Pah! Pah! Pah!

A voice activated video game
Hao Hu(hh2506), Kezhen Liu(kl2688), Shaobo He(sh3156), Sheng Zheng(sz2372), Yi Su(ys2646)
Short name: Pah!

Abstract

The goal of our project is to port a voice
activated iPhone game called Pah to Altera
DE2 Board. This proposal will provide a
rudimentary idea of implementation of this
game, i.e. the jobs of hardware and software.
Milestones of this project will also be
presented.

Overview of Project

Pah! is a very popular game on the i0S
platform which every member of our team
really enjoys. So we decide to port this game
to a FPGA board for three essential
components of this game, voice processing,
computing core, screen display are provided
by DE2 Board. The prototype of this game is
a spacecraft either dodging meteoric stones
by doing up and down or destroying them by
launching missiles. Both of the two actions
are controlled by voice, namely when the
tone of “Ah” goes high, the spacecraft goes
upper and when the player issues “Pah”, one
missile is sent out. The spacecraft goes down
by default. When it hits the meteoric stone,
game is over. Our plan is to implement the
first function while leaves the second as an
option depending on our schedule.

What it looks like

Since this game is migrated, it behaves very
similar to its prototype on iPhone. First,
voice of the player is sampled by a
microphone connect to DE2 board. Then the
spacecraft displayed in VGA will go either up
or down depending on the trend of the
player’s tone.

How it may work

This section is presented by a data-flow
order. The first part is voice processing.
After the voice is processed, a two-bit signal,

which indicates the trend of pitch, will be
available to be read by the game program
and moves will be done based on the value of
the signal. Finally, the screen will display
according to what move has been caused by
the player.

Voice processing:

The first thing is to consider the processing
of human voice. Since different people have
different pitch of their voices, a fixed
standard in spectrum will be invalid. The
variation of frequency across different time
is our solution for the above problem.

The FFT algorithm is a fast and effective way
to get the spectrum of the voice signal. The
FFT algorithm achieves its efficiency gains
by decomposing the DFT into a number of
smaller DFTs and exploiting the symmetry
and periodicity of the sub stages to reduce
the number of calculations. An n-point FFT
only requires nxlog2n complex
multiplications. Cutting down the number of
complex multiplications improves the FFT
performance, often by several orders of
magnitude, depending on the order of the
transform. Using the FFT IP core in
MegaWizard to implement the FFT in
hardware will further improve the speed of
spectrum analysis compared with software
implementation in the Nios system.

Control generation:

The trend of the pitch is regarded as the
control signal. It only requires a rough
spectrum variance across time without
considering the details of the spectrum. After
the Fourier transform of the signal was
calculated by the FFT IP core, the spectrum
information should be further processed.
The average frequency of some spectrum
with largest amplitude will be the regarded



as the rough frequency for analyzing the
trend.

HW/SW job allocation:

1.What hardware will do

Hardware part of this project is responsible
for voice processing and offering hardware
infrastructure like Nios2 core, avalon bus
and screen. Voice process will be
implemented by VHDL codes and function as
a peripheral.

2.What software will do

We will write a software program just as
what Pah! developer does. The only
difference is that we have a dedicated voice
processing component and we use C or C++.

Milestones:
Milestone 1 (April 2):
e Make detailed hardware design
specification
e Interface voice processing module to
avalon bus
e Configure VGA interface
Build software skeleton

Milestone 2 (April 16):
e Implement voice processing module
and validate it by writing testbench
e Build the game program and test it
with designated stimulus

Milestone 3 (April 30):
e Putall together by connecting voice
processing module to its interface to

avalon bus
e Debug until it totally functions
correctly
References:

1. FFT wiki link:
http://en.wikipedia.org/wiki/Fast_Fo
urier_transform

2. Pah! 2.0 App Store link:
https://itunes.apple.com/us/app/pa
h!- 2.0/id547013723?mt=8

3. Altera.com:

Accelerating Nios II Systems with the
C2H Compiler Tutorial



