization, a 25MHz clock to drive the VGA
display, and an 11.29MHz clock for the audio output.

4 Design Changes
4.1 Removal of SRAM

In our initial design, we planned on using the SRAM to store the values for the audio buffer and the output
of the FFT unit. Separate components would communicate by reading and writing values to the SRAM.
We had implemented an SRAM controller with four-phase handshaking to multiplex among the different
components. We eventually found, however, that our memory usage did not justify the extra complexity
that using SRAM imposed on our design, so we ended up using on-chip block RAM instead.

4.2 Adding Software Control

Initially, our design was implemented entirely in hardware, as we found our control scheme wasn’t complex
enough to require software. However, in order to satisfy the requirements for the class, we had to add
a software component. We decided to use software to coordinate the initialization of our system, as well

10

as track switching, and have the hardware controller (the conductor) take over when the audio is actually
playing.

4.3 Display Changes

After connecting the FFT and visualizer units together, we determined the visualizer would be more aes-
thetically pleasing if we isolated and displayed only the frequencies detectable to the human ear, in this case
the first 32 frequencies of the 256 calculated by the FFT. Another aesthetic change made was to provide the
user with a color ”channel mixer” via switches on the FPGA board, so the user can interactively adjust the
color of the visualization.

5 Testing Methodology

Testing proved to be invaluable in isolating and fixing bugs before integrating modules into the system. For
computational units and controllers, testing was done through simulations and assertions; for peripherals,
testing was done by using test drivers and observing the peripherals behavior. The following sections provide
a brief overview of our testing procedures for major components.

5.1 FFT Controller

The FFT algorithm was implemented in C early on. A sample input was run through the software FFT
to generate a corresponding output, and we tested by comparing this output to the output generated in
hardware given the same input. As we modified the FFT (for instance, to reduce parallelism and use block
ram), we continually tested against this sample to make sure the hardware was still mathematically correct.

5.2 Visualizer

The two major tests of correctness for the visualizer were 1) displaying each of the bars at the correct height;
and 2) quickly refreshing the screen when the registers were updated. To test this, we wrote a hardware
driver that set the bars at two different levels and flipped back and forth between them while we observed
the changes on the VGA monitor.

5.3 Audio Buffer

The audio buffer needed to produce a clean sound with no crackling. We tested this by writing in a sine
wave and listening to the output. Additionally, a simulation test-bench was used to ensure that swapping
between the two buffers was properly synchronized.

5.4 SD Card Controller

We tested the SD card controller by writing known data onto an SD card and ensuring that the same data was
read back. Because there are numerous intermediate steps in communicating with an SD card, various LEDs
and 7-segment displays indicate the current state of the state machine, allowing us to see where commands
have failed.

5.5 Conductor

The conductor is the glue that holds all the components together. We emulated the system components in a
test-bench and simulated the signals they would output. Using assertions, we confirmed that the conductor
was correctly timing the interactions between components.

11

6 Timeline & Milestone Progress

Milestone Date | Goal Accomplished

Milestone 1 Apr 2 | RTL design and block diagrams of all periph- Completed.
erals.

Milestone 2 Apr 16 | Individual peripherals written in VHDL and = Completed.
test benched.

Milestone 3 Apr 30 | Build interfaces between all peripherals and Completed
finish synchronization software.

Deadline May 15 | System complete and presentation finished. Completed.

7 Distribution of Work

e Kavita Jain-Cocks

1. Visualizer
2. SD Controller

e Zhehao Mao

FFT
Audio Buffer
SD Controller

Conductor

G e

Software
e Amrita Mazumdar

1. Visualizer
2. FFT

3. Software
e Darien Nurse

1. Visualizer

2. Software
e Jonathan Yu

1. SD Controller

2. Software

8 Challenges & Lessons Learned

8.1 Interfacing to External Hardware

Interfacing to external hardware, such as the SD card, audio codec, and VGA display, was by far the most
challenging parts of the assignment, mainly because it was difficult to debug. Since proper functionality
depended on what the external hardware was doing, we couldn’t reliably use Quartus test-benches like we

12

did for the rest of the components, since our test-benches couldn’t exactly replicate the behavior of the
external hardware. We found that the best way to get interfaces to external hardware working was to base
our implementation off of successful existing implementations. For instance, for the audio buffer, we used
the components provided for Lab 3 to interface with the audio codec, but modified the files to achieve the
correct sampling frequency. For the SD card controller, we based a lot of our code off of the SPI controller
from Prof. Edward’s Apple II FPGA project, as well as the SD card driver code in the Linux Kernel. For
the visualizer, we initially based our work on components from Lab 3, but quickly found we needed more
advanced functionality than the examples provided. For debugging the visualizer, we resorted to driving the
LEDs and 7-segment displays for feedback on states and data.

8.2 Changing Levels of Parallelism

Because of the extensive parallelism in the FFT module, it became difficult to fit the entire system on the
FPGA, and we had to reduce the amount of parallelism in the FFT unit to decrease the number of logic
gates used by the board. We found that reducing the level of parallelism is often just as hard, if not harder,
than adding parallelism, and that both actions require extensive changes to the design of a system. It would
have made things much easier if we had decided on the proper level of parallelism at the outset. If we had
done some quick calculations at the outset, we would have discovered that could have used a very low level
of parallelism and still been well within the deadlines imposed by the timing of our system.

8.3 Timing Issues

Timing issues can be a big problem in a complex design, especially if external hardware is involved, as
different hardware peripherals require different clocks. For our design, the audio codec used a 11.29 MHz
clock, the VGA used a 25 MHz clock, and the SD card used a 6.25 MHz clock. We used a PLL for the first
two and clock enables for the last one (since the SD card clock wasn’ always running). But passing status
and control signals between units running on different clocks ended up being a minor challenge as well. We
ended up solving this problem by either stretching the signals or detecting the rising edge of signals.

Because the operations of reading in VGA data and refreshing the VGA display both took more than one
cycle meant that we needed to ensure that the data wasn’t being changed while the display was in the middle
of refreshing. This was accomplished by reading data into a separate set of registers and only transferring
it to the registers used by the display processes once the refresh had reached the edge of the screen. This
made it possible to reduce flickering that was being seen on the display.

8.4 Reduction of Hardware Usage

At its peak, our design used up 89% of the logic elements on the FPGA. We found out that this was because
we were accidentally using logic elements instead of block RAM for all of our memory components. After
switching over the memory components to block RAM, our logic element usage went down to only 10%,
while our block RAM usage went from 1% to only 5%. This showed us the importance of actually using
memory elements for memory.

Shifting our memory components to block RAM did require a lot of other changes to our design. For
instance, since the block RAM only had two ports, we had to dramatically reduce the amount of parallelism
in the FFT unit. We also had to duplicate some memory. For instance, the FFT unit and audio buffer
initially shared the same memory for the time domain samples, but we eventually separated this into two
different RAMs which the SD card controller wrote to simultaneously. Although these practices seemed
counterintuitive, this duplication did not add that much to our memory requirements, as noted above.

Having a modular design, both at the highest level and at the level of each component, made these
changes go relatively smoothly.

9 Reflections & Prospectus

Our group is very satisfied with the final version of our project. We accomplished all major project goals,
and added improved functionality in certain modules, such as color changes in the visualizer and track

13

selection. Although certain elements did not conform to the originally-delineated system design, such as
replacing the SRAM with block RAM and changing the role of software in the high-level design, we feel the
project exceeds our original goals for the project. There were a few areas under which our group could have
improved, namely in scheduling and deliverables, and further design optimizations.

9.1 Scheduling & Deliverables

Because of the modular nature of our system design, our plan for project completion involved developing
and optimizing each component fully in isolation, and then linking them together afterwards. Although this
plan was successful for our group, a more productive strategy could have been a more sequential approach
to system design, starting with critical components, such as the SD card, and moving linearly through the
different components, ending with the visualizer. This method would have allowed us to have more concrete
deliverables during milestones and helped us detect system-wide issues earlier on, such as the heavy use of
logical elements in our memory and FFT designs.

Another consequence of our scheduling was that, although we remained fairly on track with our predeter-
mined milestones and ended up completing the design ahead of schedule, our description of milestones and
deliverables was extremely vague and hard to verify during the biweekly milestone check-ins. This could have
been remedied in multiple ways. One option would have been to choose more specific, tangible deliverables
at each milestone to demonstrate our progress. Another would have been to review our milestones with
Professor Edwards or our adviser before deciding upon them.

One situation that needed to be contended with was that we had a larger group size to begin with and
also lost a group member early in the process. The large group size was challenging because we needed to
ensure the project goals were split evenly and progress was continuously being made, while grappling with
the schedules of many different team members. Losing a group member only compounded the problem,
because we had to reorganize some of the work distribution early on in the initial design phase. To address
this, our team worked hard to maintain continued lines of communication via e-mail checkups and twice-
weekly meetings. We felt that by staying organized and updating the entire group regularly on our progress,
we were able to stay informed about the status of the project and what our immediate next tasks were, as
well as reorganize tasks to compensate for the lost group member. Some invaluable tools used for group
management were Google Groups and Google Drive for group email and documentation organization,
and Github Organizations to manage our repositories of project code.

9.2 Optimizations & Improvements

Although all the initial project goals have been accomplished, there are always more improvements and new
features that could be implemented:

1. The visualization could be made more complex than simply displaying bars for each frequency.
Having a more interesting visualization would vastly improve the ”coolness” factor of our project.

2. It would be convenient if we changed the SD card format from our custom format to a standard FAT
filesystem. This would make it easier for the user to add songs to the SD card, as they could simply
copy audio files to the filesystem instead of having to use custom tools for converting the data and
writing it to the block device.

3. A few areas of our code still contain sub-optimal hardware implementations (for instance, long if-
else statements which may have been better written as state diagrams). Cleaning up our hardware
implementation for a more optimized use of logical elements is critical for future work with this
system.

9.3 Acknowledgements

The team would like to thank Professor Stephen Edwards and our TA Stephen Pratt for all their guidance
and support in our Embedded Systems journey. Additional thanks go out to Luis Pena, for being cool, man.

14

A Source Code

A.1 VHDL
kanto.vhd

—— DE2 top-level module that includes the simple audio component

—-— Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu

—-— From an original by Terasic Technology,
part of the DE2 system board CD supplied by Altera)

-— (DE2_TOP.v,

library IEEE;

Inc.

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity kanto is
port (
—— Clocks

CLOCK_27,
CLOCK_50,
EXT_CLOCK

in std_logic;

—-— Buttons and switches

KEY

in std_logic_vector (3
SW : in std_logic_vector (17

downto
downto

0);
0);

-— LED displays

HEX0, HEX1
out
out

out

LEDG
LEDR

, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7
std_logic_vector (6 downto 0);
std_logic_vector (7 downto 0);

std_logic_vector (17 downto 0);

-— RS-232 interface

UART_TXD
UART_RXD

—— IRDA 1in

- IRDA TXD

IRDA_RXD

—— SDRAM

DRAM_DQ
DRAM_ADDR
DRAM_LDQM,
DRAM_UDQM,
DRAM_WE_N,

out std_logic;
in std_logic;

terface

out std_logic;
in std_logic;

inout std_logic_vector (15 downto 0);
out std_logic_vector (1l downto 0);

DRAM_CAS_N,
DRAM_RAS_N,

DRAM_CS_N,
DRAM_BA_O,
DRAM_BA_1,
DRAM_CLK,
DRAM_CKE

-— FLASH

FL_DQ

out std_logic;

inout std_logic_vector (7 downto 0);

15

27 MHz
50 MHz
External Clock

Push buttons
DPDT switches

7-segment displays

Green LEDs
Red LEDs

UART transmitter
UART receiver

IRDA Transmitter
IRDA Receiver

Data Bus

Address Bus
Low-byte Data Mask
High-byte Data Mask
Write Enable

Column Address Strobe
Row Address Strobe
Chip Select

Bank Address 0

Bank Address 0
Clock

Clock Enable

Data bus

FL_ADDR
FL_WE_N,
FL_RST_N,
FL_OE_N,
FL_CE_N

-— SRAM

SRAM_DQ
SRAM_ADDR
SRAM_UB_N,
SRAM_LB_N,
SRAM_WE_N,
SRAM_CE_N,
SRAM_OE_N

out std_logic_vector (21 downto 0);

out std_logic;

inout
out

std_logic_vector (15 downto
std_logic_vector (17 downto

out std_logic;

—— USB controller

OTG_DATA
OTG_ADDR
OTG_CS_N,
OTG_RD_N,
OTG_WR_N,
OTG_RST_N,

inout std_logic_vector (15 downto 0);
out std_logic_vector (1l downto 0);

OTG_FSPEED,
Disable

OTG_LSPEED

out std_logic;

Disable

OTG_INTO,
OTG_INT1,
OTG_DREQO,
OTG_DREQ1

in std_logic;

OTG_DACKO_N,

OTG_DACKI1_N

-— 16 X 2

LCD_ON,
LCD_BLON,
LCD_RW,
Read
LCD_EN,
LCD_RS

out std_logic;

LCD Module

out std_logic;

= Data

LCD_DATA

inout std_logic_vector (7 downto 0);

—— SD card interface

SD_DAT,
SD_DAT3,
SD_CMD
SD_CLK

inout std_logic;
out std_logic;

—— USB JTAG link

DI,

TCK,

TCS in std_logic;

TDO out std_logic;

—-— I2C bus

I2C_SDAT inout std_logic; -- I2C Data
I2C_SCLK out std_logic; —-— I2C Clock
-- PS/2 port

PS2_DAT, —— Data

16

Address bus
Write Enable
Reset

Output Enable
Chip Enable

Data bus 16 Bits
Address bus 18 Bits
High-byte Data Mask
Low-byte Data Mask
Write Enable

Chip Enable

Output Enable

Data bus
Address

Chip Select
Write

Read

Reset

USB Full Speed, 0 = Enable, Z =

USB Low Speed, 0 = Enable, Z =
Intfaultupt
Intfaultupt
DMA Request
DMA Request 1

DMA Acknowledge 0
DMA Acknowledge 1

O = O

Power ON/OFF

Back Light ON/OFF
Read/Write Select, 0 = Write, 1 =
Enable

Command/Data Select, 0 = Command, 1

Data bus 8 bits

SD Card
SD Card
SD Card
SD Card

Data

Data 3
Command Signal
Clock

CPLD —>
CPLD —>
CPLD —->
FPGA —>

FPGA
FPGA
FPGA
CPLD

(data 1in)
(clk)
(CS)
(data out)

PS2_CLK in std_logic; —-— Clock

—-— VGA output

VGA_CLK, -— Clock
VGA_HS, —-— H_SYNC
VGA_VS, -— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC out std_logic; -— SYNC
VGA_R, —-— Red[9:0]
VGA_G, —— Green[9:0]
VGA_B : out std_logic_vector (9 downto 0); -— Blue[9:0]

- Ethernet Interface

ENET_DATA
ENET_CMD,
ENET_CS_N,
ENET_WR_N,
ENET_RD_N,
ENET_RST_N,
ENET_CLK
ENET_INT

out std_logic;
in std_logic;

—— Audio CODEC
AUD_ADCLRCK

AUD_ADCDAT
AUD_DACLRCK

inout std_logic;
in std_logic;
inout std_logic;

AUD_DACDAT out std_logic;
AUD_BCLK inout std_logic;
AUD_XCK out std_logic;

—— Video Decoder

TD_DATA
TD_HS,
TD_VS : in std_logic;
TD_RESET out std_logic;

—— General-purpose I/0

GPIO_O,
GPIO_1
)i

end kanto;

architecture datapath of kanto is
signal ab_play std_logic;
signal ab_audio_ok std_logic;
signal ab_swapped std_logic;
signal ab_force_swap std_logic;

signal fft_req
signal fft_ack
signal fft_addr
signal fft_readdata
signal fft_start std_logic;
signal fft_allow_write
signal fft_tdom_write
signal fft_fdom_addr
signal fft_fdom_data

std_logic;
std_logic;

std_logic;

signal fft_done std_logic;
signal main_clk std_logic;
signal aud_clk std_logic;
signal start std_logic;

inout std_logic_vector (15 downto 0);
—— Command/Data Select, 0 = Command, 1 = Data

in std_logic_vector (7 downto 0);

std_logic;

—— DATA bus 16Bits

—-— Chip Select
-— Write

—— Read

—— Reset

—-— Clock 25 MHz
—-— Intfaultupt

—-— ADC LR Clock

—— ADC Data

—— DAC LR Clock

—— DAC Data

—-— Bit-Stream Clock
—-— Chip Clock

—-— Data bus 8 bits
-— H_SYNC

-— V_SYNC

—— Reset

—-— GPIO Connection 0

inout std_logic_vector (35 downto 0) —-- GPIO Connection 1

std_logic_vector (17 downto 0);
std_logic_vector (15 downto 0);

unsigned (7 downto 0);
signed (31 downto 0);

17

—-— 1ins
signal
signal
sign
sign
sign
sign
sign
sign
sign
sign
sign

sign
sign
sign
sign

erted for SDC testing

sd_start : std_logic;

sd_ready : std_logic;
al sd_err : std_logic;
al sd_waiting : std_logic;
al sd_resp_debug : std_logic_vector (7 downto 0);
al sd_state_debug : std_logic_vector (7 downto 0);
al sd_ccs : std_logic;

al sd_writedata : signed (15 downto 0);

al sd_writeaddr : unsigned(7 downto 0);

al sd_blockaddr : unsigned (31 downto O0);

al sd_write_en : std_logic;

al clk25 : std_logic := '0’;

al viz_reset : std_logic;

al cond_err : std_logic;

al audio_track : std_logic_vector (7 downto 0);

—-— control and status signals for NIOS

sign
sign
sign
sign

sign
sign
sign
sign
sign

sign

comp

end
begin

al nios_addr : unsigned (31 downto 0);
al nios_readblock : std_logic;

al nios_play : std_logic;

al nios_done : std_logic;

al sdbuf_rden : std_logic;

al sdbuf_addr : std_logic_vector (7 downto 0);
al sdbuf_data : std_logic_vector (15 downto 0);

al vga_display_x : std_logic_vector (9 downto 0);

al vga_display_y : std_logic_vector (6 downto 0);
al vga_display_pixel_on : std_logic;
onent de2_i2c_av_config is
port (iclk : in std_logic;
irst_n : in std_logic;
i2c_sclk : out std_logic;
i2c_sdat : inout std_logic);
component;

0) <= sd_ready;

1) <= ab_audio_ok;
2) <= ab_play;

0) <= sd_err;

1) <= cond_err;

_play <= SW(1l7) and ab_audio_ok;

NIOS

entity work.nios_system port map (
clk_0 => main_clk,
reset_n => 1’7,

SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_LB_N_from_the_sram => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N,

unsigned(nios_addr_from_the_kanto_ctrl) => nios_addr,
nios_done_to_the_kanto_ctrl => nios_done,
nios_play_from_the_kanto_ctrl => nios_play,
nios_readblock_from_the_kanto_ctrl => nios_readblock,
sd_blockaddr_to_the_kanto_ctrl => std_logic_vector (sd_blockaddr),
audio_track_from_the_kanto_ctrl => audio_track,
keys_to_the_kanto_ctrl => not KEY,

sd_ccs_to_the_kanto_ctrl => sd_ccs,

18

sdbuf_addr_from_the_sdbuf => sdbuf_addr,
sdbuf_data_to_the_sdbuf => sdbuf_data,
sdbuf_rden_from_the_sdbuf => sdbuf_rden,

PS2_Clk_to_the_ps2 => PS2_CLK,
PS2_Data_to_the_ps2 => PS2_DAT,

display_x_to_the_vga => vga_display_x,
display_y_to_the_vga => vga_display_y,
display_pixel_on_from_the_vga => vga_display_pixel_on,
display_clk_to_the_vga => clk25

)i

PLL : entity work.audpll port map (
inclkO => CLOCK_50,
c0 => aud_clk,
cl => main_clk,
c2 => clk25
)i

AUD_XCK <= aud_clk;

I2C_CONF : de2_i2c_av_config port map (
iclk => main_clk,
irst_n => '"1",
i2c_sdat => i2c_sdat,
i2c_sclk => i2c_sclk
)i

CDTR : entity work.conductor port map (
clk => main_clk,
ab_audio_ok => ab_audio_ok,
ab_swapped => ab_swapped,
ab_force_swap => ab_force_swap,
sd_start => sd_start,
sd_ready => sd_ready,
sd_ccs => sd_ccs,
sd_addr => sd_blockaddr,
fft_start => fft_start,
fft_done => fft_done,
fft_allow_write => fft_allow_write,
cond_err => cond_err,
viz_reset => viz_reset,
nios_addr => nios_addr,
nios_readblock => nios_readblock,
nios_play => nios_play,
nios_done => nios_done

