CUDoom: Raycasting Video
Game

Alden Goldstein, Edward Garcia
Minyun Gu, Wei-Hao Yuan, Yiming Xu

Original Proposal

NIOS

Processor

Avalon bus

PS/2
Kevboard
Controller

!\-“fnil:nll'fl

Color LUT

Column
Generator

Milestone 1

!

e Implement raycasting algorithm in
software
e Design several mazes

Milestone 2

Address
Translation

\ 4

SRAM

framebuffer

A

e Integrate the algorithm with FPGA

* Realize hardware acceleration for the
algorithm

e Display the world properly on screen

Milestone 3

Y

VGA Raster

!
—

Screen

e Add audio output to the game
e Complete game features, i.e. player
movement, interface

30 FPS Goal, Raycasting in software,
SRAM Framebuffer

Actual Implementation

All milestones complete

60 Frames per second

Hardware raycasting acceleration

Wall textures, floor textures, sky generation
Multiple wall heights

Background music from flash memory

DE2WM8731

NIO RRUP ‘

Sl '
SOUND
I CONTiOLLER

AVALON BUS

LS L

SDRAM TRISTATE
CONTROLLER MASTER

SDRAM CFI FLASH

KEYBOARD

\/

KEYBOARD

CONTROLLER

L)

NIOS
INTERFACE

RAY FSM

J

FIFO

MEMORY

!

SKY
N GENERATION

—

TEXTURE
GENERATION

3§

TEXTURE

ROM

VGA RASTER

System
Overview

CLOCK 50 MHz
CLOCK 25 MHz
SDRAM CLOCK

LEGEND

(- CLOCK 50 MHz A

() CLOCK 25 MHz
(") SDRAM CLOCK (50 MHz)

(& ASYNCHRONOUS CLOCK

Software Overview

* Keeps track of player position

— Local copy of world map

— Polls keyboard and updates player direction /position
* Keeps track of casting rays from player’s FOV

— Calculates and stores angle measurements

— Passes individual rays and player position to hardware
* Generates Music

— Keeps track of sound generation through interrupts
— Fetches new samples from flash memory

Hardware Overview

Two main clock domains: Nios components (50
MHz), VGA Components (25 MHz)

Raycasting acceleration calculates ray extension
loop and generates intermediate variables such
as wall heights

Memory buffer for intermediate variables
protected by dual clock FIFO

Separate wall texture, floor texture, and sky
components generate pixel calculations on VGA

timings

Ray Casting in a Nutshell

We cast raysobviously!

Based on perspective, farther walls appear
smaller...more precisely, column height = inverse
distance

2-D map layout, based on a matrix, thus all walls
must be square (can be diagonal in more
advanced ray casters)

So, we cast rays to find wall on 2-D map, and
used the distance to calculate the perceived
column height

How to find walls

Lode Vandevenne, Lode’s Computer Graphics Tutorial,
http://lodev.org/cgtutor/raycasting.html, 2007

DDA

* Modified Breshenham’s

 Covers ALL Walls

* Usedin LodeV’s
software template

e FAST and never misses a

wall
* Seems ideal...right??

Lode Vandevenne, Lode’s Computer Graphics Tutorial,
http://lodev.org/cgtutor/raycasting.html, 2007

LoopBack

* Because hops in DDA are quantized, it can be
prone to ugly, erratic, errors if not enough
precision is used (such as fixed point software)

* A happy medium is to employ a loopback, in
which edges are refined after iteration.

* The artifact from missing a wall is much more
predictable and less ugly than those of DDA, and
rest of the wall is smooth as with DDA. Slower,
but more robust = less risky option for our
project

Ray FSM

Motivation: Casting Rays is an iterative procedure...
can be very slow as mentioned

To get across a 32 X 32 map using 1/32 of a square
increments, can be as large as....

32 X 32 X sgrt(2) = 1500 iterations per column
—1500 X 640 =

almost 1 million iterations per frame!

Ray FSM (continued)

* Loops in software carry large overhead + serial
instructions within loop

* Why not increment at 50 MHz --> need
hardware

e Share burden between hardware and
software = efficient pipelining

Output Ray Casting Parameters

—-

Input Ray Casting Parameters

Output Column Address

(Same as input, latched) ™ 256-bit
Input Column Address EIFO data
Vertical Blank Out
FIFOInterface .
Output Column Address
WRREQ
Control Signal WRFULL

RAY FSM

Ready

Vertical Blank In

N VA Controllr Iterface

Transition: Rising Edge of
Control Signal from
Software

Action: Latch Inputs from
software

Transition:
Always
Action:

_FlRST RAY Nothing --LOOP
EXTENSION s&:EgFU::v BACKWARD

READY STATE STAGE --EDGE
--ASSERTS READY —INCREMENT INCREMENTS REFINE
SIGNAL HIGH FOR COORDINATE

SOFTWARE

--READY = 1’