AB : entity work.audio_buffer port map (
clk => main_clk,
aud_clk => aud_clk,
play => ab_play,
swapped => ab_swapped,
force_swap => ab_force_swap,

aud_adclrck => aud_adclrck,
aud_adcdat => aud_adcdat,
aud_daclrck => aud_daclrck,
aud_dacdat => aud_dacdat,
aud_bclk => aud_bclk,

writeaddr => sd_writeaddr,

writedata => sd_writedata,
write_en => sd_write_en

19

SDC

)i

entity work.sd_controller port map (
clk50 => main_clk,

cs => SD_DATS3,
mosi => SD_CMD,
miso => SD_DAT,
sclk => SD_CILK,

start => sd_start,
ready => sd_ready,

err => sd_err,

waiting => sd_waiting,
ccs => sd_ccs,

resp_debug => sd_resp_debug,
state_debug => sd_state_debug,

blockaddr => sd_blockaddr,
writedata => sd_writedata,
writeaddr => sd_writeaddr,
write_en => sd_write_en

fft_tdom_write <= fft_allow _write and sd_write_en;

FET

)i

entity work.fft_controller port map (
clk => main_clk,
start => fft_start,
done => fft_done,

tdom_addr_in => sd_writeaddr,
tdom_data_in => sd_writedata,
tdom_write => fft_tdom_write,

fdom_addr_out => fft_fdom_addr,
fdom_data_out => fft_fdom_data

VISUALIZER : entity work.visualizer port map (
clk25 => clk25,

clk50 => main_clk,

reset_data => viz_reset,
fft_fdom_addr => fft_fdom_addr,
fft_fdom_data => fft_fdom_data,
VGA_CLK => VGA_CLK,
VGA_HS => VGA_HS,
VGA_VS => VGA_VS,
VGA_BLANK => VGA_BLANK,
VGA_SYNC => VGA_SYNC,
VGA_R => VGA_R,
VGA_G => VGA_G,
VGA_B => VGA_B,
ledrl? => LEDR(17),
ledrlé6 => LEDR(16),
ledrlb => LEDR(15),
sSwW_r => SW(2),
sSwW_g => SW(1l),
sw_Db => SW(0),

)i

vga_text_buffer_x => vga_display_x,
vga_text_buffer_y => vga_display_y,
vga_text_buffer pixel => vga_display_pixel_on

SDBUF_RAM : entity work.tdom_full_ram port map (

clock => main_clk,
data => std_logic_vector (sd_writedata),
wraddress => std_logic_vector (sd_writeaddr),

20

wren => fft_tdom_write,
rdaddress => sdbuf_addr,
g => sdbuf_data,

rden => sdbuf_rden

SS0 : entity work.sevenseg port map (
number => sd_resp_debug (3 downto 0),
display => HEXO

SS1 : entity work.sevenseg port map (
number => sd_resp_debug(7 downto 4),
display => HEX1

SS2 : entity work.sevenseg port map (
number => sd_state_debug (3 downto 0),
display => HEX2

SS3 : entity work.sevenseg port map (
number => sd_state_debug(7 downto 4),
display => HEX3

SS4 : entity work.sevenseg port map (
number => audio_track (3 downto 0),
display => HEX4

SS5 : entity work.sevenseg port map (
number => audio_track (7 downto 4),
display => HEX5

)i

HEX7 <= (others => "17);
HEX6 <= (others => "17);

LEDG (7 downto 3) <= (others => ’07);
LEDR (13 downto 2) <= (others => '07);

LCD_ON <= '17;
LCD_BLON <= ’17;
LCD_RW <= '17;
LCD_EN <= ’07’;
LCD_RS <= '0’;

——SD_DAT3 <= ’"1’;
--SD_CMD <= "17;
--SD_CLK <= "17;

UART_TXD <= '0';
DRAM_ADDR <= (others => '0');
DRAM_LDQM <= ’07;
DRAM_UDQM <= '0';
DRAM_WE_N <= ’1';
DRAM_CAS_N <= '17;
DRAM_RAS_N <= '1";
DRAM_CS_N <= "1';
DRAM_BA_0 <= '0';
DRAM BA_1 <= ’0’;
DRAM_CLK <= '0';
DRAM_CKE <= ’'0';

SRAM_DQ <= (others => "27);

SRAM _ADDR <= (others => "07);
SRAM UB N <= ’"17;

21

- SRAM LB N <= ’17;
-— SRAM CE_N <= ’17;
- SRAM WE_N <= ’17;
- SRAM _OE_N <= ’17;

FL_ADDR <= (others => ’0’);
FL_WE_N <= '1’;
FL_RST_N <= '0’;
FL_OE_N <= ’1’;
FL_ CE_N <= '1’;

OTG_ADDR <= (others => '0");
OTG_CS_N <= '1";

OTG_RD_N <= "1";

OTG_RD_N <= "1';

OTG_WR_N <= "1";

OTG_RST_N <= '1";

OTG_FSPEED <= ’'1";
OTG_LSPEED <= ’1’;
OTG_DACKO_N <= "1";
OTG_DACK1_N <= '1';

TDO <= ’07;

ENET_CMD <= ’0’;
ENET_CS_N <= ’1’;
ENET_WR_N <= '1’;
ENET_RD_N <= ’1’;
ENET_RST_N <= ’1’;
ENET_CLK <= ’'0’;

TD_RESET <= ’0’;

-— Set all bidirectional ports to tri-state

DRAM_DQ <= (others => "72’");
FL_DQ <= (others => '2");
OTG_DATA <= (others => "72");
LCD_DATA <= (others => '2");
SD_DAT <= 177;

ENET_DATA <= (others => "72");
GPIO_O <= (others => "27Z");
GPIO_1 <= (others => "72');

end datapath;

audio_buffer.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity audio_buffer is
port (clk : in std_logic;
play : in std_logic;
aud_clk : in std_logic;
swapped : out std_logic;
force_swap : in std_logic;

aud_adcdat : in std_logic;
aud_adclrck : inout std_logic;
aud_daclrck : inout std_logic;
aud_dacdat : out std_logic;
aud_bclk : inout std_logic;

writeaddr : in unsigned(7 downto O0);
writedata : in signed (15 downto 0);

22

write_en : in std_logic);
end audio_buffer;

architecture rtl of audio_buffer is

signal audio_addr : unsigned(8 downto 0) := (others => '0');
signal audio_data : signed (15 downto 0);
signal audio_request : std_logic;
signal last_audio_request : std_logic;
signal wlr : std_logic := '0’; —-- writes leading reads
signal wfulladdr : unsigned(8 downto 0);

begin

wfulladdr <= wlr & writeaddr;

AUDIO_RAM : entity work.tdom_double_ram port map (
clock => clk,
rdaddress => std_logic_vector (audio_addr),
signed(q) => audio_data,
rden => play,
wraddress => std_logic_vector (wfulladdr),
data => std_logic_vector (writedata),
wren => write_en

)i

process (clk)
variable counter_en : std_logic := ’'0’;
begin
if rising_edge(clk) then
swapped <= '0’;
last_audio_request <= audio_request;
—-— detect rising edge of audio_request

counter_en := audio_request and (not last_audio_request);
if counter_en = ’1’ then

—-— swap when audio address reaches 255 or 511

if audio_addr (7 downto 0) = x"ff" then

wlr <= audio_addr (8);
swapped <= '1’;

end if;
audio_addr <= audio_addr + 1;
elsif force_swap = '1’ then

audio_addr <= wlr & x"00";
wlr <= not wlr;
end if;
end if;
end process;

CODEC : entity work.de2_wm8731_audio port map (
clk => aud_clk,
reset_n => play,
test_mode => '0’,

aud_adclrck => aud_adclrck,
aud_adcdat => aud_adcdat,
aud_daclrck => aud_daclrck,
aud_dacdat => aud_dacdat,
aud_bclk => aud_bclk,

data => std_logic_vector (audio_data),
audio_request => audio_request

end rtl;

complex_mult.vhd

library ieee;

23

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity complex_mult is
port (clk : in std_logic;

realx : in signed (15 downto 0
imagx : in signed (15 downto O
realy : in signed (15 downto 0
imagy : in signed (15 downto 0);
realz : out signed(31 downto 0);
imagz : out signed(31 downto 0));

end complex_mult;

) ;
)i
).

’

architecture rtl of complex_mult is

signal xryr : signed (31 downto 0);

signal xryi : signed(31 downto 0);

signal xiyr : signed (31 downto 0);

signal xiyi : signed (31 downto 0);
begin

MXRYR : entity work.mult port map (
dataa => std_logic_vector (realx),
datab => std_logic_vector (realy),
signed(result) => xryr

)i

MXRYI : entity work.mult port map (
dataa => std_logic_vector (realx),
datab => std_logic_vector (imagy),
signed(result) => xryi

)i

MXIYR : entity work.mult port map (
dataa => std_logic_vector (imagx),
datab => std_logic_vector (realy),
signed(result) => xiyr

)i

MXIYI : entity work.mult port map (
dataa => std_logic_vector (imagx),
datab => std_logic_vector (imagy),
signed(result) => xiyi

)i

process (clk)
begin
if rising_edge (clk) then
realz <= xryr - xiyi;
imagz <= xryi + xiyr;
end if;
end process;
end rtl;

conductor.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity conductor is
port (clk : in std_logic;
ab_audio_ok : out std_logic;
ab_swapped : in std_logic;
ab_force_swap : out std_logic;
fft_allow_write : out std_logic;

sd_start : out std_logic;

sd_ready : in std_logic;

cond_err : out std_logic;

sd_addr : out unsigned (31 downto 0);
sd_ccs : in std_logic;

nios_addr : in unsigned (31 downto 0);
nios_readblock : in std_logic;
nios_play : in std_logic;

nios_done : out std_logic;

fft_start : out std_logic;

fft_done : in std_logic;

viz_reset : out std_logic);
end conductor;

architecture rtl of conductor is
type conductor_state is (initial, cpuctrl, trigger_sd, wait_sd,
resume, playing, fft_end, block_end);
signal state : conductor_state := initial;
signal fft_done_last : std_logic;
signal fft_counter : unsigned(l downto 0);
signal blockaddr : unsigned (31 downto O0);
begin
sd_addr <= blockaddr;

process (clk)
begin
if rising_edge(clk) then
fft_done_last <= fft_done;

case state is
when initial =>
if sd_ready = ’1’ then
—— once SD card is initialized,
—-— let the CPU take control
state <= cpuctrl;
fft_counter <= "11";
end if;
when cpuctrl =>
if nios_readblock = 1’ then
state <= trigger_sd;
blockaddr <= nios_addr;
elsif nios_play = "1’ then
state <= resume;

if sd_ccs = '1’ then
blockaddr <= blockaddr + 1;
else
blockaddr <= blockaddr + 512;
end if;
end if;

when trigger_sd =>
state <= wait_sd;
when wait_sd =>
if sd_ready = ’1’ then
—— once block is read, return control to CPU
state <= cpuctrl;
end if;
when resume =>
—— once swapped, we can allow audio to play
state <= playing;
fft_counter <= "00";
when playing =>
if nios_play = "0’ then
state <= initial;
elsif ab_swapped = 1’ then
-— if we’ve outrun the SD card
—— indicate that an error has occurred
if sd_ready = 0’ then

25

cond_err <= "1';
else
cond_err <= '0’;
end if;
fft_counter <= fft_counter + 1;
state <= block_end;

if sd_ccs = '1’ then
blockaddr <= blockaddr + 1;

else
blockaddr <= blockaddr + 512;
end if;
elsif fft_done_last = 0’ and fft_done = ’1’ then
state <= fft_end;
end if;

when fft_end =>
state <= playing;
when block_end =>
—— once the audio buffer has switched blocks
—-— tell SD card to read another block and,
-— on every fourth block, start FFT
state <= playing;
end case;
end if;
end process;

—-— can play audio once initialization is done

ab_audio_ok <= ’1’ when state = playing or state = block_end or
state = fft_end else ’"0’;
ab_force_swap <= ’1’ when state = resume else '0’;
sd_start <= ’1’ when state = trigger_sd or state = block_end or
state = resume else ’0’;

—-— only compute fft and refresh visualizer every fourth block
fft_start <= "1’ when state = block_end and fft_counter = 0 else '0’;
viz_reset <= 1’ when state = fft_end else ’"0’;

-— only let sd card write to FFT unit the block before FFT is computed

fft_allow_write <= 1’ when fft_counter = "11" else ’'0’;
nios_done <= ’1’ when state = cpuctrl else '0’;
end rtl;

de2_kanto_ctrl.vhd

library ieee;
use ieee.std_logic_1164.all;

entity de2_kanto_ctrl is
port (clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in std_logic_vector (2 downto 0);
readdata : out std_logic_vector (31 downto 0);
writedata : in std_logic_vector (31 downto 0);

nios_addr : out std_logic_vector (31 downto 0);
nios_readblock : out std_logic;

nios_play : out std_logic;

nios_done : in std_logic;

keys : in std_logic_vector (3 downto 0);
sd_ccs : in std_logic;

audio_track : out std_logic_vector (7 downto 0);

26

sd_blockaddr
end de2_kanto_ctrl;

in

block address
readblock
play

done
audio_track
keys

is
is
is
is
is
is

|
|
G W = o

architecture rtl of de2_kant

std_logic_vector (31

o_ctrl is

downto 0));

begin
process (clk)
begin
if rising_edge (clk) then
if reset_n = ’0’ then
nios_addr <= (others => "0');
nios_play <= ’'0’;
elsif chipselect = ’1’ then
case address 1is
when "000" =>
if read = 1’ then
readdata <= sd_blockaddr;
elsif write = ’1’ then
nios_addr <= writedata;
end if;
when "001" =>
if write = 1’ then
nios_readblock <= writedata (0);
end if;
when "010" =>
if write = 1’ then
nios_play <= writedata(0);
end if;
when "011" =>
if read = 1’ then
readdata <= (31 downto 1 => '0’) & nios_done;
end if;
when "100" =>
if write = 1’ then
audio_track <= writedata (7 downto 0);
end if;
when "101" =>
if read = "1’ then
readdata <= (31 downto 4 => '0’) & keys;
end if;
when "110" =>
if read = 1’ then
readdata <= (31 downto 1 => ’0’) & sd_ccs;
end if;
when others =>
if read = 1’ then
readdata <= (others => ’'0'");
end if;
end case;
end if;
end if;
end process;
end rtl;

de2_sd_buffer.vhd

library ieee;
use ieee.std_logic_1164.all;

entity de2_sd_buffer is

27

port (clk in std_logic;
reset_n in std_logic;
read in std_logic;

chipselect
address

in std_logic;
in std_logic_vector (7 downto 0);

readdata out std_logic_vector (15 downto 0);
sdbuf_rden out std_logic;

sdbuf_addr out std_logic_vector (7 downto 0);
sdbuf_data in std_logic_vector (15 downto 0));

end de2_sd_buffer;

architecture rtl of de2_sd_buffer is
begin

sdbuf_addr <= address;

readdata <= sdbuf_data;

sdbuf_rden <= read and chipselect and reset_n;
end rtl;

de2_sram_controller.vhd

library ieee;
use ieee.std_logic_1164.all;

entity de2_sram_controller is

port (
signal chipselect in std_logic;
signal write, read in std_logic;
signal address in std_logic_vector (17 downto 0);
signal readdata out std_logic_vector (15 downto 0);
signal writedata in std_logic_vector (15 downto 0);
signal byteenable in std_logic_vector (1 downto 0);
signal SRAM_DQ inout std_logic_vector (15 downto 0);
signal SRAM_ADDR out std_logic_vector (17 downto 0);
signal SRAM_UB_N, SRAM_LB_N out std_logic;
signal SRAM_WE_N, SRAM_CE_N out std_logic;
signal SRAM_OE_N out std_logic

)i
end de2_sram_controller;

architecture dp of de2_sram_controller is
begin
SRAM_DQ <= writedata when write

rqr

else (others => "72");
readdata <= SRAM_DQ;
SRAM_ADDR <= address;
SRAM_UB_N <= not byteenable(l);
SRAM_LB_N <= not byteenable (0);
SRAM_WE_N <= not write;
SRAM_CE_N <= not chipselect;
SRAM_OE_N <= not read;

end dp;

de2_vga_text_buffer.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_vga_text_buffer is
port (

vga_clk
vga_reset

in std_logic;
in std_logic;

28

vga_read : in std_logic;

vga_write : in std_logic;
vga_chipselect : in std_logic;
—— there are 80 x 5 = 400 characters

—-— 400 » 4 parts per character = 1600 parts
-— so 11 bit addressing
vga_address : in std_logic_vector (10 downto 0);

—— each character part is 32 bits
vga_readdata : out std_logic_vector (31 downto 0);
vga_writedata : in std_logic_vector (31 downto 0);

-— the following are accessed by a vga driver
-— give me a pixel coordinate (on a 640x80 plane)
-— and I’11 tell you if it’s on or off

—-— 1t’s 40 pixels high because we have 5 lines,
—— each 16 pixels high
display_pixel_on : out std_logic;
display_x : in std_logic_vector (9 downto 0);
display_y : in std_logic_vector (6 downto 0);
display_clk : in std_logic

)i

end de2_vga_text_buffer;

architecture rtl of de2_vga_text_buffer is

—-— there are 16 lines in each character font.
-— first line of ever character goes in one array, second line in
—-— another array, etc. —-- this lets us write and read in parallel

type addr_array is array (0 to 15) of std_logic_vector (8 downto 0);
type data_array is array (0 to 15) of std_logic_vector (7 downto 0);
type backwards_data_array is array (0 to 15) of std_logic_vector (0 to 7);

signal row_writedata : data_array;
signal row_write_en : std_logic_vector (0 to 15);
signal row_readdata : backwards_data_array;

signal x : integer range 0 to 399;

signal y : integer range 0 to 15;

signal inner_x : integer range 0 to 7;
begin

RAM_GENERATE : for i in 0 to 15 generate
RAM : entity work.vga_row_ram port map (
rdaddress => std_logic_vector (to_unsigned(x, 9)),
rdclock => display_clk,
g => row_readdata (i),

—— the top 9 bits tell us what character we are in
—— the bottom 2 bits tell us which rows of the character
-— we are in (since we have split each character into
—-— 4 groups of 4 rows)
wraddress => vga_address (10 downto 2),
—— so the bottom two bits tell us whether to enable the write
—-— for this row
wren => row_write_en(i),
wrclock => vga_clk,
data => row_writedata (i)
)
end generate RAM_GENERATE;

-— since we can only write one character part at a time, and

—-— each character is composed of four character parts, we look at the
—-— bottom two bits of the address to determine which lines this

29

—— character part belongs on

row_write_en(0) <= vga_write when vga_address(l downto 0) = "00" else '0’;
row_write_en(l) <= vga_write when vga_address (1l downto 0) = "00" else '0’;
row_write_en(2) <= vga_write when vga_address (1l downto 0) = "00" else '0’;
row_write_en(3) <= vga_write when vga_address(l downto 0) = "00" else ’'0’;
row_write_en(4) <= vga_write when vga_address (1l downto 0) = "01" else '0’;
row_write_en(5) <= vga_write when vga_address(l downto 0) = "01" else ’'0’;
row_write_en(6) <= vga_write when vga_address (1l downto 0) = "01" else '0’;
row_write_en(7) <= vga_write when vga_address(l downto 0) = "01l" else ’'0’;
row_write_en(8) <= vga_write when vga_address (1l downto 0) = "10" else '0’;
row_write_en(9) <= vga_write when vga_address(l downto 0) = "10" else '0’;
row_write_en(10) <= vga_write when vga_address(l downto 0) = "10" else '0’;
row_write_en(ll) <= vga_write when vga_address (1l downto 0) = "10" else '0’;
row_write_en(12) <= vga_write when vga_address(l downto 0) = "11" else ’0’;
row_write_en(13) <= vga_write when vga_address(l downto 0) = "11" else '0’;
row_write_en(14) <= vga_write when vga_address(l downto 0) = "11" else ’0’;
row_write_en(1l5) <= vga_write when vga_address(l downto 0) = "11" else '0’;

—-— we have 8 bit wide data ports, so we split it into 4 parallel

-— writes. we use the write enables to determine which actually

-—- get written to

MAPPING2_GENERATE : for i in 0 to 3 generate
row_writedata(i = 4 + 0) <= vga_writedata (31 downto 24);
row_writedata(i * 4 + 1) <= vga_writedata (23 downto 16);
row_writedata(i = 4 + 2) <= vga_writedata(l5 downto 8);
row_writedata(i » 4 + 3) <= vga_writedata (7 downto 0);

end generate MAPPING2_GENERATE;

—-— there are 16 lines in each font character, so we can
—— look at the bottom 4 bits of y to know which line we’re on
y <= to_integer (unsigned(display_y (3 downto 0)));

—— each character is 8 pixels wide, so to find which character

-- we’re in, ignore the bottom 3 bits. But there’s a catch - we

—— store all the rows end to end, so we have to add y » row_length
—-— where row_length = 80

-— we can implement this as y * 80 ==y << 6 + y << 4
x <= to_integer (unsigned(display_x (9 downto 3))
+ unsigned (unsigned(display_y (6 downto 4)) & "000000™)
+ unsigned(unsigned(display_y (6 downto 4)) & "0000"));
—— x <= 0;

-— we still need to find the x position within that particular char.
—-— this -2 is a horrible horrible hack and I have no idea why it works
—— probably related to timing

inner_x <= to_integer (unsigned(display_x (2 downto 0))) - 2;

display_pixel_on <= row_readdata(y) (inner_x);

end rtl;

de2_wm8731_audio.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_wm8731_audio is

port (
clk : in std_logic; —-— Audio CODEC Chip Clock AUD_XCK (11.29 MHz)
reset_n : in std_logic;
test_mode : in std_logic; —— Audio CODEC controller test mode
audio_request : out std_logic; —= Audio controller request new data
data : in std_logic_vector (15 downto 0);

30

—-— Audio interface signals

AUD_ADCLRCK : out std_logic; - Audio CODEC ADC LR Clock
AUD_ADCDAT : in std_logic; —= Audio CODEC ADC Data
AUD_DACLRCK : out std_logic; —— Audio CODEC DAC LR Clock
AUD_DACDAT : out std_logic; —= Audio CODEC DAC Data
AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock

)i
end de2_wm8731_audio;

architecture rtl of de2_wm8731_audio is

signal lrck : std_logic;
signal bclk : std_logic;

signal lrck_divider : unsigned(7 downto 0);
signal bclk_divider : unsigned(2 downto 0);

signal set_lrck : std_logic;
signal clr_bclk : std_logic;
signal lrck_lat : std_logic;

signal shift_out : std_logic_vector (15 downto 0);

signal sin_out : std_logic_vector (15 downto 0);
signal sin_counter : unsigned(5 downto 0);

begin

process (clk)

begin
if rising_edge (clk) then
if reset_n = "0’ then
lrck_divider <= (others => ’'1");
else
lrck_divider <= lrck_divider + 1;
end if;
end if;

end process;

process (clk)

begin
if rising_edge (clk) then
if reset_n = '0’ or set_lrck = ’1’ then
bclk_divider <= (others => "0’);
else
bclk_divider <= bclk_divider + 1;
end if;
end if;

end process;

set_lrck <= 1’ when lrck_divider = x"7F" or lrck_divider = x"FF" else '0’;
lrck <= not lrck_divider(7); -- high first, then low

—— BCLK divider
bclk <= bclk_divider(2);
clr_bclk <= "1’ when bclk_divider = "111" else ’'0’;

—-— Audio data shift output
process (clk)
begin
if rising_edge (clk) then
if reset_n = "0’ then
shift_out <= (others => ’'0');
elsif set_lrck = ’1" then
if test_mode = ’'1’ then
shift_out <= sin_out;
else

31

shift_out <= data;
end if;
elsif clr_bclk = ’1" then
shift_out <= shift_out (14 downto 0) & '0’;
end if;
end if;
end process;

—-— Audio outputs

AUD_ADCLRCK <= lrck;
AUD_DACLRCK <= lrck;
AUD_DACDAT <= shift_out (15);
AUD_BCLK <= bclk;

-— Self test with Sin wave

process (clk)
begin
if rising_edge (clk) then
if reset_n = "0’ then
sin_counter <= (others => "0’);
elsif lrck_divider = x"ff" then

if sin_counter = "101111" then
sin_counter <= "000000";
else
sin_counter <= sin_counter + 1;
end if;
end if;
end if;

end process;
audio_request <= '1’ when lrck_divider = x"fe" else '0';

with sin_counter select sin_out <=
X"0000" when "000000",
X"10b4" when "000001",
X"2120" when "000010",
X"30fb" when "000011",
X"3fff" when "000100",
X"4deb" when "000101",
X"5a81" when "000110",
X"658b" when "000111",
X"6ed9" when "001000",
X"7640" when "001001",
X"7ba2" when "001010",
X"7ee6" when "001011",
X"7f£ff" when "001100",
X"7ee6" when "001101",
X"7ba2" when "001110",
X"7640" when "001111",
X"6ed9" when "010000",
X"658pb" when "010001",
X"5a81" when "010010",
X"4deb" when "010011",
X"3fff" when "010100",
X"30fb" when "010101",
X"2120" when "010110",
X"10b4" when "010111",
X"0000" when "011000",
X"efdpb" when "011001",
X"deeO" when "011010",
X"cf05" when "011011",
X"c001" when "011100",
X"p215" when "011101",
X"a57e" when "011110",
X"9a74" when "011111",
X"9127" when "100000",

32

X"89bf" when "100001",
X"845d" when "100010",
X"8119" when "100011",
X"8000" when "100100",
X"8119" when "100101",
X"845d" when "100110",
X"89bf" when "100111",
X"9127" when "101000",
X"9a74" when "101001",
X"a57e" when "101010",
X"p215" when "101011",
X"c000" when "101100",
X"cf05" when "101101",
X"deeO" when "101110",
X"ef4b" when "101111",
X"0000" when others;

end architecture;

dft_stagel.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dft_stagel is

port (tdom_data in signed (15 downto 0);
tdom_addr out unsigned (3 downto 0);
clk in std_logic;

reset in std_logic;

rom_data in signed (31 downto 0);
rom_addr out unsigned (7 downto 0);
rom_real out signed (15 downto 0);
rom_imag : out signed(l5 downto 0);
tdom_real out signed (15 downto 0);
outk out unsigned (3 downto 0);
write out std_logic;

done out std_logic);

end dft_stagel;

architecture rtl of dft_stagel is

signal n unsigned (3 downto 0) := x"0";
signal k unsigned (3 downto 0) := x"0";
signal prevk unsigned (3 downto 0) := x"0";
signal done_intern std_logic := '0’;
signal write_intern std_logic := ’'0’";

begin
rom_addr <= k & nj;
tdom_addr <= n;

rom_real <= rom_data (31 downto 16);
rom_imag <= rom_data (15 downto 0);
tdom_real <= tdom_data;

process
begin
if rising_edge(clk) then
done <= done_intern;
write <= write_intern;
outk <= prevk;
prevk <= k;
end if;
end process;

(clk)

33

process (clk)

begin
if rising_edge (clk) then

if reset = 1’ then
k <= x"0";
n <= x"0";
write_intern <= '1';
done_intern <= '0';

elsif done_intern = "1’ then
write_intern <= '0’;
k <= XHOH;
n <= x"0";

elsif k = x"f" and n = x"f" then
write_intern <= '1';
done_intern <= '1';

elsif n = x"f" then
k <=k + x"1";
n <= XHOH;
write_intern <= "1’";

else
n <=n + x"1";
write_intern <= '0’;

end if;

end if;
end process;
end rtl;

dft_stage2.vhd

library ieee;
use ieee.std_logic_1164.all;
use ileee.numeric_std.all;

entity dft_stage2 is

port (rom_real : in signed (15 downto 0);
rom_imag : in signed (15 downto 0);
tdom_real : in signed (15 downto 0);

clk : std_logic;
reset : std_logic;

res_real : out signed (31 downto 0);
res_imag : out signed(31 downto 0);

ink : in unsigned(3 downto 0);
outk : out unsigned(3 downto 0);
inwrite : in std_logic;

outwrite : out std_logic;

indone : in std_logic;
outdone : out std_logic);
end dft_stage2;

architecture rtl of dft_stage2 is
signal mult_real : signed (31 downto 0);
signal mult_imag : signed (31 downto 0);
signal real_copy_bit : std_logic;
signal imag_copy_bit : std_logic;

begin
real_copy_bit <= mult_real (31);
imag_copy_bit <= mult_imag(31);

REALM : entity work.mult port map (
dataa => std_logic_vector (rom_real),

34

datab => std_logic_vector (tdom_real),
signed(result) => mult_real
)i

IMAGM : entity work.mult port map (
dataa => std_logic_vector (rom_imag),
datab => std_logic_vector (tdom_real),
signed(result) => mult_imag

)i

process (clk)

begin
if rising_edge (clk) then
if reset = 1’ then
outwrite <= "0’;
outdone <= ’0’;
outk <= x"0";
res_real <= (others => ’'0'");
res_imag <= (others => ’'0');
else
outwrite <= inwrite;
outdone <= indone;
outk <= ink;
res_real <= (3 downto 0 => real_copy_bit) & mult_real (31 downto 4);
res_imag <= (3 downto 0 => imag_copy_bit) & mult_imag (31l downto 4);
end if;
end if;
end process;
end rtl;

dft_stage3.vhd

library ieee;
use ieee.std_logic_1164.all;
use ileee.numeric_std.all;

entity dft_stage3 is
port (mult_real : in signed (31 downto 0);

mult_imag : in signed (31 downto 0);

clk : in std_logic;

reset : in std_logic;

indone : in std_logic;
inwrite : in std_logic;

k : in unsigned(3 downto 0);

outdone : out std_logic;
outwrite : out std_logic;

fdom_data : out signed (31 downto 0);
fdom_addr : out unsigned (3 downto 0));
end dft_stage3;

architecture rtl of dft_stage3 is

signal sum_real : signed(31 downto O0);

signal sum_imag : signed (31 downto 0);
begin

process (clk)

begin

if rising_edge (clk) then
outdone <= indone;
outwrite <= inwrite;

if reset = 1’ then
sum_real <= (others => "0’);
sum_imag <= (others => ’'07);

35

outdone <= ’'0’;
outwrite <= ’0’;
fdom_data <= (others => ’'0'");
fdom_addr <= (others => ’0');
elsif inwrite = 71’ then
fdom_addr <= k;
fdom_data <= sum_real (31 downto 16) & sum_imag (31 downto 16);
sum_real <= mult_real;
sum_imag <= mult_imag;
else
sum_real <= sum_real + mult_real;
sum_imag <= sum_imag + mult_imag;
end if;
end if;
end process;
end rtl;
dft_tb.vhd

library ieee;

use ileee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dft_tb is
end dft_tb;

architecture sim of dft_tb is

signal clk std_logic := "1";

signal reset std_logic;

signal done std_logic;

signal read_addr unsigned (3 downto 0);
signal read_data signed (31 downto 0);
signal rom_addr unsigned (7 downto 0);
signal rom_data : signed(31 downto 0);
signal tdom_addr : unsigned(3 downto 0);
signal tdom_data signed (15 downto 0);
signal fdom_addr unsigned (3 downto 0);
signal fdom_data : signed (31 downto 0);
signal fdom_write std_logic;

type rom_type is array (0 to 15)

constant tdom_rom

type expected_type is array (0 to 15)

constant expected
(x"01b70000",
x"0d2£1744",
x"04al0000",
x"0d2fe8bb",

begin

of signed (15 downto 0);

rom_type := (x"7fff", x"12a0", x"856d", x"c9b4d",
x"6ac5", x"555f", x"aeld", x"92c9",
x"3223", x"7bcf", x"fle6", x"801l6",
x"e8el", x"792f", x"3a64", x"97d0");

expected_type :=

of signed (31 downto 0);

x"018dfe55", x"00d8fbbc", x"fd5ff2cf",
x"061605ec", x"050e02ce", x"04b80136",
x"04b8fec9", x"050efd31", x"06l6fal3",
x"fd5£0d430", x"00d80443", x"018d0laa");

clk <= not clk after 10 ns;

process
begin

(clk)

if rising_edge (clk)

then

tdom_data <= tdom_rom(to_integer (tdom_addr)) ;

end if;
end process;
DFT entity work

clk => clk,

.dft_top port map (

reset => reset,

done => done,

36

tdom_data => tdom_data,
tdom_addr => tdom_addr,
rom_data => rom_data,
rom_addr => rom_addr,
fdom_data => fdom_data,
fdom_addr => fdom_addr,
fdom_write => fdom_write
)i

COEFF_ROM : entity work.dft_coeff_rom port map
clk => clk,
data_low => rom_data,
addr_low => rom_addr,
addr_high => (others => '0')
)i

FDOM_RAM : entity work.fft_fdom_ram port map (
clk => clk,
reset => reset,

writedata_low => fdom_data,
writeaddr_low => fdom_addr,
write_en_low => fdom_write,
readaddr_low => read_addr,
readdata_low => read_data,

writedata_high => (others => '0’),
writeaddr_high => (others => '0’),
write_en_high => ’0’,

readaddr_high => (others => ’0’),

stage => "00",
step => "000"
)i

process
variable i : integer range 0 to 16;
begin
reset <= "1’;
wait for 20 ns;
reset <= '0';
read_addr <= x"0";
wait for 5200 ns; —-—- 5220 ns
assert done = ’'1’;
i := 0;

while i < 16 loop
read_addr <= to_unsigned(i, 4);
wait for 40 ns;
assert read_data = expected(i);

i =1+ 1;
end loop; —-- 5860
reset <= "1’;
wait for 20 ns; —-- 5880
reset <= '0’;
wait for 20 ns; —-- 5900
assert done = ’'0’;
wait;
end process;

end sim;

dft_top.vhd

library ieee;
use ieee.std_logic_1164.all;

37

use ieee.numeric_std.all;

entity dft_top is

port (tdom_data : in signed (15 downto 0);
tdom_addr : out unsigned (3 downto 0);

clk : in std_logic;
reset : in std_logic;

rom_data : in signed (31 downto 0);

rom_addr : out unsigned(7 downto
fdom_data : out signed(31 downto

0);
0);

fdom_addr : out unsigned(3 downto 0);

fdom_write : out std_logic;
done : out std_logic);
end dft_top;

architecture rtl of dft_top is

0);

signal sl_rom_real : signed(1l5 downto 0);
signal sl_rom_imag : signed (15 downto 0);
signal sl_tdom_real : signed (15 downto
signal sl_k : unsigned(3 downto 0);
signal sl_write : std_logic;

signal sl_done : std_logic;

signal s2_k : unsigned(3 downto 0);

signal s2_write : std_logic;
signal s2_done : std_logic;
signal s2_res_real : signed (31 downto 0);
signal s2_res_imag : signed (31 downto 0);
signal s3_done : std_logic;
signal done_delay : unsigned(2 downto 0);
begin
—-— make sure done goes low right after reset
—— hold it there until first input propagates through pipeline
done <= '1’ when s3_done = ’1’ and done_delay = "111" else ’0’;

process (clk)

begin
if rising_edge (clk) then
if reset = '1’ then
done_delay <= "000";
elsif done_delay /= "111" then
done_delay <= done_delay +
end if;
end if;

end process;

S1 : entity work.dft_stagel port map (
tdom_data => tdom_data,
tdom_addr => tdom_addr,

clk => clk,
reset => reset,

rom_data => rom_data,
rom_addr => rom_addr,

rom_real => sl_rom_real,
rom_imag => sl_rom_imag,
tdom_real => sl_tdom_real,
outk => sl_k,
write => sl_write,
done => sl_done

)i

S2 : entity work.dft_stage2 port map (
rom_real => sl_rom_real,
rom_imag => sl_rom_imag,

v,

38

tdom_real => sl_tdom_real,

clk => clk,
reset => reset,

res_real => s2_res_real,
res_imag => s2_res_imag,

ink => sl_k,

outk => s2_k,

inwrite => sl_write,
outwrite => s2_write,
indone => sl_done,
outdone => s2_done

S3 : entity work.dft_stage3 port map (
mult_real => s2_res_real,
mult_imag => s2_res_imag,

clk => clk,
reset => reset,

indone => s2_done,
outdone => s3_done,
inwrite => s2_write,
outwrite => fdom_write,
k => s2_k,

fdom_addr => fdom_addr,
fdom_data => fdom_data

end rtl;

fft_controller.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fft_controller is
port (clk : in std_logic;
start : in std_logic;
done : out std_logic;

tdom_data_in : in signed (15 downto 0);
tdom_addr_in : in unsigned(7 downto 0);
tdom_write : in std_logic;

fdom_data_out : out signed (31 downto 0);
fdom_addr_out : in unsigned (7 downto 0));
end fft_controller;

architecture rtl of fft_controller is
type control_state_type is (idle, dftsetup, dftcomp,
recomb_setup, recomb_comp);
signal tdom_addr_even : unsigned(3 downto 0);
signal tdom_data_even : signed (15 downto 0);
signal tdom_addr_odd : unsigned(3 downto 0);
signal tdom_data_odd : signed (15 downto 0);
signal tdom_sel : unsigned(2 downto 0);
signal control_state : control_state_type;
signal last_state : control_state_type;
signal fdom_writedata_low : signed(31 downto 0);
signal fdom_readdata_low : signed (31 downto 0);
signal fdom_readaddr_low : unsigned(3 downto 0);

39

signal fdom_writeaddr_low : unsigned(3 downto 0);
signal fdom_write_en_low : std_logic;

signal fdom_writedata_high : signed (31 downto 0);
signal fdom_readdata_high : signed (31 downto O0);
signal fdom_readaddr_high : unsigned(3 downto 0);
signal fdom_writeaddr_high : unsigned (3 downto 0);
signal fdom_write_en_high : std_logic;

signal recomb_stage : unsigned(l downto 0);

signal comp_step : unsigned (2 downto 0);

signal fdom_step : unsigned(2 downto 0);

signal dft_rom_data_low : signed (31 downto 0);
signal dft_rom_addr_low : unsigned(7 downto 0);
signal dft_out_data_low : signed (31 downto 0);
signal dft_out_addr_low : unsigned(3 downto 0);
signal dft_out_write_low : std_logic;

signal dft_rom_data_high : signed(31 downto 0
signal dft_rom_addr_high : unsigned(7 downto
signal dft_out_data_high : signed (31 downto 0
signal dft_out_addr_high : unsigned(3 downto
signal dft_out_write_high : std_logic;

signal dft_done : std_logic_vector (l downto 0);

signal dft_reset : std_logic;

signal recomb_reset : std_logic;

—— This helps us map the DFT inputs to the DFT outputs

-- The mappings are (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)
—-— We do the even and odd mappings simultaneously

—— Thus, mapping (i) = 2 x fft_reorder (i) for even

-— and mapping (i) = 2 x fft_reorder (i) + 1 for odd

type fft_reorder_type is array (0 to 7) of unsigned(2 downto 0);

)
0
)
0

)i
) i

constant fft_reorder : fft_reorder_type := ("OOO", "100", "O010", "110",
"oo1", "101", "O11", "111");

signal rcromlé6_data : signed (31 downto 0);

signal rcrom32_data : signed (31 downto O0);

signal rcrom64_data : signed (31 downto 0);

signal rcroml28_data : signed(31 downto 0);
signal rcromcur_addr : unsigned (3 downto 0);
signal rcromcur_data : signed(31 downto 0);
signal rcrom32_addr : unsigned (4 downto 0);
signal rcrom64_addr : unsigned(5 downto 0);
signal rcroml28_addr : unsigned (6 downto 0);

signal recomb_writeaddr_low : unsigned(3 downto 0);
signal recomb_writedata_low : signed (31 downto 0);
signal recomb_readaddr_low : unsigned(3 downto 0);
signal recomb_readdata_low : signed (31 downto 0);
signal recomb_write_low : std_logic;

signal recomb_writeaddr_high : unsigned(3 downto 0);
signal recomb_writedata_high : signed (31 downto 0);
signal recomb_readaddr_high : unsigned(3 downto 0);
signal recomb_readdata_high : signed (31 downto 0);

signal recomb_write_high : std_logic;
signal recomb_done : std_logic;
begin

TDOM_RAM : entity work.fft_tdom_ram port map (
clk => clk,

readaddr_even => tdom_addr_even,
readdata_even => tdom_data_even,
readaddr_odd => tdom_addr_odd,
readdata_odd => tdom_data_odd,
readsel => tdom_sel,

writeaddr => tdom_addr_in,

writedata => tdom_data_in,
write_en => tdom_write

40

FDOM_RAM : entity work.fft_fdom_ram port map (
readdata_low => fdom_readdata_low,
readaddr_low => fdom_readaddr_low,
writedata_low => fdom_writedata_low,
writeaddr_low => fdom_writeaddr_low,
write_en_low => fdom_write_en_low,
readdata_high => fdom_readdata_high,
readaddr_high => fdom_readaddr_high,
writedata_high => fdom_writedata_high,
writeaddr_high => fdom_writeaddr_high,
write_en_high => fdom_write_en_high,
stage => recomb_stage,
step => fdom_step,
clk => clk

)i

COEFF_ROM : entity work.dft_lut port map (
clock => clk,
address_a => std_logic_vector (dft_rom_addr_low),
address_b => std_logic_vector (dft_rom_addr_high),
signed(g_a) => dft_rom_data_low,
signed(gq_b) => dft_rom_data_high

)i

tdom_sel <= fft_reorder (to_integer (comp_step));

DFT_EVEN : entity work.dft_top port map (
tdom_data => tdom_data_even,
tdom_addr => tdom_addr_even,

clk => clk,
reset => dft_reset,

rom_data => dft_rom_data_low,
rom_addr => dft_rom_addr_low,

fdom_data => dft_out_data_low,
fdom_addr => dft_out_addr_low,
fdom_write => dft_out_write_low,
done => dft_done (0)