Transition: when wall is
hit (ROM output is not zero)
Action: Nothing

Transition: when
no longer on wall
Action: Nothing

Transition: Always
Action: Nothing

Transition: Always
Action: Nothing

Transition: After 32 cycles
(32 bit integer division)
Action: Nothing

INCREMENT
RAYS BY 1

PERFORM INITIALIZE INCREMENT
INTEGER DIVISION
ADDITIONAL LONG VALUES

CALCULATIONS DIVISION

--COMBINATIONAL
PROCESS,
RETURN --FINALLY RECEIVES ALL
TO READY STABLE INPUTS
Transition: Last Column? = false STATE --EXECUTES DURING
Action: WRREQ = ‘1’ (to FIFO) DIVISION STATES

Transition: Always
Action: Nothing

Transition: V_BLANK =1’
(from VGA)

Action: WRREQ = ‘1’

(to FIFO)

CHECK IF

WAIT STATE LAST
CHECK IF FIFO COLUMN ON
IS FULL SCREEN WAIT FOR

N VERTICAL
Transition: Last BLANK

Transition: FIFO is not full Column? = true
Action: Nothing Action: Nothing SIGNAL

Frame Sync

 Edwards wanted Frame Sync, so naturally we
putitin...

* David wanted Anti-Aliasing, so naturally we
left it out...

Why Frame Sync was annoying

* Not to big of a deal...just double memories,
have software wait on V-blank (via FSM), and
toggle memories on V-blank... so why is it
hard?

e 224 bits of parameters per column X 640
columns, naturally lends itself to 256 bits of
parameters and 1024 addresses...

e But this is too big when we double it!!

Memory

Two Solutions: Cut bits or cut addresses

Cut down bits to 192, and splice a 128 bit by 1024
memory, with a 64 bit by 1024 memory. Requires 96
M4K blocks according to Megafunction Wizard.

Use a full 256 bits, but have a memory with 512
addresses and a memory with 128 addresses. Requires
74 M4K blocks according to Megafunction Wizard.

We used second scheme, to preserve memory and bits
(help image more), however, switching addresses lead
to a strange ugly line where switch was. We fix this by
using memory addressing scheme on the next page

256 bit words, 512 words 256 bit words, 128 words
Memory A Memory B

Old Scheme (Reads and Writes)

256 bit words, 64 words
Memory C

New Scheme (Writes)

New Scheme (Reads)

Memory A 512
O Memory B
Memory A 510 514 Memory B
482 Memory C 542

® O

Memory C Full Address Span (for Diagram Reference)
480 544

@ O

496

Memory A

Memory C 526

®O

Memory B

0

Output Ray Casting Parameters
p—

Output Ray Casting Parameters
Output Column Address
256 bit (Same as input, latched)

Data from
FIFO
Vertical Blank Out I:l
RDEMPTY
MEMORY INTERFACE

Column
To drawStart
FIFO

CLK (25 MHz)

drawEnd

FIFO

Motivation: System crashes, seemed to be result of
corrupted M4K memory. M4K was interacting with
two clocked domains, read addresses and outputs
went to 25 MHz domain, writes came from 50 MHz
domain (writes come from FSM)

Solution: Make M4K run on 25 MHz, add FIFO to
allow Ray FSM to write to M4K Ram. Column
addresses (and blank signal), appended to data,
M4K constantly reads from FIFO and writes to
address encapsulated within data

VGA_CLK
VGA_HS
VGA_VS
VGA_BLANK

VGA_BLANK_SIG

VGA_SYNC

VGA_R
VGA_G

VGA_B

CLK (25 MHz)

Reset

—

VGA Rastering

VoA Display
VGA RAST

ak
o

RG8 Generator

ER

Draw Start
Draw Middle

Draw End

Texture Color

Sky Color
Texture Number

Side

Current Row

Current Column

Wall Position

VGA Rastering

Reset

Horizontal

Column lterator Current Column

Row lterator Current Row
Vertical

Current Row

VGA Signals
Generator

Multiplexer Wall Position

VGA Output € vga_blank

VGA Color

Text Col
RGB Generator exture Lofor
Sky Color

Texture Generation

VGA RASTE R Texture Color
Texture

Generation

Current Column

~
N
(@)
c
=
=
(1]
=)
—
el
o
3
-

Combinational
LO iC —— e
8 -, -

v

MEMORY

Pixel Address

TEXTURE
ROM

on - -—— - ———————
o= - —— - -

N e

S N S R RN S SN RN SN SN RN RN SN SN RN N RSN NN RN N SN R R S R R

Critical Timing

cur_row
texNum

line_minus_h

invlineHeight

Y| WallTexAddr

| line_minus_h2 | %

| floorX | | tmpPosX |

A4

| invlineHeight2 }

A4

pattern
index

floorTexAddr

| invDistWall | | el2 | mult

> mult

@ tmpWeight \\/
N

> weight > mult
— \j

mult

)\ 4

A4

®©

| floorY | | tmpPosY |

Sky generator block diagram

ST) AVALON BUS

§

SDRAM
CONTROLLER

MEMORY

SKY

GENERATION

l—I

VGA RASTER

Sky Generation

Block RAM Interface

Row << 9 +
angle>>1

angle data

row information

Avalon bus

Ccs

addr

write data

r/w

byte_en

vy ¥ v

read data

™ SRAM

Sky Generation Timing

* There is no clock in SRAM, it is controlled by address
* Maximum Data Delay is 15 ns, whether the clock is 40ns or