)i

DFT_ODD : entity work.dft_top port map (
tdom_data => tdom_data_odd,
tdom_addr => tdom_addr_odd,

clk => clk,
reset => dft_reset,

rom_data => dft_rom_data_high,
rom_addr => dft_rom_addr_high,

fdom_data => dft_out_data_high,
fdom_addr => dft_out_addr_high,
fdom_write => dft_out_write_high,
done => dft_done (1)

)i

-— Multiplex between dft and recomb units for the fdom ram

with control_state select fdom_writedata_low <=
dft_out_data_low when dftsetup | dftcomp,
recomb_writedata_low when recomb_setup | recomb_comp,
(others => "0’) when others;

with control_state select fdom writeaddr_low <=
dft_out_addr_low when dftsetup | dftcomp,
recomb_writeaddr_low when recomb_setup | recomb_comp,
(others => ’0’) when others;

41

with control_state select fdom_write_en_low <=
dft_out_write_low when dftsetup | dftcomp,
recomb_write_low when recomb_setup | recomb_comp,
0" when others;

with control_state select fdom_readaddr_low <=
recomb_readaddr_low when recomb_setup | recomb_comp,
fdom_addr_out (3 downto 0) when idle,
(others => "0’) when others;

recomb_readdata_low <= fdom_readdata_low;

with control_state select fdom_writedata_high <=
dft_out_data_high when dftsetup | dftcomp,
recomb_writedata_high when recomb_setup | recomb_comp,
(others => "0’) when others;

with control_state select fdom_writeaddr_high <=
dft_out_addr_high when dftsetup | dftcomp,
recomb_writeaddr_high when recomb_setup | recomb_comp,
(others => "0’) when others;

with control_state select fdom_write_en_high <=
dft_out_write_high when dftsetup | dftcomp,
recomb_write_high when recomb_setup | recomb_comp,
"0’ when others;

with control_state select fdom_readaddr_high <=
recomb_readaddr_high when recomb_setup | recomb_comp,
fdom_addr_out (3 downto 0) when idle,
(others => ’0’) when others;

recomb_readdata_high <= fdom_readdata_high;

—— highest bit of fdom address determines which half of the RAM
—-— the data is pulled out of
fdom_data_out <= fdom_readdata_high when fdom_addr_out(7) = "1’ else
fdom_readdata_low;
-— when idle, allow the fdom read address to select the step
-— when computing, let comp_step determine it
fdom_step <= fdom_addr_out (6 downto 4) when
control_state = idle else comp_step;

RECOMB : entity work.fft_recomb port map (
clk => clk,
reset => recomb_reset,
rom_addr => rcromcur_addr,
rom_data => rcromcur_data,
low_readaddr => recomb_readaddr_low,
low_writeaddr => recomb_writeaddr_low,
low_readdata => recomb_readdata_low,
low_writedata => recomb_writedata_low,
low_write_en => recomb_write_low,
high_readaddr => recomb_readaddr_high,
high_writeaddr => recomb_writeaddr_high,
high_readdata => recomb_readdata_high,
high_writedata => recomb_writedata_high,
high_write_en => recomb_write_high,
done => recomb_done

)i

—-— select which recomb rom to use based on recomb_stage
with recomb_stage select rcromcur_data <=

rcroml6_data when "00",

rcrom32_data when "01",

rcrom64_data when "10",

rcroml28_data when others;

42

RCR16 : entity work.rcroml6 port map (
address => std_logic_vector (rcromcur_addr),
signed(q) => rcromlé6_data,
clock => clk

)i

rcrom32_addr <= comp_step(0) & rcromcur_addr;

RCR32 : entity work.rcrom32 port map (
address => std_logic_vector (rcrom32_addr),
signed(q) => rcrom32_data,
clock => clk

)i

rcrom64_addr <= comp_step(l downto 0) & rcromcur_addr;
RCR64 : entity work.rcrom64 port map (
address => std_logic_vector (rcromé64_addr),
signed(q) => rcromé64_data,
clock => clk
)i

rcroml28_addr <= comp_step & rcromcur_addr;

RCR128 : entity work.rcroml28 port map (
address => std_logic_vector (rcroml28_addr),
signed(q) => rcroml28_data,
clock => clk

)i

done <= ’1’ when control_state = idle else ’'0’;
dft_reset <= ’1’ when control_state = dftsetup else '0’;
recomb_reset <= "1’ when control_state = recomb_setup else '0’;

process (clk)
begin
if rising_edge (clk) then
last_state <= control_state;
case control_state is
when idle =>
-— reads in the idle state must be done with
—— recomb_stage at "11" so that low and high
—— split the ram into two contiguous chunks
recomb_stage <= "11";
comp_step <= "111";
if start = '1’ then
control_state <= dftsetup;
end if;
when dftsetup =>
-— same thing goes for dft
-— recomb_stage set to "11"
recomb_stage <= "11";
-— first time in dftcomp will see comp_step = 0
comp_step <= comp_step + 1;
control_state <= dftcomp;
when dftcomp =>

if dft_done = "11" then
if comp_step = "111" then
control_state <= recomb_setup;
else
control_state <= dftsetup;
end if;
end if;

when recomb_setup =>
—— go through steps and then through stages
if comp_step = "111" then
recompb_stage <= recomb_stage + 1;
comp_step <= "000";
else
comp_step <= comp_step + 1;

43

end if;
control_state <= recomb_comp;
when recomb_comp =>

if recomb_done = "1’ then
if comp_step = "111" and recomb_stage = "11" then
control_state <= idle;
else
control_state <= recomb_setup;
end if;
end if;
end case;
end if;
end process;
end rtl;

fft_tb.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fft_tb is
end fft_tb;

architecture sim of fft_tb is
signal tdom_addr : unsigned(7 downto 0);
signal tdom_data : signed (15 downto 0);
signal tdom_write : std_logic;
signal fdom_addr : unsigned(7 downto 0);
signal fdom_data : signed (31 downto 0);

signal clk : std_logic := "1';

signal start : std_logic;

signal done : std_logic;

type rom_type is array (0 to 255) of signed (15 downto 0);

constant rom_data : rom_type := (x"T7fff", x"7eb2", x"7adb", x"747b", x"6bc4d", x"60de", x"

5401", x"4571", x"3579", x"246b", x"12a0", x"0074", x"eed7", x"dc75", x"cb5c", x"bb53"
x"acaf", x"9fbb", x"94bb", x"8be7", x"856d", x"8le6f", x"8002", x"81l2d", x"84ea", x"8
b25", x"93bf", x"9%e8a", x"ab4f", x"bI9cb", x"c9b4d", x"dabe", x"ec79", x"fea2", x"10d1",
x"22aa", x"33cf", x"43e7", x"529f", x"5faa", x"6ac5", x"73b6", x"7ad4f", x"Te6d", x"7
ffb", x"7efl", x"7b55", x"7539", x"6cbd", x"620c", x"555f", x"46f7", x"371f", x"2629",
x"1l46d", x"0247", x"f0l6", x"de37", x"cdO07", x"bcdf", x"aeld", x"alOfl", x"95bc", x"8
cae", x"85f7", x"81b8", x"8009", x"80fl", x"846d", x"8aba", x"92c9", x"9d5e", x"a9f3",
x"b847", x"c80e", x"d8f8", x"eaad", x"fcdO", x"0f02", x"20e8", x"3223", x"425a", x"
5138", x"5e72", x"69cl", x"72ec", x"79c2", x"7e2l1", x"T7ffl", x"7f2a", x"7bcf", x"75f2"
x"6db0", x"6336", x"56b9", x"487a", x"38c3", x"27e6", x"1639", x"04la", x"fleo", x"
dffa", x"ceb4", x"bebe", x"af7d", x"a22d", x"96c3", x"8d7c", x"8687", x"8208", x"80l6"
x"80bc", x"83f7", x"89b5", x"91d8", x"9c37", x"a89c", x"bé6co", x"co66c", x"d73d", x"
e8el", x"fafd", x"0d32", x"1£f24", x"3074", x"40c9", x"4fcd", x"5d34", x"68b7", x"721b"
x"792f", x"7dce", x"7fel", x"7f5c", x"7c42", x"76ad", x"6e9%e", x"645a", x"580e", x"
49f9", x"3a64", x"29a0", x"1805", x"05ec", x"f3b6", x"elbf", x"d064", x"c001l", x"blea"
x"a36d", x"97d0", x"8e50", x"871d", x"825e", x"802a", x"808e", x"8387", x"8905", x"
90ed", x"9bl5", x"a749", x"b549", x"cdcd", x"d583", x"e7le", x"f92b", x"0b6l", x"1ld5e"
x"2ec3", x"3f34", x"4e5e", x"bbf2", x"67a8", x"7145", x"7895", x"7d75", x"7fco", x"7
£87", x"7caf", x"7750", x"6f86", x"657a", x"595f", x"4b74", x"3c02", x"2b59", x"19cf",
x"07be", x"£587", x"e385", x"d217", x"cl97", x"b25b", x"a4dbl", x"98e2", x"8f29", x"87
ba", x"82ba", x"8045", x"8066", x"831d", x"885c", x"9008", x"99f9", x"a5fb", x"b3d0o",
x"c330", x"d3cc", x"eb4d", x"£759", x"0990", x"1b97", x"2d0f", x"3d9d", x"4ceb", x"5
aaa", x"6693", x"7068", x"77fe", x"7d15", x"7fab", x"7fab", x"7d15", x"77fe", x"7068",
x"6693", x"5aaa", x"4ceb", x"3d9d", x"2d0f", x"1b97", x"0990", x"f759", x"e54d", x"
d3cc", x"c330", x"b3dO0", x"a5fb", x"99f9", x"9008", x"885c", x"831d", x"8066", x"8045"
x"82ba", x"87ba", x"8f29", x"98e2", x"adbl", x"b25b", x"cl97", x"d217", x"e385", x"
£587", x"07be", x"19cf");
type expected_type is array (0 to 255) of signed (31 downto 0);
constant expected : expected_type := (x"ffac0000", x"ffaal0000", x"ffa20002", x"££920001",
x"ff62f£ff9", x"fe9cffda", x"065900df", x"01470022", x"00f60000", x"0llbffc4d", x"0444
fdae", x"f£7200bl1", x"f££10053", x"00120031", x"0020001lc", x"0026000c", x"00260000", x

44

begin
FFT

)i

clk

"O024f££1", x"0020ffe5", x"0018ffd5", x"0009ffbd", x"ffd5ff75", x"01bl0lce", x"0074002
e", x"00630000", x"0078ffd4", x"0le0fe94", x"ffb9o005e", x"fff10028", x"ffff0016", x"
0005000b", x"00070005", x"00090000", x"0009fff9", x"000G6fff3", x"0002ffea", x"fff7ffdb
", x"FEA2ffb1", x"01380116", x"004a00le", x"003a0000", x"003fffdf", x"00c6feeld", x"
FEF6004£", x"000b0023", x"00100015", x"0013000c", x"00150004", x"00140000", x"O0Ll4fff9
", x"0012f££2", x"000fffea", x"0007ffda", x"ffeaffb0", x"010a0111", x"004e00lc", x"
00450000", x"005affe6", x"0191ff30", x"ffb70034", x"ffe70015", x"fff3000b", x"fff80006
", x"£ffa0003", x"fffc0000", x"fffbfffd", x"ffFOFffO", x"fEfSEff4", x"ffebffeb", x"
ffcOffct™, x"015700b9", x"004b0015", x"00380000", x"003dffe7", x"00c9ff22", x"ff£1003d
", x"0007001b", x"000c0010", x"000e0009", x"000£0004", x"000e0000", x"000efffc", x"000
dff£7", x"000cfffl", x"0009ffe8", x"fffdffcc", x"006800b1", x"00220012", x"001£0000",
x"0028ffed", x"009bff59", x"ffec002d", x"fffe0014", x"0003000b", x"00050006", x"
00060002", x"00060000", x"0006fffc", x"0005Ef£9", x"0003fff3", x"fffdffe9", x"ffelffcf
", x"00ba00b4", x"002£0014", x"00270000", x"002cffe9", x"009Lff2f", x"fff7003c", x"
0008001c", x"000c0011", x"0010000a", x"00110005", x"00120000", x"00L2fff9", x"0010fff2
", x"000dffea", x"0003ffdb", x"ffdcffb2", x"0159010b", x"0060001b", x"00560000", x"
0072ffea", x"0220ff53", x"ff910028", x"ffd4000f", x"ffed0006", x"ffea0003", x"ffed0001
", x"ffee0000", x"ffeefffe", x"ffeafffc", x"ffedfffo", x"ffd4Afffl", x"ff92£fd8", x"
022100ab", x"00730016", x"00560000", x"0061ffed", x"0l5afefd", x"ffdc004d", x"00030023
", x"000c0015", x"0010000c", x"00120006", x"00120000", x"0012fffb", x"00L0ff£5", x"000
effef", x"0009ffe3", x"fff7ffc3", x"009300d0", x"002c0016", x"00270000", x"0030ffec",
x"00baffdc", x"ffe90030", x"fffd0016", x"0003000c", x"00050007", x"00070003", x"
00070000", x"0007fffd", x"0006fff9™, x"0004fffd", x"ffffffeb", x"ffecffd3", x"009c00a6
", x"00280012", x"00200000", x"0023ffed", x"0068ffde", x"fffe0033", x"00090017", x"000
cO00£", x"000£0008", x"000£0004", x"00100000", x"0010fffb", x"000efff6", x"000dfff0",
x"0007ffed", x"fff2ffc2", x"00cal0dd", x"003e0018", x"00390000", x"004cffea", x"0159
£E46", x"£fcl0030", x"ffeb0015", x"fff5000b", x"fffa0006", x"fffc0003", x"fffc0000", x
"EFFBFEEAT, x"EEfOFFfOM, x"EEffSEFFA", x"ffe9ffeb", x"ffb8ffcb", x"019300cf", x"005
b0019", x"00460000", x"004fffe3", x"0l0bfeee", x"ffeb004f", x"00090025", x"00100016",
x"0014000d", x"00150006", x"00160000", x"00L6fffa", x"00L15fff3", x"0012ffeb", x"000
dffdc", x"fff7ffb0", x"00c8011f", x"00400020", x"003b0000", x"004cffel", x"0139feed",
x"££d4004d", x"f££80024", x"00030015", x"0007000c", x"000a0006", x"000a0000", x"000
afffa", x"0007fff3", x"0001ffe9", x"fff3ffd7", x"ffbbffal", x"01e2016a", x"0079002a",
x"00650000", x"0078ffdl", x"01b3fe31", x"ffd7008a", x"000a0042", x"001a002b", x"
0022001a", x"0027000d", x"00280000", x"0028fff3", x"0022ffe2", x"0015ffce", x"fff3ffab
", x"EE74ff4e", x"04470251", x"011e003b", x"00£80000", x"0l4affdc", x"065cEf1f", x"
£e9£0024", x"ff640005", x"ffodfffe", x"ffabfffd", x"ffadffff");

entity work.fft_controller port map (
tdom_data_in => tdom_data,
tdom_addr_in => tdom_addr,
tdom_write => tdom_write,

fdom_data_out => fdom_data,
fdom_addr_out => fdom_addr,

clk => clk,

start => start,
done => done

<= not clk after 10 ns;

process

variable i : integer range 0 to 256;

begin

tdom_write <= "1";
start <= '0’;
i := 0;

while i < 256 loop
tdom_data <= rom_data (i) ;
tdom_addr <= to_unsigned(i, 8);
wait for 20 ns;
i :=1 + 1;

end loop; —- 5120 ns

tdom_write <= '0’;

45

start <= "1’;
fdom_addr <= x"00";
wait for 20 ns; -- 5140 ns
start <= '0’";
wait for 55860 ns; 61000 ns
assert done = ’'1’";
i = 0;
while i < 256 loop
fdom_addr <= to_unsigned(i, 8);
wait for 40 ns;
assert fdom_data = expected(i);
i :=1i 4+ 1;
end loop; —-- 71240 ns
wait;
end process;
end sim;
fft_fdom_ram.vhd
library ieee;
use ileee.std_logic_1164.all;
use ieee.numeric_std.all;
entity fft_fdom_ram is
port (clk std_logic;
writedata_low in signed (31 downto 0);

writeaddr_low
readdata_low
readaddr_low
write_en_low
writedata_high
writeaddr_high
readdata_high
readaddr_high
write_en_high
stage
step
end fft_fdom_ram;

in uns
in uns

in unsigned (3 downto 0);
out signed (31 downto 0);
in unsigned (3 downto 0);
in std_logic;

in signed (31 downto 0);
in unsigned (3 downto 0);

out signed (31 downto 0);

in unsigned (3 downto 0);

in std_logic;

igned (1l downto 0);
igned (2 downto 0));

architecture rtl of fft_fdom_ram is
type data_array is array (0 to 15)
type addr_array is array (0 to 15)

of signed (31 downto 0);
of unsigned (3 downto 0);

signal row_writedata
signal row_writeaddr
signal row_write_en
signal row_readdata
signal row_readaddr
signal lowsel unsi
signal highsel uns
begin

WRITEGEN for i in

row_writedata (1)

row_writeaddr (i)

row_write_en (i)

row_readaddr (1)

data_array;
addr_array;
std_logic_vector (0 to 15);
data_array;
addr_array;

gned (3 downto 0);

igned (3 downto 0);

0 to 15 generate

<= writedata_low when lowsel = 1 else
writedata_high when highsel = i else
(others => "0");
<= writeaddr_low when lowsel = i else
writeaddr_high when highsel = i else
(others => '0");
<= write_en_low when lowsel = i else
write_en_high when highsel = i else ’0’;
<= readaddr_low when lowsel = i else
readaddr_high when highsel = i else

(others => '0");

46

end generate WRITEGEN;

readdata_low <= row_readdata (to_integer (lowsel));
readdata_high <= row_readdata (to_integer (highsel));

with stage select lowsel <=
-—- every even indexed row
step & 0’ when "0O0",
—-— top two rows of every group of four
step(2 downto 1) & 0’ & step(0) when "O01",
—— top four rows of every group of eight
step(2) & "0’ & step(l downto 0) when "10",
—-— top 8 rows
"0’ & step when "11",
"0000" when others;

with stage select highsel <=
—— every odd indexed row
step & ’1’ when "0O0",
—— bottom two rows of every group of four
step(2 downto 1) & ’1’ & step(0) when "O1",
—-— bottom four rows of every group of eight
step(2) & "1’ & step(l downto 0) when "10",
—-— bottom eight rows
’1l’" & step when "11",
"1111" when others;

LUMAP : for i in 0 to 15 generate
ROW : entity work.fdom_row port map (
clock => clk,
data => std_logic_vector (row_writedata(i)),
wraddress => std_logic_vector (row_writeaddr(i)),
wren => row_write_en (i),
signed(q) => row_readdata (i),
rdaddress => std_logic_vector (row_readaddr (1))
)i
end generate LUMAP;
end rtl;

fft_recomb.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fft_recomb is
port (clk : in std_logic;

reset : in std_logic;

done : out std_logic;

rom_addr : out unsigned (3 downto 0);
rom_data : in signed (31 downto 0);
low_readaddr : out unsigned (3 downto 0);
low_writeaddr : out unsigned(3 downto 0);
low_readdata : in signed (31 downto O0);

low_writedata : out signed (31 downto 0);
low_write_en : out std_logic;
high_readaddr : out unsigned(3 downto 0);
high_writeaddr : out unsigned(3 downto 0);
high_readdata : in signed (31 downto 0);
high_writedata : out signed(31 downto 0);
high_write_en : out std_logic);

end fft_recomb;

architecture rtl of fft_recomb is

signal rom_real : signed (15 downto O0);
signal rom_imag : signed (15 downto 0);

47

signal even_real_sl2 : signed (15 downto 0);
signal even_imag_sl2 : signed (15 downto 0);
signal odd_real_sl12 : signed(1l5 downto O0);
signal odd_imag_sl12 : signed (15 downto O0);
signal even_real_s23 : signed (15 downto 0);
signal even_imag_s23 : signed (15 downto 0);
signal odd_real_s23 : signed (15 downto 0);
signal odd_imag_s23 : signed (15 downto O0);
signal addr_sl2 : unsigned(3 downto 0);
signal addr_s23 : unsigned(3 downto 0);
signal write_sl12 : std_logic;
signal write_s23 : std_logic;
signal pl_done : std_logic;
signal done_delay : unsigned(2 downto 0);
begin
S1 : entity work.recomb_stagel port map (
clk => clk,
reset => reset,

rom_addr => rom_addr,
rom_data => rom_data,

low_readaddr => low_readaddr,
low_readdata => low_readdata,

high_readaddr => high_readaddr,
high_readdata => high_readdata,

addrout => addr_sl12,
writeout => write_sl2,

even_real => even_real_sl2,
even_imag => even_imag_sl2,
odd_real => odd_real_sl2,
odd_imag => odd_imag_sl2,
rom_real => rom_real,
rom_imag => rom_imag

S2 : entity work.recomb_stage2 port map (
clk => clk,

rom_real => rom_real,
rom_imag => rom_imag,

even_real_in => even_real_sl2,
even_imag_in => even_imag_sl2,

odd_real_in => odd_real_sl2,
odd_imag_in => odd_imag_sl2,

even_real_out => even_real_s23,
even_imag_out => even_imag_s23,

odd_real_out => odd_real_s23,
odd_imag_out => odd_imag_s23,

writein => write_sl12,
writeout => write_s23,
addrin => addr_sl2,
addrout => addr_s23

S3 : entity work.recomb_stage3 port map (
clk => clk,
done => pl_done,

even_real => even_real_s23,

48

even_imag => even_imag_s23,
odd_real => odd_real_s23,
odd_imag => odd_imag_s23,

addrin => addr_s23,
writein => write_s23,

low_writeaddr => low_writeaddr,
low_writedata => low_writedata,
low_write_en => low_write_en,

high_writeaddr => high_writeaddr,
high_writedata => high_writedata,
high_write_en => high_write_en
)i
—-— make sure done goes low right after reset
—— hold it there until first input propagates through pipeline
done <= '1’ when pl_done = ’'1’ and done_delay = "111" else ’0’;

process (clk)

begin
if rising_edge (clk) then
if reset = '1’ then
done_delay <= "000";
elsif done_delay /= "111" then
done_delay <= done_delay + "1";
end if;
end if;
end process;
end rtl;

fft_tdom_ram.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fft_tdom_ram is
port (clk : std_logic;

readaddr_even : in unsigned (3 downto 0);
readaddr_odd : in unsigned (3 downto 0);
readdata_even : out signed (15 downto 0);
readdata_odd : out signed (15 downto 0);
readsel : in unsigned(2 downto 0);
writeaddr : in unsigned(7 downto 0);
writedata : in signed (15 downto 0);
write_en : in std_logic);

end fft_tdom_ram;

architecture rtl of fft_tdom_ram is

signal even_write_en : std_logic;

signal odd_write_en : std_logic;

signal short_waddr : unsigned (6 downto 0);

signal even_raddr : unsigned(6 downto 0);

signal odd_raddr : unsigned (6 downto 0);
begin

even_write_en <= write_en and (not writeaddr (0));
odd_write_en <= write_en and writeaddr (0);

short_waddr <= writeaddr (7 downto 1);

even_raddr <= readaddr_even & readsel;
odd_raddr <= readaddr_odd & readsel;

49

EVEN_RAM : entity work.tdom_half_ ram port map (
clock => clk,
data => std_logic_vector (writedata),
rdaddress => std_logic_vector (even_raddr),
wraddress => std_logic_vector (short_waddr),
wren => even_write_en,
signed(q) => readdata_even

ODD_RAM : entity work.tdom_half_ram port map (
clock => clk,
data => std_logic_vector (writedata),
rdaddress => std_logic_vector (odd_raddr),
wraddress => std_logic_vector (short_waddr),
wren => odd_write_en,
signed(q) => readdata_odd

end rtl;

recomb _stagel.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity recomb_stagel is
port (clk : in std_logic;

reset : in std_logic;
rom_addr : out unsigned (3 downto 0);
rom_data : in signed (31 downto 0);
low_readaddr : out unsigned (3 downto 0);
low_readdata : in signed (31 downto 0);
high_readaddr : out unsigned(3 downto O0);
high_readdata : in signed (31 downto 0);

addrout : out unsigned(3 downto 0);
writeout : out std_logic;

rom_real : out signed (15 downto 0);
rom_imag : out signed (15 downto 0);
even_real : out signed (15 downto 0);

even_imag : out signed (15 downto 0);

odd_real : out signed (15 downto 0);

odd_imag : out signed (15 downto 0));
end recomb_stagel;

architecture rtl of recomb_stagel is

signal running : std_logic := ’0’;
signal addr : unsigned(3 downto 0);
begin

rom_addr <= addr;
low_readaddr <= addr;
high_readaddr <= addr;

rom_real <= rom_data (31 downto 16);
rom_imag <= rom_data (15 downto 0);
even_real <= low_readdata (31 downto 16);
even_imag <= low_readdata (15 downto 0);
odd_real <= high_readdata (31 downto 16);
odd_imag <= high_readdata (15 downto 0);

process (clk)
begin
if rising_edge (clk) then
writeout <= running;
addrout <= addr;

if reset = 1’ then

50

running <= "17’;
addr <= x"0";

elsif addr = x"f" then
running <= '0’;

else
addr <= addr + "1";

end if;

end if;
end process;
end rtl;

recomb_stage2.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity recomb_stage2 is
port (clk : in std_logic;

rom_real : in signed (15 downto 0);
rom_imag : in signed (15 downto 0);
even_real_in : in signed (15 downto 0);
even_imag_in : in signed (15 downto 0);
odd_real_in : in signed (15 downto 0);
odd_imag_in : in signed (15 downto 0);
even_real_out : out signed (15 downto 0);
even_imag_out : out signed (15 downto 0);
odd_real_out : out signed(1l5 downto 0);
odd_imag_out : out signed(1l5 downto 0);

writein : in std_logic;

writeout : out std_logic;

addrin : in unsigned(3 downto 0);
addrout : out unsigned (3 downto 0));

end recomb_stage?2;

architecture rtl of recomb_stage2 is
signal odd_real _mid : signed (31 downto O0);
signal odd_imag_mid : signed (31 downto O0);
signal even_real mid : signed (15 downto 0);
signal even_imag_mid : signed (15 downto O0);
signal addrmid : unsigned(3 downto 0);
signal writemid : std_logic;
begin
MULT : entity work.complex_mult port map (
realx => odd_real_in,
imagx => odd_imag_in,
realy => rom_real,
imagy => rom_imag,
realz => odd_real_mid,
imagz => odd_imag_mid,
clk => clk
)i

process (clk)
begin
if rising_edge (clk) then

writemid <= writein;
writeout <= writemid;
addrmid <= addrin;
addrout <= addrmid;
even_real_mid <= even_real_in;
even_imag_mid <= even_imag_in;
even_real_out <= even_real_mid;
even_imag_out <= even_imag_mid;
odd_real_out <= odd_real_mid (31 downto
odd_imag_out <= odd_imag_mid (31 downto

o1

16);
16);

end if;
end process;
end rtl;

recomb_stage3.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity recomb_stage3 is
port (clk in std_logic;
done out std_logic;

in signed(
in signed(

even_real
even_imag

15 downto 0);
15 downto 0);

odd_real in signed (15 downto 0);
odd_imag in signed (15 downto 0);

addrin in unsigned (3 downto 0);

writein in std_logic;

low_writeaddr out unsigned(3 downto 0);
low_writedata out signed (31 downto 0);
low_write_en out std_logic;
high_writeaddr out unsigned(3 downto 0);
high_writedata out signed (31 downto 0);
high_write_en out std_logic);

end recomb_stage3;

architecture rtl of recomb_stage
signal write_en std_logic;
signal writeaddr unsigned(
signal even_real_shift sig
signal even_imag_shift sig

signal odd_real_shift sign

signal odd_imag_shift sign

signal low_sum_real signed

signal low_sum_imag signed

signal high_diff real sign

signal high_diff_imag sign
begin

low_write_en <= write_en;
high_write_en <= write_en;
low_writeaddr <= writeaddr;
high_writeaddr <= writeaddr;

even_real_shift <= even_real
even_imag_shift <= even_imag
odd_real_shift <= odd_real (1
odd_imag_shift <= odd_imag (1l

3 is

3 downto 0);

ned (15 downto 0);
ned (15 downto 0);
ed (15 downto 0);
ed (15 downto 0);
(15 downto 0);
(15 downto 0);

ed (15 downto 0);
ed (15 downto 0);

(15) & even_real (15 downto 1);
(15) & even_imag(l5 downto 1);
5) & odd_real (15 downto 1);

5) & odd_imag(l5 downto 1);

low_sum_real <= even_real_shift + odd_real_shift;
low_sum_imag <= even_imag_shift + odd_imag_shift;
high_diff_real <= even_real_shift - odd_real_shift;
high_diff_imag <= even_imag_shift - odd_imag_shift;
process (clk)
begin
if rising_edge (clk) then

done <= not writein;

write_en <= writein;

writeaddr <= addrin;

low_writedata <= low_sum_real & low_sum_imag;

high_writedata <= high_diff_real & high_diff_imag;

52

end if;
end process;
end rtl;

recomb_tb.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity recomb_tb is
end recomb_tb;

architecture sim of recomb_tb is
signal clk : std_logic := '0';
signal reset : std_logic;
signal done : std_logic;
signal rom_addr : unsigned(3 downto 0);
signal rom_data : signed(31 downto 0);

signal rc_low_readaddr : unsigned(3 downto 0);
signal rc_low_writeaddr : unsigned(3 downto 0);
signal rc_low_writedata : signed(31 downto 0);
signal rc_low_write_en : std_logic;

signal rc_high_readaddr : unsigned(3 downto 0);
signal rc_high_writeaddr : unsigned(3 downto 0);
signal rc_high_writedata : signed(31 downto 0);
signal rc_high_write_en : std_logic;

signal low_readaddr : unsigned(3 downto 0);
signal low_writeaddr : unsigned (3 downto 0);
signal low_readdata : signed (31 downto 0);
signal low_writedata : signed (31 downto O0);
signal low_write_en : std_logic;

signal high_readaddr : unsigned (3 downto 0);
signal high_writeaddr : unsigned(3 downto 0);
signal high_readdata : signed (31 downto 0);
signal high_writedata : signed (31 downto 0);
signal high_write_en : std_logic;

signal tb_readaddr : unsigned(3 downto 0);
signal tb_writeaddr : unsigned (3 downto 0);
signal tb_write_en : std_logic;

signal tb_low_writedata : signed (31 downto 0);
signal tb_high_writedata : signed (31 downto 0);

signal stage : unsigned(l downto O0);
signal step : unsigned(2 downto 0);

type expected_type is array (0 to 31) of signed (31 downto 0);
type mem_type is array (0 to 15) of signed (31 downto 0);

signal user_mem : std_logic;

signal low_mem : mem_type :=
(x"63147d3a", x"0c3ac903", x"f39e20aa", x"5fa3080c",
x"8c34609%a", x"9cf9709f", x"4efb55bf", x"271lc2ce4d",
x"9p959d9b", x"ddfdc775", x"609585d9", x"b5f76fed",
x"29fb2867", x"0c38abda", x"08a34c89", x"56df70al");
signal high_mem : mem_type :=
(x"9acl10175", x"d03eOedd", x"425d0d5c", x"ac236b31",
x"228caeal3", x"52ac3a8c", x"5a8fdfeb", x"2bde796a",
x"d87a7236", x"elbc27el", x"cl9c3b48", x"4301716c",
x"8db55085", x"c590beaa", x"5e2cb01d", x"9641db23");
constant expected : expected_type :=
(x"183a3efa", x"fa67e825", x"0922136a", x"le62la4d",

53

x"cc3521eb", x"d9f74070", x"302627cl", x"1l5aalc5d",
x"cdcacecd", x"f077elc8", x"3641bd40", x"dlac2835",
x"293005£7", x"1241e381", x"ee9138b7", x"455c4159",
x"4ada3ed0", x"11d3e0dd", x"ea7c0d40", x"4140edbf",
x"bfff3eaf", x"c301302e", x"led42dfd", x"11721087",
x"cdcacecd", x"ed85eb5ac", x"2a53c898", x"eddadTb7",
x"00ca226f", x"f9f7c859", x"1alll3dl", x"11822f47");

begin

low_readaddr <= tb_readaddr when user_mem = ’'1’ else rc_low_readaddr;
low_writeaddr <= tb_writeaddr when user_mem = 1’ else rc_low_writeaddr;
low_writedata <= tb_low_writedata when user_mem = ’'1’ else rc_low_writedata;
low_write_en <= tb_write_en when user_mem = ’'1’ else rc_low_write_en;

high_readaddr <= tb_readaddr when user_mem = ’1’ else rc_high_readaddr;
high_writeaddr <= tb_writeaddr when user_mem = ’'1’ else rc_high_writeaddr;
high_writedata <= tb_high writedata when user_mem = ’1’ else rc_high_writedata;
high_write_en <= tb_write_en when user_mem = ’1’ else rc_high_write_en;

RCR16 : entity work.recomb_roml6 port map (
addr => rom_addr,
data => rom_data,
clk => «clk

)i

FDOM_RAM : entity work.fft_fdom_ram port map (
readdata_low => low_readdata,
readaddr_low => low_readaddr,
writedata_low => low_writedata,
writeaddr_low => low_writeaddr,
write_en_low => low_write_en,
readdata_high => high_readdata,
readaddr_high => high_readaddr,
writedata_high => high_writedata,
writeaddr_high => high_writeaddr,
write_en_high => high_write_en,
reset => '0’,
stage => stage,
step => step,
clk => clk

RC : entity work.fft_recomb port map (
clk => clk,
reset => reset,
done => done,
rom_addr => rom_addr,
rom_data => rom_data,
low_readaddr => rc_low_readaddr,
low_readdata => low_readdata,
low_writeaddr => rc_low_writeaddr,
low_writedata => rc_low_writedata,
low_write_en => rc_low_write_en,
high_readaddr => rc_high_readaddr,
high_readdata => high_readdata,
high_writeaddr => rc_high_writeaddr,
high_writedata => rc_high_writedata,
high_write_en => rc_high_write_en

)i

clk <= not clk after 10 ns;

process
variable i : integer range 0 to 32;
begin
user_mem <= ’'1’;

stage <= "00";
step <= "000";
wait for 10 ns; -- 10 ns

54

tb_write_en <= '1’";

i := 0;

while i < 16 loop
tb_writeaddr <= to_unsigned(i, 4);
tb_low_writedata <= low_mem (i) ;
tb_high_writedata <= high_mem(i);
wait for 20 ns;
i =1+ 1;

end loop; —-- 330 ns

tb_write_en <= '0’;
user_mem <= ’'0';
stage <= "11";

step <= "111";

wait for 20 ns; -- 350 ns
reset <= "1’;

wait for 20 ns; —-—- 370 ns
stage <= "00";

step <= "000";

reset <= '0’;

wait for 420 ns; —-—- 790 ns
assert done = ’'1";
user_mem <= ’'1’;

wait for 20 ns; —-- 810 ns

i :=0;

while i < 16 loop
tb_readaddr <= to_unsigned (i, 4);
wait for 40 ns;

assert low_readdata = expected(i);
assert high_readdata = expected(i + 16);
i :=1i + 1;
end loop; —-—- 1450 ns
wait;
end process;

end sim;

sd_controller.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sd_controller is

port (

clk50 in std_logic;

cs out std_logic;

mosi out std_logic;

miso in std_logic;

sclk out std_logic;

start in std_logic;

ready out std_logic;

err out std_logic;

waiting out std_logic;

ccs out std_logic;

writedata out signed (15 downto 0);
writeaddr out unsigned (7 downto 0);
write_en out std_logic;

blockaddr in unsigned (31 downto 0);

state_debug

out std_logic_vector (7 downto 0);

55

resp_debug : out std_logic_vector (7 downto 0)
)i
end sd_controller;

architecture rtl of sd_controller is
signal clk_enable : std_logic := "1’;
signal clk_divider : unsigned(l downto 0) := "00";
signal counter : unsigned(7 downto 0);

constant cmdO : std_logic_vector (47 downto 0) = x"400000000095";
constant cmd8 : std_logic_vector (47 downto 0) := x"48000001AA87";
constant cmdb5 : std_logic_vector (47 downto 0) := x"770000000065";
—— IMPORTANT!!! HCS bit must be set in ACMD41, contrary to embed_lab9
constant cmd4l : std_logic_vector (47 downto 0) := x"694000000077";
constant cmd58 : std_logic_vector (47 downto 0) = x"7a00000000£d";

signal command : std_logic_vector (47 downto 0);

type sd_state is (reset_state, reset_clksl, reset_clks2,
send_cmd, wait_resp, recv_resp,
clear_input, check_clear,
check_cmd0, check_cmd8_head, check_cmd8_extra,
check_cmd58_head, check_cmd58_ccs,
check_cmdl7, wait_block_start, write_word,
check_cmd55, check_cmd41l, cmd_done, cmd_err);

signal state : sd_state := reset_state;

signal return_state : sd_state;

signal sclk_sig : std_logic;

signal response : std_logic_vector (15 downto 0) := (others => "1");
signal clearbuf : std_logic_vector (7 downto O0);

signal clrcount : unsigned(2 downto 0) := "111";

signal hold_start : std_logic;

signal state_indicator : unsigned(7 downto 0) := x"00";
signal word_count : unsigned(7 downto 0);
begin
sclk <= sclk_sig;
ready <= ’"1’ when state = cmd_done else '0’;
err <= "1’ when state = cmd_err else ’"0’;

resp_debug <= response (7 downto 0);

state_debug <= std_logic_vector (state_indicator);
waiting <= ’1’ when state = wait_resp else '0’;
clk_enable <= "1’ when clk_divider = "11" else ’'0’;

—-— clock divider for sd clock
process (clk50)
begin
if rising_edge (clk50) then
clk_divider <= clk_divider + 1;

—— hold start so that it is visible on next clock enable
if start = 1’ then

hold_start <= '1';
end if;

if state /= cmd_done then
hold_start <= ’'0’;
end if;

if state = write_word and clk_enable = "1’ then
write_en <= '1';
else
write_en <= '0’;
end if;
end if; -- rising_edge(clk50)
end process;

mosi <= command(47);
cs <= "1’ when state = reset_clksl or

56

state = cmd_done or
state clear_input or
state = cmd_err else "0’;

process (clk50)
begin

if rising_edge (clk50) then
if clk_enable = "1’ then

case state is

—— asserting mosi and cs high for at least 74
when reset_state =>

command <= (others => '1");

sclk_sig <= ’'0’";

counter <= to_unsigned (160, 8);

state <= reset_clksl;

when reset_clksl =>
if counter = x"00" then
counter <= to_unsigned (32, 8);
state <= reset_clks2;

else
counter <= counter - "1";
sclk_sig <= not sclk_sig;
end if;

when reset_clks2 =>
if counter = 0 then
command <= cmdO0;
counter <= to_unsigned (47, 8);
return_state <= check_cmdO0;
state <= send_cmd;
state_indicator <= x"00";

else
counter <= counter - "1";
sclk_sig <= not sclk_sig;
end if;

—-— make sure reset was successful
when check_cmd0 =>
if response (7 downto 0) = x"01" then
command <= cmd8;
return_state <= check_cmd8_head;
state <= clear_input;
state_indicator <= x"08";
else
state_indicator <= x"00";
state <= cmd_err;
end if;

—-— make sure card supports vZ2 of protocol
when check_cmd8_head =>
if response(2) = '0’ then
counter <= to_unsigned (31, 8);
state <= recv_resp;
return_state <= check_cmd8_extra;
else
state <= cmd_err;
end if;

—-— make sure voltage is OK
when check_cmd8_extra =>
if response(ll downto 0) = "000110101010"
command <= cmd55;
state <= clear_input;
return_state <= check_cmd55;

57

clocks

then

state_indicator <= x"55";

else
response (15 downto 12) <= (others => ’'07);
state <= cmd_err;

end if;

—-— make sure cmd58 is OK, then check CCS
when check_cmd58_head =>
if response(2) = ’1’ then
state_indicator <= x"58";
state <= cmd_err;
else
counter <= to_unsigned (15, 8);
return_state <= check_cmd58_ccs;
state <= recv_resp;
end if;

—— 1s this standard or high capacity card?
when check_cmd58_ccs =>

ccs <= response (14);

counter <= to_unsigned (15, 8);

state <= recv_resp;

return_state <= cmd_done;

—— make sure application commands are OK
when check_cmd55 =>
if response (7 downto 0) = x"01" then
command <= cmd4l;
state <= clear_input;
return_state <= check_cmd4l;
state_indicator <= x"41";

else
state_indicator <= x"55";
state <= cmd_err;

end if;

-— is SD card ready for I/O yet?
when check_cmd4l =>

if response(7 downto 0) = x"00" then
-—- 1if so, check what type of card this is
command <= cmd58;
return_state <= check_cmd58_head;
state_indicator <= x"58";
state <= clear_input;

elsif response(7 downto 0) = x"01l" then
-— still not ready? read another byte of response
state <= recv_resp;
counter <= to_unsigned(7, 8);
state_indicator <= x"41";
return_state <= check_cmd4l;

elsif response (7 downto 0) = x"ff" then
—— response has ended but we’re still not ready, send ACMD41
state <= clear_input;
command <= cmd55;
return_state <= check_cmdb5;
state_indicator <= x"55";

else
state_indicator <= x"41";
state <= cmd_err;

end if;