20ns

Address 0 }\ddress () | Address 0 | Address 0 | Address O

| '_

l<—> Read!data () | Read data 0 | Read data () | Read data 0 | Read data 0
|

v ta Delay |

Latch address '

l.atch read data

Asynchronous SRAM interface

AO-A17 |:>

o

256K x 16

BECODER MEMORY ARRAY
vCC —>»
GND —>»
Lower Byte DATA <:::> COLUMN 1/O
1/O8-1/015 @ CIRCUIT
Upper Byte A
A
CE —
% CONTROL
R CIRCUIT
UB —
LB —
ISST”
IS61LV25616
TRUTHTABLE
VO PIN
Mode WE CE OE B UB VOO-1/O7 1/08-/O15 Vcc Current
Not Selected X H X X X High-Z High-Z Ise1, Ise2
Output Disabled H L H X X High-Z High-Z Icc
X L X H H High-Z High-Z
Read H L L L H Dout High-Z Icc
H L L H L High-Z DouT
H L L L L Dout DouT
Write L L X L H Din High-Z Icc
L L X H L High-Z Din
L L X L L Din Din

SDRAM architecture

FUNCTIONAL BLOCK DIAGRAM

CLKc—p| Clock
CKEo—p| Generator

Address

<

Mode
Register

Row
Address
Buffer

&
Refresh q

Counter

[] Bank D

[] Bank C

Bank B

3

cso—»
RASO——»
CASO—
WE O——mm»

Command Decoder

Row Decoder

Bank A

> Sense Amplifier

=)

Control Logic

Column
Address

| | Buffer

&
Burst
Counter

Column Decoder &
Latch Circuit

<
<+

==

L

Data Control Circuit <}:">

Latch Circuit

0
Input & Output

Buffer

¢ DOM

A1 DQ

SDRAM controller diagram

* The SOPC generated controller would transmit data to DRAM
according FSM

EEEEE

SDRAM interface

* After SOPC generating SDRAM controller, we integrated the
controller according this diagram

* We also need to generate PLL for proper operation
* To generate a DRAM clock ahead by 3 ns

System clock

PLL

Clock Enable

Address

Bank Address |

CLK
CKE
ADDR([11:0)

BAI
Bank Address 0
BAO
Chip Select .
SDRAM CS_N SDRAM
controller Column Address Strobe CAS N chip
Row Address Strobe .
RAS_N
Write Enable)
WE_N
Data
DQ[15:0]
High-byte Data Mask
. UDQM

Low-byte Data Mask

LDOQM

Keyboard

KEYBOARD

l PS2 interface

NIOS I KEYBOARD
CONTROLLER

]

AVALON BUS

PS2 interface

 Keyboard controller from Lab3
e Serial interface with CK, DAT
* Data would be put to register for Nios polling

Idle

RIS AR

ldle

oan [s4(01]2[3[4/516] 7P s

LEFT CHANNEL RIGHT CHANNEL
DACLRC/
ADCLRC
sc [JUU 1IN
DACDAT/
ADCDAT 1= m2 | na n2|mt| n
MSB LSB

Data_request

NIOS Il
CPU

Avalon_bus

Address
Readdata

Writedata (8 bit)

Control Signals

Reset_n

CLK (50 MHz)

Address (22bit)

—

Read/Writedata (8 bit)

Control Signals

W A

MUSIC

CONTROLLER

Tri-state
Bridge

Memory Mapping

4M
CFI Flash

(Avalon
MM slave)

AUD control signals

Data_to_music (16 bit)

Data_request

Audio_clock

|

**Sample
(8-bit wic
22kHz sat
rate)

Loaded b
Flash pro
in advanc

As the sound controller can

See. Writing to sound_controller
happens (write&chipselect);
Clear the irg

A

Have set irq but wait
WAITING to ensure the write

really happens

Keeps idle; wa
for data_reque

Data_request comes from
wm8731, set the irq and
starts waiting for the data

Other issues: Why Flash? How about Buffering?
Choose the Sampling frequency

Key Difficulties

Raycasting Speed

SRAM Clock Domain

SDRAM Clock Domain

M4K Clock Domain

Audio Interrupts

Memory Division Screen Glitches
Debugging with Unreliable Peripheral

Lessons Learned

Pay attention to Clock Domains (Eddy)

Hardware Debugging is as valuable as
software debugging (Minyun and Wei)

ModelSim is invaluable (Yiming)
No Printf’s in interrupts (Minyun)

Persistance is key; You can accomplish
anything if you have the patience to learn it.
(Alden)