—-— send all 48 bits of the command
when send_cmd =>
if sclk_sig = "1’ then
if counter = x"00" then
state <= wait_resp;
counter <= to_unsigned (127, 8);
else

o8

again

counter <= counter - "1";
command <= command (46 downto 0) & "1";
end if;
end if;
sclk_sig <= not sclk_sig;

—— SD card could take a few clock cycles to respond a MISO
when wait_resp =>
if sclk_sig = "1’ and miso = ’'0’ then
—-— We’ve already gotten the first bit
—-— so only need to ready 7 more
counter <= to_unsigned(6, 8);
state <= recv_resp;
response <= (others => '0');
end if;
sclk_sig <= not sclk_sig;

—-— Read bits from MISO
when recv_resp =>
if sclk_sig = "1’ then
response <= response (14 downto 0) & miso;
if counter = 0 then
counter <= to_unsigned(7, 8);
state <= return_state;
else
counter <= counter - "1";
end if;
end if;
sclk_sig <= not sclk_sig;

—-— always deselect chip for 8 clock cycles and wait
—-— for miso to clear up before sending next command
when clear_input =>
if sclk_sig = "1’ then
clearbuf <= clearbuf (6 downto 0) & miso;
if clrcount = 0 then
state <= check_clear;
clrcount <= "111";
else
clrcount <= clrcount - "1";
end if;
end if;
sclk_sig <= not sclk_sig;

—— input is clear if we get byte of all 1s
when check_clear =>
if clearbuf = x"ff" then
state <= send_cmd;
counter <= to_unsigned (47, 8);
else
state <= clear_input;
end if;

—— the idle state
when cmd_done =>
if hold_start = 1’ then
—-— send the read block command (cmdl?7)
counter <= to_unsigned (47, 8);
command <= x"51" & std_logic_vector (blockaddr) & x"ff";
return_state <= check_cmdl7;
state <= clear_input;
state_indicator <= x"17";
end if;

when check_cmdl7 =>
if response (7 downto 0) = x"00" then
—-— read command OK, wait for start byte
counter <= to_unsigned(7, 8);

99

return_state <= wait_block_start;
state <= recv_resp;
word_count <= x"00";
else
state <= cmd_err;
end if;

-— wait for beginning of block
when wait_block_start =>
—-— block starts once we get the byte "fe"
if response (7 downto 0) = x"fe" then
counter <= to_unsigned (15, 8);
return_state <= write_word;
state <= recv_resp;
else
counter <= to_unsigned (7, 8);
return_state <= wait_block_start;
state <= recv_resp;
end if;

when write_word =>
writedata <= signed(response);
writeaddr <= word_count;

-— 1if this is the last block

if word_count = x"ff" then
—-— read the CRC (last 2 bytes) and ignore it
counter <= to_unsigned(1l5, 8);
return_state <= cmd_done;
state <= recv_resp;

else
counter <= to_unsigned (15, 8);
return_state <= write_word;
state <= recv_resp;
word_count <= word_count + 1;

end if;

when cmd_err =>
sclk_sig <= sclk_sig;

end case; —- state
end if; -- clk _en = "1’
end if; -- rising_edge (clk)

end process;

end rtl;

sdbuf.vhd

—— sdbuf.vhd

—-— This file was auto-generated as part of a generation operation.

—-— If you edit it your changes will probably be lost.
library IEEE;
use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity sdbuf is

port (
clk : in std_logic = 10';
reset_n : in std_logic = '0';
reset_n
read : in std_logic = '0';

60

clock.clk
reset.

-— avalon_slave_ 0.read

chipselect in std_logic = '0'; ——
chipselect
address in std_logic_vector (7 downto 0) = (others => ’'0"); --
address
readdata out std_logic_vector (15 downto 0); ——
readdata
sdbuf_rden : out std_logic; -
export
sdbuf_addr out std_logic_vector (7 downto 0); -
export
sdbuf_data in std_logic_vector (15 downto 0) := (others => ’0') -
export
)i
end entity sdbuf;
architecture rtl of sdbuf is
component de2_sd_buffer is
port (
clk in std_logic = 'X’";
reset_n in std_logic = 'X’";
read in std_logic = 'X’";
chipselect in std_logic = '"X’";
address in std_logic_vector (7 downto 0) (others => 'X');
readdata out std_logic_vector (15 downto 0);
sdbuf_rden out std_logic;
sdbuf_addr out std_logic_vector (7 downto 0);
sdbuf_data in std_logic_vector (15 downto 0) = (others => ’'X’")

)i

end component de2_sd_buffer;

begin
sdbuf component de2_sd_buffer
port map (
clk => clk, - clock.clk
reset_n => reset_n, —— reset.reset_n
read => read, —-— avalon_slave_0.read
chipselect => chipselect, —-- .chipselect
address => address, - .address
readdata => readdata, - .readdata
sdbuf_rden => sdbuf_rden, conduit_end.export
sdbuf_addr => sdbuf_addr, -- .export
sdbuf_data => sdbuf_data -- .export

)i

end architecture rtl; -- of sdbuf

conduit_end.

clk
reset_n
read
chipselect
address
readdata
export
export
export

sevenseg.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sevenseg is
port (number
display
end sevenseg;

in std_logic_vector (3 downto 0);
out std_logic_vector (6 downto 0));

architecture rtl of sevenseg is
begin
with number select
display <= "1000000" when x"O",

"1111001" when x"1",
"0100100" when x"2",
"0110000" when x"3",
"0011001" when x"4",

61

"0010010" when x"5",
"0000010" when x"6",
"1111000" when x"7",
"0000000" when x"8",
"0011000" when x"9",
"0001000" when x"A",
"0000011" when x"b",
"1000110" when x"C",
"0100001" when x"d",
"0000110" when x"E",
"0001110" when x"F",
"1111111" when others;
end rtl;

visualizer.vhd

—-— Visualizer
—-— draws rectangles of varying heights to correspond to
—- fft frequency bins and their respective amplitudes

-- for kanto music player

library ieee;
use ieee.std_logic_1164.all;
use ileee.numeric_std.all;

entity visualizer is

port (
clk25 : in std_logic; —— Should be 25.125 MHz
clk50 : in std_logic;
reset_data: in std_logic;
fft_fdom_addr : out unsigned(7 downto 0);
fft_fdom _data : in signed (31 downto 0);

ledrl7 : out std_logic;
ledrl6 : out std_logic;
ledrl5 : out std_logic;

sw_r : in std_logic;

sw_g : in std_logic;

sw_b : in std_logic;

VGA_CLK, —— Clock
VGA_HS, -— H_SYNC
VGA_VS, -— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC : out std_logic; -— SYNC
VGA_R, —— Red[9:0]
VGA_G, -— Green[9:0]
VGA_B : out std_logic_vector (9 downto 0); —-- Blue[9:0]

vga_text_buffer_x : out std_logic_vector (9 downto 0);
vga_text_buffer_y : out std_logic_vector (6 downto 0);
vga_text_buffer pixel : in std_logic

)i

end visualizer;

architecture rtl of visualizer is

—— Video parameters

62

constant HTOTAL : integer := 800;

constant HSYNC : integer := 96;
constant HBACK_PORCH : integer := 48;
constant HACTIVE : integer := 640;
constant HFRONT_PORCH : integer := 16;
constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK_PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT_PORCH : integer := 10;
constant bar_w : integer := 40;

type states is (initializing, reading_data);

—-— Signals for the video controller

signal Hcount : unsigned(9 downto 0); —— Horizontal position (0-800)
signal Vcount : unsigned(9 downto 0); -- Vertical position (0-524)

signal EndOfLine, EndOfField : std_logic;

signal vga_hblank, wvga_hsync,
vga_vblank, vga_vsync : std_logic; -- Sync. signals

signal rectangle : std_logic; -- rectangle area

type ram_type is array (0 to 15) of unsigned (19 downto 0);

signal current_sum : ram_type := ((others=>(others =>'0")));

signal next_sum : ram_type := ((others=>(others =>"0")));

signal address_r : integer := 512;

signal index : integer := 0;

signal sram_base : integer := 0;

signal counter : integer := 0;

signal addr_counter : unsigned (7 downto 0) := x"00";

signal sum_counter : unsigned (4 downto 0) := "00000";

signal test_ones : unsigned (15 downto 0) := "1111111111111111";

signal test_zeros : std_logic_vector (15 downto 0) := "0000111111111111";
signal test_half : std_logic_vector (15 downto 0) := "0111111111111111";

signal oldsum : unsigned (19 downto 0);
signal last_fdom_data : signed (15 downto 0);

signal hpos : integer range -144 to 800;
signal vpos : integer range -10 to 525;

-— reset stuff
signal reset : std_logic := '0’; -- resets the screen

begin
—-— Horizontal and vertical counters

fft_fdom_addr <= addr_counter;
oldsum <= next_sum(to_integer (sum_counter (4 downto 1)));

GetData : process (clk50)
variable state : states := initializing;
begin
if rising_edge (clk50) then
case state is
when initializing =>
if reset_data = "1’ then

next_sum <= ((others=>(others =>"0")));
last_fdom_data <= (others => '0");
sum_counter <= (others => ’0');

addr_counter <= (others => '0');
reset <= '0’;

63

state := reading_data;

else
state:= initializing;
reset<='0’";
end if;
when reading_data =>
—-— 4 downto 1 - we’re grouping the 32 frequency bins into sets of
-— two. so when summing, we can ignore the LSB and this happens
—-— on 1its own
—— also ensure that we’re only only adding positive number (absolute value)
if last_fdom_data(l5) = ’1’ then
next_sum(to_integer (sum_counter (4 downto 1))) <= oldsum
+ unsigned(not last_fdom_data (14 downto 0));
else
next_sum(to_integer (sum_counter (4 downto 1))) <= oldsum
+ unsigned(last_fdom_data (14 downto 0));
end if;
if sum_counter = x"1F" then -- count up to 31
addr_counter <= x"00";
sum_counter <= "00000";
state := initializing;
ledrls <= '0';
ledrle <= '17’;
ledrl7 <= 70’;
else ——- if we haven’t yet reached 31
ledrl5 <= "1’;
ledrlo <= "0’;
ledrl7 <= "1';
addr_counter <= addr_counter + 1;
sum_counter <= addr_counter (4 downto 0);
last_fdom_data <= fft_fdom_data (31 downto 16);
state := reading_data;
end if;
end case;
end if;
-—end 1f;

end process GetData;

—-— Horizontal and vertical counters

HCounter : process (clk25)

begin
if rising_edge (clk25) then
if reset = "1’ then
Hcount <= (others => ’0'");
elsif EndOfLine = "1’ then
Hcount <= (others => ’0'");
else
Hcount <= Hcount + 1;
end if;
end if;

end process HCounter;
EndOfLine <= ’'1’ when Hcount = HTOTAL - 1 else '0’;

VCounter: process (clk25)
begin
if rising_edge (clk25) then
if reset = 1’ then
Vcount <= (others => ’0");
elsif EndOfLine = 1’ then
if EndOfField = "1’ then
Vcount <= (others => "0’);
else

64

Vcount <= Vcount + 1;
end if;
end if;
end if;
end process VCounter;

EndOfField <= ’1’ when Vcount = VTOTAL - 1 else ’0’;

—-— State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

HSyncGen : process (clk25)
begin
if rising_edge (clk25) then
if reset = 1’ or EndOfLine = ’1’ then
vga_hsync <= ’"1’;
elsif Hcount = HSYNC - 1 then
vga_hsync <= ’0’;
end if;
end if;
end process HSyncGen;

HBlankGen : process (clk2b)
begin
if rising_edge (clk25) then
if reset = "1’ then
vga_hblank <= "1’;
elsif Hcount = HSYNC + HBACK_PORCH then
vga_hblank <= '0’;
elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then
vga_hblank <= "1";
end if;
end if;
end process HBlankGen;

VSyncGen : process (clk25)
begin
if rising_edge (clk25) then
if reset = 1’ then
vga_vsync <= ’'1';
elsif EndOfLine =’1’ then
if EndOfField = "1’ then
vga_vsync <= '1';
elsif Vcount = VSYNC - 1 then
vga_vsync <= '0’;
end if;
end if;
end if;
end process VSyncGen;

VBlankGen : process (clk25)
begin
if rising_edge (clk25) then
if reset = "1’ then
vga_vblank <= "1’;
elsif EndOfLine = "1’ then
if Vcount = VSYNC + VBACK_PORCH - 1 then
vga_vblank <= '0’;

elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then

vga_vblank <= '1’;
end if;
end if;
end if;
end process VBlankGen;

—— continuously get the pixel from the vga text buffer

—-— doesn’t matter if we’re out of range - we only use the
-— vga_text_buffer_pixel value when we’re in range, anyway
hpos <= to_integer (Hcount) - (HSYNC + HBACK_PORCH) ;

65

vpos <= VTOTAL - VFRONT_PORCH - to_integer (Vcount) ;

vga_text_buffer_x <= std_logic_vector (to_unsigned (hpos, 10));

vga_text_buffer_y <= std_logic_vector (to_unsigned(to_integer (Vcount)
7))

RectangleGen: process (clk25)

variable height : unsigned(7 downto 0);
variable sum_index : integer range 0 to 15;
begin

if rising_edge(clk25) then
if reset='1’ then
rectangle<='0’;
—-— if we’re inside the top 5 lines, allow the
-—- vga text buffer to handle output
elsif vpos < 480 and vpos >= 400 then
rectangle <= vga_text_buffer_pixel;
-— is it inside the drawable region
elsif hpos >= 0 and hpos <= 16 * bar_w then
if hpos <= bar_w then

sum_index := 0;

elsif hpos <= 2 % bar_w then
sum_index := 1;

elsif hpos <= 3 % bar_w then
sum_index := 2;

elsif hpos <= 4 % bar_w then
sum_index := 3;

elsif hpos <= 5 % bar_w then
sum_index := 4;

elsif hpos <= 6 % bar_w then
sum_index := 5;

elsif hpos <= 7 % bar_w then
sum_index := 6;

elsif hpos <= 8 % bar_w then
sum_index := 7;

elsif hpos <= 9 x bar_w then
sum_index := 8;

elsif hpos <= 10 % bar_w then
sum_index := 9;

elsif hpos <= 11 % bar_w then
sum_index := 10;

elsif hpos <= 12 % bar_w then
sum_index := 11;

elsif hpos <= 13 % bar_w then
sum_index := 12;

elsif hpos <= 14 x bar_w then
sum_index := 13;

elsif hpos <= 15 % bar_w then
sum_index := 14;

else
sum_index := 15;

end if;

height := current_sum(sum_index) (8 downto 1);

if vpos < height then

rectangle <= '17;
else
rectangle <= '0’;
end if;
else
rectangle<='0’;
end if;
if vga_hblank = 1’ and vga_vblank = ’1’ then
current_sum <= next_sum;
end if;
end if;

end process RectangleGen;

66

(VSYNC + VBACK_PORCH),

—-— Registered video signals going to the video DAC

VideoOut: process (clk25, reset)
begin
if reset = ’1’ then
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";
elsif clk25’event and clk25 = 71’ then
if rectangle = "1’ then
if sw_r = "1’ then
VGA_R <= "0000000000";
else VGA_R <= "1111111111";
end if;
if sw_g = ’1’ then
VGA_G <= "0000000000";
else VGA_G <= "1111111111";
end if;
if sw_b = "1’ then
VGA_B <= "0000000000";
else
VGA_B <= "1111111111";
end if;
elsif vga_hblank = "0’ and vga_vblank =’0’ then
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";
else
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";
end if;
end if;

end process VideoOut;

VGA_CLK <= clk25;

VGA_HS <= not wvga_hsync;
VGA_VS <= not vga_vsync;
VGA_SYNC <= '0’;
VGA_BLANK <= not (vga_hsync or vga_vsync);

end rtl;

A.2 Verilog

de2_i2c_av_config.v

/ *
* I2C bus control for initializing the audio and video chips on the DE2 board
*
* Adapted by Stephen A. Edwards,
*/

Columbia University, sedwards@cs.columbia.edu

module de2_i2c_av_config(iCLK, iRST_N, I2C_SCLK, I2C_SDAT);

// From host

input iCLK;
input iRST_N;
// I2C bus

67

output I2C_SCLK;
inout I2C_SDAT;

// Internal Registers/Wires

reg [15:0] mI2C_CLK_DIV;
reg [23:0] mI2C_DATA;

reg mI2C_CTRL_CLK;
reg mI2C_GO;

wire mI2C_END;

wire mI2C_ACK;

reg [15:0] LUT_DATA;

reg [5:0] LUT_INDEX;

reg [3:0] mSetup_ST;

// Clock frequencies

parameter CLK_Freq = 50000000; // 50 MHz
parameter I2C_Freq = 20000; // 20 kHz
parameter LUT_SIZE = 50;

// Audio Data Index

parameter SET_LIN_L =
parameter SET_LIN_R =
parameter SET_HEAD_L =
parameter SET_HEAD_R =
parameter A_PATH_CTRL =
parameter D_PATH_CTRL =
parameter POWER_ON =
parameter SET_FORMAT =
parameter SAMPLE_CTRL =
parameter SET_ACTIVE =
// Video Data Index

parameter SET_VIDEO =

~e Ne oN.

Ne Ne Ne N oNe N.

W o0 Jo U d WP o
~

~

=
o
~

// I2C Control Clock
always @ (posedge iCLK or negedge iRST_N)

begin
if (!iRST_N)
begin
mI2C_CTRL_CLK <= 0;
mI2C_CLK_DIV <= 0;
end
else
begin
if (mI2C_CLK_DIV < (CLK_Freq/I2C_Freq))
mI2C_CLK_DIV <= mI2C_CLK_DIV+1;
else
begin
mI2C_CLK_DIV <= 0;
mI2C_CTRL_CLK <= "mI2C_CTRL_CLK;
end
end
end

de2_i2c_controller ul0 (
.CLOCK (mI2C_CTRL_CLK), // Controller Work Clock
.I2C_SCLK (I2C_SCLK), // I2C CLOCK
.I2C_SDAT (I2C_SDAT), // I2C DATA
.I2C_DATA (mI2C_DATA), // DATA:[SLAVE_ADDR,SUB_ADDR,DATA]

.GO (mI2C_GO), // GO transfor
.END (mI2C_END), // END transfor
.ACK (mI2C_ACK), // ACK

.RESET (iRST_N)
)i

// Configuration control
always @ (posedge mI2C_CTRL_CLK or negedge iRST_N)

68

begin

if ('iRST_N)

begin
LUT_INDEX <= 0;
mSetup_ST <= 0;

mI2C_GO <= 0;
end
else
begin
if (LUT_INDEX<LUT_SIZE)
begin
case (mSetup_ST)
0: Dbegin
1f (LUT_INDEX<SET_VIDEO)
mI2C_DATA <= {8'h34,LUT_DATA};
else
mI2C_DATA <= {8'h40,LUT_DATA};
mI2C_GO <= 1;
mSetup_ST <= 1;
end
1: Dbegin
if (mI2C_END)
begin
if (!mI2C_ACK)
mSetup_ST <= 2;
else
mSetup_ST <= 0;
mI2C_GO <= 0;
end
end
2: begin
LUT_INDEX <= LUT_INDEX+1;
mSetup_ST <= 0;
end
endcase
end
end

end

// Configuration data LUT
always

begin

case (LUT_INDEX)

// Audio Config Data
SET_LIN_L LUT_DATA
SET_LIN_R LUT_DATA
SET_HEAD_L LUT_DATA
SET_HEAD_R LUT_DATA
A_PATH_CTRL LUT_DATA
D_PATH_CTRL LUT_DATA
POWER_ON LUT_DATA
SET_FORMAT LUT_DATA
SAMPLE_CTRL LUT_DATA
SET_ACTIVE LUT_DATA

// Video Config Data
SET_VIDEO+0 :

LUT_DATA
SET_VIDEO+1 LUT_DATA
SET_VIDEO+2 LUT_DATA
SET_VIDEO+3 LUT_DATA
SET_VIDEO+4 LUT_DATA
SET_VIDEO+5 LUT_DATA
SET_VIDEO+6 LUT_DATA
SET_VIDEO+7 LUT_DATA
SET_VIDEO+8 LUT_DATA
SET_VIDEO+9 LUT_DATA
SET_VIDEO+10 LUT_DATA
SET_VIDEO+11 LUT_DATA
SET_VIDEO+12 LUT_DATA

16'h0079;
16"h0279;
16’ h047B;
16" h067B;
16’ h0SFS;
16 h0A04;
16’ h0C00;
16’ h0E01;
16'h1020;

= 16"h1201;

16"h1500;
16'h1741;
16"h3alé6;
16"h5004;
16"hc305;
16'hc480;
16"h0e80;
16"h5020;
16'h5218;
16"h58ed;
16'h77c5;
16"h7c93;
16'h7d00;

69

SET_VIDEO+13
SET_VIDEO+14
SET_VIDEO+15
SET_VIDEO+16
SET_VIDEO+17
SET_VIDEO+18
SET_VIDEO+19
SET_VIDEO+20
SET_VIDEO+21
SET_VIDEO+22
SET_VIDEO+23
SET_VIDEO+24
SET_VIDEO+25
SET_VIDEO+26
SET_VIDEO+27
SET_VIDEO+28
SET_VIDEO+29
SET_VIDEO+30
SET_VIDEO+31
SET_VIDEO+32
SET_VIDEO+33
SET_VIDEO+34
SET_VIDEO+35
SET_VIDEO+36
SET_VIDEO+37
SET_VIDEO+38
SET_VIDEO+39
default

endcase

end

endmodule

LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA
LUT_DATA

16"hd048;
16"hdba0;
16" hd7ea;
16" hed3e;
16" healf;
16"h3112;
16"h3281;
16"h3384;
16"h37A0;
16'heb80;
16"he603;
16"he785;
16"h5000;
16"h5100;
167h0050;
16"h1000;
16"h0402;
16"h0b00;
16"h0a20;
167h1100;
16"h2b00;
16"h2c8c;
16"h2df2;
16" h2eee;
16"h2ff4;
16"h30d2;
16"h0e05;
16" hxxxx;

de2_i2c_controller.v

A
// Copyright (c) 2005 by Terasic Technologies Inc.
s
//

// Permission:

//

// Terasic grants permission to use and modify this code for use

// in synthesis for all Terasic Development Boards and Altrea Development
// Kits made by Terasic. Other use of this code, including the selling,
// duplication, or modification of any portion is strictly prohibited.
//

// Disclaimer:

//

// This VHDL or Verilog source code 1s intended as a design reference
// which illustrates how these types of functions can be Iimplemented.
// It is the user’s responsibility to verify their design for

// consistency and functionality through the use of formal

// verification methods. Terasic provides no warranty regarding the use
// or functionality of this code.

//
/e
//

// Terasic Technologies Inc

// 356 Fu-Shin E. Rd Sec. 1. JhuBei City,

// HsinChu County, Taiwan

// 302

//

// web: http://www.terasic.com/

// email: support@terasic.com

//
A

s

// Major Functions:i2c controller

//
e s
//
// Revision History
et
// Ver :| Author :| Mod. Date :| Changes Made:
// V1.0 :| Joe Yang 2| 05/07/10 ¢ Initial Revision
e
module de2_1i2c_controller (

CLOCK,

I2C_SCLK, // I2C CLOCK
I2C_SDAT, // I2C DATA
I2C_DATA, // DATA:[SLAVE_ADDR, SUB_ADDR, DATA]

GO, // GO transfor
END, // END transfor
W_R, // W_R

ACK, // ACK

RESET,

// TEST

SD_COUNTER,

SDO

)i

input CLOCK;

input [23:0] I2C_DATA;
input GO;

input RESET;

input W_R;

inout I2C_SDAT;

output I2C_SCLK;

output END;

output ACK;

// TEST
output [5:0] SD_COUNTER;
output SDO;

reg SDO;

reg SCLK;

reg END;

reg [23:0] SD;

reg [5:0] SD_COUNTER;

wire I2C_SCLK = SCLK | (((SD_COUNTER >= 4) & (SD_COUNTER <= 30))? “CLOCK : 0);
wire I2C_SDAT SDO ? 1'bz : 0;

reg ACKl, ACK2, ACK3;
wire ACK = ACKl | ACK2 | ACK3;

//—-=I2C COUNTER

always @ (negedge RESET or posedge CLOCK)
begin
if (!RESET)
SD_COUNTER = 6’b111111;
else
begin
if (GO == 0)
SD_COUNTER = 0;
else
if (SD_COUNTER < 6’b111111)
SD_COUNTER = SD_COUNTER + 1;
end
end

always @ (negedge RESET or posedge CLOCK)

71

begin

if (!RESET)
begin
SCLK = 1;
SDO = 1;
ACK1l = 0;
ACK2 = 0;
ACK3 = 0;
END = 1;
end
else
case (SD_COUNTER)
6’ do begin ACK1l = 0; ACK2 = 0; ACK3 = 0; END = 0; SDO = 1; SCLK = 1; end
// Start
6’dl begin SD = I2C_DATA; SDO = 0; end
6’d2 SCLK = 0;
// Slave Address
6’d3 : SDO = SD[23];
6’ d4 : SDO = SD[22];
6’d5 SDO = SD[21];
67 d6 SDO = SD[20];
6’d7 SDO = SD[19];
6’ d8 SDO = SD[18];
67d9 SDO = SD[17];
67d10 : SDO = SD[16];
6’d1l1l SDO = 1'Dbl; //ACK
// Sub-address
6’dl2 : begin SDO = SD[15]; ACKl = I2C_SDAT; end
67dl3 : SDO = SD[14];
67dl4 SDO = SD[13];
67dl5 SDO = SD[12];
67dle SDO = SD[11];
6’dl7 SDO = SD[10];
67d18 SDO = SD[9];
67d1l9 SDO = SD[8];
67d20 SDO = 1’bl; // ACK
// Data
6’d21 : begin SDO = SD[7]; ACK2 = I2C_SDAT; end
6"d22 : SDO = SDI[6];
6’d23 SDO = SD[5];
6’d24 SDO = SD[4];
6’d25 SDO = SD[3];
6’d26 SDO = SD[2];
6"d27 SDO = SD[1];
67d28 SDO = SD[O0];
6"d29 SDO = 1’bl; // ACK
// Stop
6’d30 begin SDO = 1’b0; SCLK = 1’b0; ACK3 = I2C_SDAT; end
67d31 SCLK = 1'bl;
6"d32 begin SDO = 1’bl; END = 1; end
endcase
end
endmodule
A3 C
main.c

#include <stdio.h>

72

#include <system.h>
#include <io.h>
#include <stdint.h>
#include "vga.h"

#define KANTO_BLOCKADDR 0
#define KANTO_READBLOCK 4
#define KANTO_PLAY 8
#define KANTO_DONE 12
#define KANTO_TRACK 16
#define KANTO_KEYS 20
#define KANTO_CCS 24

#define MAX_TRACKS 8

uint32_t track_table[MAX_TRACKS];
char track_titles[MAX_TRACKS] [60];
int track_count = 0;

unsigned char curtrack;

uint32_t track_start;

uint32_t track_end;

unsigned char selected_track;
unsigned char selected_row;
unsigned char list_top_track;
char buffer[81];

int playing = 0;

#define NEXT_TRACK 0Ox1
#define LAST_TRACK 0x2
#define FAST_FORWARD 0x4
#define REWIND 0x8

/+ number of blocks in a second */
static int BLOCK_SECOND;
static int SD_CCS;

#define wait_for_done() while (!IORD_8DIRECT (KANTO_CTRL_BASE, KANTO_DONE))

static inline uint32_t sdbuf_read_word(unsigned char offset)

{

uint32_t word, upper, lower;

upper = IORD_16DIRECT (SDBUF_BASE, 4 % offset) & Oxffff;
lower = IORD_16DIRECT (SDBUF_BASE, 4 offset + 2) & Oxffff;

word = upper << 16 | lower;

return word;

static inline void stop_playback (void)
{
playing = 0;
IOWR_8DIRECT (KANTO_CTRL_BASE, KANTO_PLAY, 0);
wait_for_done();
if (curtrack >= list_top_track && curtrack <= list_top_track + 3) {
int listnum = curtrack - list_top_track;
snprintf (buffer, sizeof (buffer), "%c %c%u. %$s", (curtrack == selected_track)
’ 7', curtrack, track_titles[curtrack]);
vga_write_string(buffer, listnum + 1);

static inline void start_playback (void)
{
playing = 1;
TOWR_8DIRECT (KANTO_CTRL_BASE, KANTO_PLAY, 1);

73

if (curtrack >= list_top_track && curtrack <= list_top_track + 3) {

int listnum = curtrack - list_top_track;
snprintf (buffer, sizeof (buffer), "%c S%c%u. %$s", (curtrack == selected_track)

’>", curtrack, track_titles[curtrack]);
vga_write_string(buffer, listnum + 1);

static inline void read_block (uint32_t addr)

{
TIOWR_32DIRECT (KANTO_CTRL_BASE, KANTO_BLOCKADDR, addr);
// pulse the readblock signal
IOWR_8DIRECT (KANTO_CTRL_BASE, KANTO_READBLOCK, 1);
TOWR_8DIRECT (KANTO_CTRL_BASE, KANTO_READBLOCK, 0);
wait_for_done();

static void setup_track_table (void)
{

int i, 3;

uint32_t word;

for (i = 0; i < MAX_TRACKS; i++) {
track_table[i] = sdbuf_read_word(i = 16);
if (track_table[i] != 0)
track_count++;
for (3 = 0; j < 15; j += 1) |
word = sdbuf_read_word(i % 16 + 1 + j);
track_titles[i][]j * 4 + 0] = word >> 24 & Oxff;

track_titles[i][]j * 4 + 1] = word >> 16 & Oxff;
track_titles[i][]j » 4 + 2] = word >> 8 & Oxff;
track_titles[i][]j = 4 + 3] = word >> 0 & Oxff;

}

printf ("%i. %s\n", i, (char =) &track_titles[i]);

}
track_count-—;
printf ("Track count: %d\n", track_count);

static inline void check_curtrack (void)
{
if (curtrack >= track_count)
curtrack = 0;

static inline void seek_to_track (int track)
{
curtrack = track;
check_curtrack();
track_start = track_table[curtrack];
track_end = track_table[curtrack + 1];

read_block (track_start);
printf ("Setting current track to %d\n", curtrack);
IOWR_8DIRECT (KANTO_CTRL_BASE, KANTO_TRACK, curtrack);

static void selection_up ()

{

if (selected_track == 0)
return;
if (selected_row == 0) {

int x, 1ij;
list_top_track-—;
for (x = 1, 1 = —--selected_track; i < track_count && x < 5; x++, i++) {
snprintf (buffer, sizeof (buffer), "%c S%Sc%u. %s", (i == selected_track) ? ’x’
== curtrack && playing) ? ’'>’ : 7 7, i, track_titles[i]);
vga_write_string (buffer, x);

74

?

}

return;

}

vga_write_character(’ ', 0, selected_row + 1);
vga_write_character(’+«’, 0, --selected_row + 1);
selected_track—-—;

static void selection_down ()

{

if (selected_track == track_count - 1)
return;
if (selected_row == 3) {

int x, 1i;
list_top_track++;

for (x = 4, i = ++selected_track; 1 >= 0 && x >= 1; x——, 1i-——-) {
snprintf (buffer, sizeof (buffer), "%c S%Sc%u. %s", (i == selected_track) ? ’x’
== curtrack && playing) ? >’ : 7 7, i, track_titles[i]);

vga_write_string (buffer, x);
}
return;

}

vga_write_character(’ 7, 0, selected_row + 1);
vga_write_character(’+’, 0, ++selected_row + 1);
selected_track++;

static inline void selection_play ()

{
stop_playback() ;
seek_to_track (selected_track);
start_playback();

int ignore_next_key = 0;
static void key_receive (uint32_t blockaddr)
{

unsigned short key;

key = IORD_S8DIRECT (PS2_BASE, 4);

if (ignore_next_key) {

ignore_next_key = 0;
return;

}

if (key == 0x£f0) {
ignore_next_key = 1;
return;

switch (key) {

case 0x31: // ’n’ next track
stop_playback();
seek_to_track (curtrack + 1);
start_playback();
break;

case 0x4d: // ’p’ previous track

stop_playback();

if ((blockaddr - track_start) < 2 % BLOCK_SECOND)
seek_to_track (curtrack - 1);

else
seek_to_track (curtrack);

start_playback();

break;

75

case 0x2b: // ’f’ fast forward
stop_playback();
if (track_end - blockaddr < 5 % BLOCK_SECOND)
seek_to_track (curtrack + 1);
else
read_block (blockaddr + 5 x BLOCK_SECOND) ;
start_playback();
break;

case 0x32: // ’b’ rewind

stop_playback();

if (blockaddr - track_start < 5 x BLOCK_SECOND)
seek_to_track (curtrack);

else
read_block (blockaddr - 5 x* BLOCK_SECOND) ;

start_playback();

break;

case 0x3b: // 73’ move down
selection_down () ;
break;

case 0x42: // "k’ move up
selection_up();

break;

case 0Oxb5a: // ’enter’ select
selection_play();
break;

case 0x29: // ’space’ play/pause
if (playing)
stop_playback();
else
start_playback();
break;

int main ()

{
uint32_t blockaddr;
int i;

SD_CCS = IORD_8DIRECT (KANTO_CTRL_BASE, KANTO_CCS);
BLOCK_SECOND = (SD_CCS) 2 172 : 172 * 512;

printf ("Hello, Kanto\n");
vga_write_string(" == [Hello, Kanto] == ,

// stop playback
stop_playback () ;

printf ("Starting initialization\n");
// read first (metadata) block
read_block (0);

setup_track_table();

printf ("Track table read\n");

seek_to_track (0);

selected_track = 0;
selected_row = 0;

list_top_track = 0;

for (i = 0; 1 < track_count && i < 4; i++) {

snprintf (buffer, sizeof (buffer), "S%c $u. %s", (i == selected_row) ?
track_titles[i]);

vga_write_string (buffer, i + 1);

anyi

*

76

printf ("First block read\n");
start_playback();

printf ("Playing audio\n");

for (;;) |
blockaddr = IORD_32DIRECT (KANTO_CTRL_BASE,
if (IORD_8DIRECT (PS2_BASE, 0)

key_receive (blockaddr) ;
else if (blockaddr >= track_end)
seek_to_track (curtrack + 1);

return 0;

KANTO_BLOCKADDR) ;

vga.h
J/ *
* vga.h
*
* Created on: May 13, 2013
* Author: jy2432
*/

#ifndef VGA_H_
#define VGA_H_

void vga_write_character (char c,

void vga_write_string(char =*s,

#endif /+ VGA_

H_ */

unsigned int x,

unsigned int vy);

unsigned int y);

vga.c

#include
#include
#include
#include
#include

<syst
<io.h
<stdi

uint32_t font|
0x00007ec3,
0x00000000,
0x00006ef8,
0x00000000,
0x00000000,
0x008888f8,
0x00£880e0,
0x00708880,
0x00808080,
0x11441144,
Ox55aab5aa,
0xdd77dd77,
Oxffffffff,
0x00000000,
Oxffffffff,
0xfO0f0f0fo0,
0x0f0f0f0f,

em.h>
>
o.h>

<stdint.h>
"Vga .hll

1 =

0x9999f3e7,
0x0076dc00,
0xd8d8dcds,
0x006edbdb,
0x10387cfe,
0x8888003e,
0x8080003e,
0x8870003c,
0x80£8003e,
0x11441144,
Ox55aab5aa,
0xdd77dd77,
Oxffffffff,
0x000000ff,
OxfEEEEFOO,
0xf0f0f0fo0,
0x0f0f0f0f,

Oxe7ffe7e7,
0x76dc0000,
0xd8d8f8e6e,
Oxdfd8dboe,
0x7c381000,
0x08080808,
0x20382020,
0x223c2422,
0x20382020,
0x11441144,
Ox55aab55aa,
0xdd77dd77,
Oxffffffff,
Oxffffffff,
0x00000000,
0xfOf0f0fo0,
0x0f0f0f0f,

0x7e000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x11441144,
Ox55aa55aa,
0xdd77dd77,
Oxffffffff,
Oxffffffff,
0x00000000,
0xf0Of0f0fo0,
0x0f0f0f0f,

7

0x0088c8a8,
0x00888850,
0x00000000,
0x00000000,
0x00000006,
0x00000000,
0x00000000,
0x0000183c,
0x00001818,
0x00000000,
0x00000000,
0x0000183c,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x0000183c,
0x00666666,
0x0000006¢,
0x0010107¢,
0x00000000,
0x0000386¢c,
0x00181818,
0x00000c18,
0x00003018,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00007cc6,
0x00001838,
0x00007cco6,
0x00007cco,
0x00000clc,
0x0000fecO,
0x00003860,
0x0000feco,
0x00007cc6,
0x00007cco,
0x00000000,
0x00000000,
0x00000006,
0x00000000,
0x00000060,
0x00007cc6,
0x00007cco6,
0x00001038,
0x0000fc66,
0x00003c66,
0x0000f86¢c,
0x0000fe66,
0x0000feb6,
0x00003c66,
0x0000c6c6,
0x00003c18,
0x00001e0c,
0x0000e666,
0x0000£060,
0x0000co6ee,
0x0000c6eb,
0x00007cc6,
0x0000fc66,
0x00007cco,
0x0000fc66,
0x00007ccob,
0x00007e7e,

0x98880020,
0x5020003e,
0x0e38e038,
0xe0380e38,
0x0cfel830,
0x06le7efe,
OxcOf0fcfe,
0x7e181818,
0x18181818,
0x00180cfe,
0x003060fe,
0x7e€181818,
0x00286cfe,
0x063666fe,
0x0080febe,
0x00000000,
0x3c3cl818,
0x24000000,
Oxo6cfebecobe,
0xd6d0d07¢c,
Oxc2c60cl8,
0x6c3876dc,
0x30000000,
0x30303030,
0x0c0c0cOc,
0x00663cff,
0x0018187e,
0x00000000,
0x000000fe,
0x00000000,
0x00060c18,
Oxcecedb6db6,
0x78181818,
0x060c1830,
0x06063c06,
Ox3cé6eecfe,
0xc0c0fcO6,
0xc0OcOfcco,
0x06060c18,
Oxc6cob7ccoh,
0Oxc6c67e06,
0x18180000,
0x18180000,
0x0c183060,
0x00£e0000,
0x30180c06,
0xc60cl818,
Oxcb6codede,
Ox6ccocbofe,
0x66667c66,
0xc2c0c0cO,
0x66666666,
0x62687868,
0x62687868,
Oxc2c0cOde,
Oxcé6cofeco,
0x18181818,
0x0c0c0cOc,
0x666c7878,
0x60606060,
Oxfefed6co,
Oxfo6fedece,
Oxcé6cbcbeob,
0x66667c60,
Oxc6cbcbeob,
0x66667c6e,
0xc660380c,
0x5a181818,

0x2020203e,
0x08080808,
0x0e00fe00,
0xe000fe00,
0xfe60c000,
0x7el1e0600,
0xfcf0c000,
0x18181818,
0x187e3cl8g,
0x0c180000,
0x60300000,
0x187e3cl8,
0x6c280000,
0x60300000,
Ox6cbcoeoe,
0x00000000,
0x18001818,
0x00000000,
Oxo6cfeobecobe,
0x1616d67c,
0x3060c686,
Oxcccecee76,
0x00000000,
0x3030180c¢,
0x0c0cl1830,
0x3c660000,
0x18180000,
0x00181818,
0x00000000,
0x00001818,
0x3060c000,
OxebebcobTc,
0x1818187e,
0x60cOco6fe,
0x0606c67c,
0x0c0OcOcle,
0x0606c67c,
Oxcé6cobecb7c,
0x30303030,
Oxcé6coecb7c,
0x06060c78,
0x00181800,
0x00181830,
0x30180c06,
0xfe000000,
0x0c183060,
0x18001818,
Oxdedcc07¢c,
Oxcé6cbcbeo,
0x666666fc,
0xc0c2663c,
0x66666cf8,
0x606266fe,
0x606060£0,
Oxcb6cb663a,
Oxcé6cbcbeo,
0x1818183c,
Oxccccece78,
0x6Cc6666e6,
0x606266fe,
Oxcb6cbcbeob,
Oxcbcbebeo,
Oxcé6cobecb7c,
0x606060£0,
Oxc6dode7c,
0x666666€6,
0x06co6cb7c,
0x1818183c,

0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x10100000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x30000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x0c0e0000,
0x00000000,
0x00000000,
0x00000000,

78

0x0000c6cH,
0x0000c6co,
0x0000c6co,
0x0000c6ch,
0x00006666,
0x0000fecs,
0x00003c30,
0x00000000,
0x00003c0c,
0x10386¢cch,
0x00000000,
0x00303030,
0x00000000,
0x0000e060,
0x00000000,
0x00001cOc,
0x00000000,
0x0000386¢c,
0x00000000,
0x0000e060,
0x00001818,
0x00000606,
0x0000e060,
0x00007030,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00001030,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000e18,
0x00001818,
0x00007018,
0x000076dc,
0x00660066,
bi

void vga_write_character (char c,

{

// clear out the top bit

Oxcé6cbcbeob,
0Oxcb6cbecoeo,
Oxc6cod6bdo,
0x6c7¢c3838,
0x66663cl8,
0x860c1830,
0x30303030,
0x00c06030,
0x0c0c0cOc,
0x00000000,
0x00000000,
0x18000000,
0x00780c7c,
0x60786c66,
0x007cc6c0,
0x0c3cb6ecec,
0x007ccé6fe,
0x6460£060,
0x0076cccc,
0x606Cc7666,
0x00381818,
0x000e0606,
0x60666c78,
0x30303030,
0x00ecfedob,
0x00dc6666,
0x007cco6eb,
0x00dc6666,
0x0076cccc,
0x00dc7666,
0x007cc660,
0x30£c3030,
0x00cccccc,
0x00666666,
0x00c6c6dob,
0x00c66c38,
0x00cb6bcbeoh,
0x00feccl8s,
0x18187018,
0x18181818,
0x18180el8,
0x00000000,
0x6666663cC,

Oxcé6coecb7c,
0xc66c3810,
Oxd6feeebc,
Ox7c6cebeb,
0x1818183c,
0x60c2cofe,
0x3030303c,
0x180c0600,
0x0c0c0c3c,
0x00000000,
0x00000000,
0x00000000,
Oxccccec76,
0x6666667C,
0xc0cOc67¢c,
Oxccccec76,
0xc0cOc67¢c,
0x606060£0,
Oxccccec7c,
0x666666e6,
0x1818183c,
0x06060606,
0x786c66e6,
0x30303418,
Oxde6dedo6co,
066666666,
Oxco6cobeb7c,
0x6666667C,
Oxcccccecc,
0x606060£0,
0x380cc67¢c,
0x3030361c,
Oxccccee76,
0x66663cl8,
Oxdédofebc,
0x38386¢cc6,
Oxcé6coecb7e,
0x3060c6fe,
0x1818180e,
0x18181818,
0x18181870,
0x00000000,
0x1818183c,

0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x0000£f£f00,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x0ccc7800,
0x00000000,
0x00000000,
0x66663c00,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x6060£000,
0x0c0Ocle00,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x060cf800,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,

unsigned int x,

unsigned int vy)

c &= 0x7f;
int 3j;
for (j = 0; J < 4; J++) {

uint32_t symbol = font[4 x c + JI;

IOWR_32DIRECT (VGA_BASE, y x 80 % 16 + x « 16 + j = 4,
}

void vga_write_string(char =*s,

{

unsigned int y)

unsigned int x = 0;
if (!s) return;
while (xs)
vga_write_character (xs++, x++, vy);
for (; x < 80; x++)
vga_write_character (' 7, x, vy);

79

symbol) ;

fft /comp2real.c

#include <stdio.h>
#include <stdlib.h>

/* Takes complex number pairs line by line on standard input,
* combines them using the formula num (real << 16) | imag
* and then writes them out to standard output #*/

int main(void)

{

int real, imag, comb;

while (fscanf (stdin, "%d %d\n", &real, &imag) == 2) {
real &= Oxffff;
imag &= Oxffff;
comb = (real << 16) | imag;

printf ("$d\n", comb);

return 0;

fit /dftcoeffgen.c

#include
#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<complex.h>
<math.h>
<limits.h>
<stdint.h>

#define N 16

int main

{

intl6_t coreal,

int n,

(void)

coimag;
k;

float complex coeff;

for (k = 0; k < N; k++) {
for (n = 0; n < N; n++) {
coeff = SHRT_MAX % cexp(2 M PI » I » k = n / N);
coreal = (intlé6_t) creal (coeff);
coimag = (intl6_t) cimag(coeff);

printf ("%d %d\n",

return

coreal, coimag);

fft /dftsim.c

finclude
#include
#include
#include

<stdlib.h>
<stdio.h>
<complex.h>
<math.h>

80

#include <limits.h>
#include <stdint.h>

#define N 16

/+ Simulates the DFT stage of the FFT computation
* Takes 16 numbers line by line on standard input
* Produces 16 complex number pairs on standard output x/

int main(void)

{
intl6_t tdom[N];
intl6_t fdom[N][2];
float complex coeff;

int32_t sumreal, sumimag, multreal, multimag;
intl6_t coreal, coimag;
int n, k;
for (n = 0; n < N; n++)
fscanf (stdin, "%$hd\n", &tdom[n]);

for (k = 0; k < N; k++) {

sumreal = 0;

sumimag = 0;

for (n = 0; n < N; n++) {
coeff = SHRT_MAX * cexp(2 » MPI » I » k = n / N);
coreal = (intl6_t) creal (coeff);
coimag = (intl6_t) cimag(coeff);
multreal = coreal * tdom[n];
multimag = coimag * tdom[n];

sumreal +=
sumimag +=

(multreal >> 4);
(multimag >> 4);

fdom[k] [0]
fdom[k] [1]

sumreal >> 16;
sumimag >> 16;

printf ("%d %d\n", fdom[k][0], fdom[k][1]);

return 0;

fft /rccoeffgen.c

#include <stdio.h>

#include
#include
#include
#include

int main(int argc,

{
int k,

<complex.h>
<stdlib.h>
<limits.h>
<math.h>

char xargv([])

n;

float coeff;
short real, imag;
if (argc < 2) {

fprintf (stderr, "Usage:
exit (EXIT_FAILURE) ;

%$s N\n", argv[0]);

n atoi (argv([1l]);

for (k = 0; k < n / 2; k++) {

81

coeff = SHRT_MAX * cexp(-2 * M_PI = I x k / n);

real = creal (coeff);
imag = cimag(coeff);
printf ("$d $d\n", real, imag);

return 0;

fft /recombsim.c

#include <stdio.h>
#include <complex.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <math.h>

/% Simulates the recombination stage of the FFT computation

* Takes n / 2 complex number pairs on standard input
* prints out n complex number pairs on output #*/

int main(int argc, char xargv[])
{
int k, n;
float coeff;
intl6_t coreal, coimag;
intl6_t evenreal, evenimag;
intl6_t oddreal, oddimag;
int32_t multreal, multimag;
intl6_t xresreal, *resimag;

if (argc < 2) {
fprintf (stderr, "Usage: %s N\n", argv[0]);
exit (EXIT_FAILURE) ;

n = atoi(argv[1l]);

resreal = malloc(sizeof (intl6_t) =* n);
resimag = malloc(sizeof (intl6_t) = n);

if (resreal == NULL || resimag == NULL) {

fprintf (stderr, "Could not allocated memory.\n");
return EXIT_FAILURE;

for (k = 0; k < n / 2; k++) {

fscanf (stdin, "%$hd %$hd %$hd %$hd\n", &evenreal, &evenimag,

&oddreal, &oddimag);
coeff = SHRT_MAX * cexp(-2 = M_PI = I = k / n);

coreal = creal (coeff);
coimag = cimag(coeff);
multreal = oddreal % coreal - oddimag * coimag;

multimag = oddreal % coimag + oddimag * coreal;
evenreal >>= 1;

evenimag >>= 1;

multreal >>= 17;

multimag >>= 17;

resreal[k] = evenreal + multreal;

resimagl[k] = evenimag + multimag;

resreal[k + n / 2] = evenreal - multreal;
resimaglk + n / 2] = evenimag - multimag;

for (k = 0; k < n; k++) {

82

printf ("$d %d\n", resreallk], resimaglk]);

return 0;

fft /sumbins.c

finclude <stdlib.h>
#include <stdio.h>

int main(int argc, char xargv([])
{

int i, n, res;

unsigned int sum = 0;

short real;

if (argc < 2) {
fprintf (stderr, "Usage: sumbins n\n");
exit (EXIT_FAILURE) ;

n = atoi(argv[1l]);
for (1 = 0; ; i++) {
res = fscanf (stdin, "%hd\n", &real);
if (res == || res == EOF)
break;

else if (res < 0) {
perror ("fscanf");
exit (EXIT_FAILURE) ;

if (1 $ n==0 && 1 !'= 0) {
printf ("$d\n", sum);
sum = 0;

if (real < 0)
sum —-= real;
else
sum += real;

printf ("%d\n", sum);

return 0;

sdcard/crc7_calc.c

#include <stdlib.h>
#include <stdio.h>

/#* CRC7 Calculator for SD card SPI protocol
* Based off of the implementation in the Linux Kernel */

typedef unsigned char u8;
const u8 crc7_syndrome_table[256] = {

0x00, 0x09, 0x12, Oxlb, O0x24, Ox2d, 0x36, 0x3f,
0x48, 0x41, Ox5a, 0x53, Ox6c, 0x65, 0x7e, 0x77,

83

}i

static inline u8 crc7_byte (u8 crc,

{

0x19, 0x10, 0x0b, 0x02, 0x3d,
0x51, 0x58, 0x43, Ox4a, 0x75,
0x32, 0x3b, 0x20, 0x29, Oxle,
Ox7a, 0x73, 0x68, 0x6l, 0Ox5e,
0x2b, 0x22, 0x39, 0x30, O0x0f,
0x63, 0Ox6a, 0x71, 0x78, 0x47,
Ox64, Oxe6d, 0x76, 0x7f, 0x40,
0x2c, 0x25, 0x3e, 0x37, 0x08,
0x7d, 0x74, 0x6f, 0x66, 0x59,
0x35, 0x3c, 0x27, 0x2e, 0x11,
0x56, 0x5f, 0x44, 0x4d, 0x72,
Oxle, 0x17, 0x0c, 0x05, 0x3a,
Ox4f, 0x46, 0x5d, 0x54, 0x6b,
0x07, Ox0Oe, 0x15, Oxlc, 0x23,
0x41, 0x48, 0x53, 0x5a, 0x65,
0x09, 0x00, Oxlb, 0x12, 0x2d,
0x58, 0x51, Ox4a, 0x43, 0Ox7c,
0x10, 0x19, 0x02, 0x0b, 0x34,
0x73, 0x7a, 0x61, 0x68, 0x57,
0x3b, 0x32, 0x29, 0x20, O0x1f,
Ox6a, 0x63, 0x78, 0x71, Ox4e,
0x22, 0x2b, 0x30, 0x39, 0x06,
0x25, 0x2c, 0x37, 0x3e, 0x01,
0x6d, 0x64, 0x7f, 0x76, 0x49,
0x3c, 0x35, O0x2e, 0x27, 0x18,
0x74, 0x7d, 0x66, 0x6f, 0x50,
0x17, 0Oxle, 0x05, 0x0c, 0x33,
0x5f, 0x56, 0x4d, 0x44, 0x7b,
0x0e, 0x07, 0Oxlc, 0x15, 0x2a,
Ox46, 0x4f, 0x54, 0x5d, 0x62,

return crc7_syndrome_table[(crc << 1)

int main(int argc, char *argv([])

{

unsigned long long num;
unsigned char crc, dbyte;
int 1i;

if (argc < 2) {
fprintf (stderr, "Usage: %s [num]\n",
exit (EXIT_FAILURE) ;

num = strtoll(argv([l], NULL, 16);
num &= Oxffffffffff; /x 5 byte number

printf ("num : %$11x\n", num);
crc = 0;
for (i = 4; 1 >= 0; 1i--) {

dbyte = (num >> (i % 8));

crc = crc7_byte(crc, dbyte);
crc = (crc << 1) | 0x01;
printf ("crc: %$x\n", crc);

return 0;

0x34, 0x2f,
0x7c, 0x67,
0x1f, 0x04,
0x57, 0Ox4c,
0x06, Ox1d,
Ox4e, 0x55,
0x49, 0x52,
0x01, Oxla,
0x50, 0Ox4b,
0x18, 0x03,
0x7b, 0x60,
0x33, 0x28,
0x62, 0x79,
0x2a, 0x31,
Ox6c, 0x77,
0x24, 0x3f,
0x75, Oxoe,
0x3d, 0x26,
Ox5e, 0x45,
0x16, 0x0d,
0x47, 0x5c,
0x0f, 0Ox14,
0x08, 0x13,
0x40, 0x5b,
0x11, 0x0a,
0x59, 0x42,
0x3a, 0x21,
0x72, 0x69,
0x23, 0x38,
Ox6b, 0x70,

u8 data)

datal;

argv[0]);

*/

0x26,
Ox6e,
0x0d,
0x45,
0x14,
0x5c,
0x5b,
0x13,
0x42,
0x0a,
0x69,
0x21,
0x70,
0x38,
0x7e,
0x36,
0x67,
0x2f,
Ox4c,
0x04,
0x55,
0x1d,
Oxla,
0x52,
0x03,
Ox4b,
0x28,
0x60,
0x31,
0x79

84

sdcard/pcm2text.c

#include <stdio.h>
#include <stdlib.h>

/% Convert 16-bit big endian PCM data to textual integers

int main(void)

{
int lowbyte = 0;
short sample;
char byte;
int err;

while ((err = fread(&byte, 1, 1, stdin)) > 0) {
if (lowbyte) {

sample |= byte;

printf ("$hd\n", sample);
} else

sample = byte << 8;
lowbyte = !lowbyte;

if (err < 0) {
perror ("fread");
return -1;

return 0;

*/

sdcard /testdata.c

#include <stdio.h>
#include <stdlib.h>

#define TEST_SIZE 512
#define TEST_NB (2 * TEST_SIZE)

int main(int argc, char =xargv([])

{
unsigned char data[2 * TEST_NB];
unsigned short i, out;
FILE * f;

if (argc < 2) {
fprintf (stderr, "Usage: %$s\n", argv[0]);
return EXIT_SUCCESS;

for (i = 0; i < TEST_SIZE; i++) {
out = (i & (1 << 8)) 2 "1 : 1i;
data[2 * 1] = (out >> 8) & Oxff;

data[2 = 1 + 1] = out & Oxff;

f = fopen(argv([1l], "w");

if (f == NULL) {
perror ("open()");
return EXIT_FAILURE;

}

if (fwrite(data, 1, TEST_NB, f) != TEST_NB) {
fprintf (stderr, "Write unsuccessful\n");
return EXIT_FAILURE;

85

fclose (f);

return 0;

sdcard /text2pcm.c

#include <stdio.h>
#include <stdlib.h>

/* Converts text-format numbers on standard input

* writes out 16-bit big-endian PCM data on standard output

int main (void)
{
short sample;
unsigned char buffer[512];

int 1 = 0;
while (fscanf (stdin, "%$hd\n", &sample) == 1) {
buffer[i] = (sample >> 8) & Oxff;
buffer[i + 1] = sample & O0xff;
i += 2;
if (1 == 512) ¢{
fwrite (buffer, 2, 256, stdout);
i = 0;

return 0;

*/

A.4 Python
fft /inputgen.py

import numpy as np
import sys
Produces N samples of a sine wave at W Hz frequency
if _ _name__ == '__ _main___
if len(sys.argv) < 3:
print ("Usage: " + sys.argv[0] + " N W")
sys.exit (1)
fs = 44100.
N = int (sys.argv[1l])
W = float(sys.argv([2])
i
t
X

’.

= np.array(range (0, N))
=i/ fs
= (2 *x 15 = 1) % np.cos(2 * np.pi » W % t)
for real in x:
print int (real)

fft /plot.py

import matplotlib.pyplot as plt
import math

86

import sys

if __name__ == '__main__ ':
comp = False
if len(sys.argv) >= 2 and sys.argv[l] == "comp":

comp = True

if comp:
vals = [tuple([int (i) for i in s.strip().split(’ ’)]) for s in sys.stdin]
plt.plot ([math.sgrt(r «x 2 + i xx 2) for (r, 1) in wvals])

else:
vals = [int(s.strip()) for s in sys.stdin]
plt.plot (vals)

plt.show ()

roms/arraygen.py

#!/usr/bin/env python
Converts a stream of numbers into a VHDL array initializer

import struct
import sys
import math
import os.path
import sys

def convert_int (x, size):

fmt = "x\"%%0%dx\"" % (size / 4)
return fmt $ (x & ((1 << size) - 1)

def convert_int_array(arr, size):
return ', ’.join([convert_int (x, size) for x in arr])

if __name__ == '_main__':
if len(sys.argv) < 2:
print ("Usage: arraygen.py dtype dsize [romfile]")
sys.exit (1)

dsize = int (sys.argv[1l])

if len(sys.argv) >= 3:

romfile = open(sys.argv[2])
else:
romfile = sys.stdin
values = [int(line.strip()) for line in romfile]
arrstr = convert_int_array(values, dsize)
print " (" + arrstr + ")"
roms/mifgen.py

import sys

def convert_int (x, size):

fmt = "$%0%dx" % (size / 4)
return fmt % (x & ((1 << size) - 1)
if _ name_ == '__ _main__ ’:

if len(sys.argv) < 2:

87

print ("Usage: mifgen.py width [romfile]")
sys.exit (1)

width = int (sys.argv[1l])

if len(sys.argv) >= 3:

romfile = open(sys.argv[2])
else:
romfile = sys.stdin
values = [int (line.strip()) for line in romfile]

depth = len(values)

print ("WIDTH=%d;" % width)
print ("DEPTH=%d; \n" % depth)

print ("DATA_RADIX=HEX;\n")

(
(
print ("ADDRESS_RADIX=UNS; ")
(
print ("CONTENT BEGIN\n")

for i, val in enumerate (values) :
print ("%d : %s;" % (i, convert_int(val, width)))

print ("\nEND; ")

sdcard /mkauimg.py

Usage: ./mkauimg.py audiol.ogg [audioZ.mp3 ...] output.raw

Takes in several audio files, concatenates them, and converts
then into raw 16-bit signed-integer big-endian PCM data.
#
#

First words contain the lengths of all the files.

import sys

import subprocess

import os

import struct

import mutagen

from mutagen.mp3 import MP3

def get_song_title(filename) :
metadata = mutagen.File (filename)

if type (metadata) is MP3:
title = metadatal[’TIT2'].text[0]
artist = metadata[’TPELl’].text[0]

else:
title = metadatal[’title’][0]
artist = metadatal[’artist’][0]
return str(title + " - " + artist)

def make_header (offset, filename) :

if filename is not None:
title = get_song_title(filename)
print title

if len(title) >= 60:
raise Exception("Song title is too long")

header struct.pack (">I", offset) + title
header = header.ljust (64, "\0")
else:
header = struct.pack(">I", offset).ljust (64, "\0")

return header

88

if _ name_ == '_ _main__ ’:
filesizelist = []
curoff =1
offsetlist = [curoff]
inputs = sys.argv[l:-1]

if len(inputs) >= 8:
print "Too many songs. Will only write the first seven."
inputs = inputs[:7]

for i, inptfile in enumerate (inputs):
convert to PCM using sox
sox_call = "sox \"" + inptfile + "\" -b 16 -e signed-integer -B -c 1 -t raw
tempfileformkau" + str (i)
print (sox_call)
os.system(sox_call)

get number of characters, need to convert to 512byte block
filelength = os.path.getsize ("tempfileformkau" + str(i))
newlength = int ((filelength - 1)/512 + 1)
filesizelist.append (newlength)

for size in filesizelist:
curoff += size

offsetlist.append(curoff)

print ("Track offsets: " + str(offsetlist))

header = ’’.join([make_header (off, fname)

for (off, fname) in zip(offsetlist[:-1], inputs)])
header += make_header (offsetlist[-1], None)
header = header.ljust (512, ’"\0’

f = open(sys.argv[-1], "w")
f.write (header)

for i in range (0, len(inputs)):

fin = open("tempfileformkau" + str(i), "r")
data = fin.read(512)
while len(data) == 512:

f.write (data)
data = fin.read(512)

if len(data) > O:
f.write(data)
padding = "\0’ % (512 - len(data))
f.write (padding)

for i in range (0, len(sys.argv) - 2):
os.remove ("tempfileformkau" + str(i))

A.5 Shell
fft /fitsim.sh

#!/bin/bash

Simulates the hardware FFT compilation using dftsim and recombsim
Takes 256 numbers line by line on standard input and produces
256 complex number pairs line by line on standard output

if [-z "$1" 1; then

cat > fftinputs.txt
inputs=($(<fftinputs.txt))

89

else
inputs=($(<"S1"))
fi

reorder=(0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15)

for i in {0..15}
do
for j in {0..15}
do
base=$ (expr $3j * 16)
addr=$ (expr $base + ${reorder([$i]})
echo ${inputs([$addr]}
done | ./dftsim > dft${i}.txt
done

for 1 in {0..7}
do

even=$ (expr 2 \x $1i)

odd=$ (expr S$even + 1)

paste -d " " dft${even}.txt dft${odd}.txt | ./recombsim 32 > recombl-${i}.txt
done

for 1 in {0..3}
do

even=$ (expr 2 \x $1i)

odd=$ (expr $even + 1)

paste -d " " recombl-${even}.txt recombl-${odd}.txt | ./recombsim 64 > recomb2-${i}.txt
done

for 1 in {0..1}

do
even=$ (expr 2 \x $1i)
odd=$ (expr S$even + 1)

paste -d " " recomb2-${even}.txt recomb2-${odd}.txt | ./recombsim 128 > recomb3-${i}.txt
done
paste -d " " recomb3-0.txt recomb3-l.txt | ./recombsim 256

rm dft{0..15}.txt

rm recombl-{0..7}.txt
rm recomp2-{0..3}.txt
rm recomb3-{0..1}.txt

sdcard/playimage.sh

#!/bin/sh
Plays raw PCM data

play -b 16 -e signed-integer -B -c 1 -r 44100 -t raw $1

90

