Hardware Accelerated Decoding of FIX/FAST and
Book Building of Market Data

Project Proposal - CSEE E4840 Spring 2013

Danqing Hua, Chang Liu, Junkang Ren, and Raghavan Santhanam
Columbia University
{dh2604, c13078, jr3289, rs3294}@columbia.edu

I. OVERVIEW

In this project, we are using Solarflare AoE board to
accelerate decoding of FIX/FAST, a protocol used for
efficiently compressing market data, and build a book to
record such data. Thanks to this high-speed board, we
can implement such functionality on hardware that is
much faster than software. By decoding the raw data
sending from MAC, we use the predefined templates
with default values and delta-type operations that rely
on previous values from other entries to get a much
more compressed format. After that, we would build a
book to store such information and update the book by
three types of command such as update, insert, and
delete. The book reports summarized order quantities
and order counts at a given price level. The depth
represents the number of price levels that are supported
in the feed. As Figure 1 shows, the view can be
represented as a number of rows in a table for each of
the bid and ask sides. On each side, there are a number
of rows showing the quantity available at a number of
price levels. An aggregate depth book is sequenced by
price, descending for bid and ascending for ask. Finally,
the book is transmitted as a new UDP packet to the PC in
which the AoE is installed.

Bid Ask

Order Count Quantity Price Price Quantity Order Count
1 100 9427.50 9428.00 40 2

19 500 9427.00 9428.50 600 35

34 750 9426.50 9429.00 850 55

25 400 9426.00 9429.50 350 21

14 300 9425.50 9430.00 150 12
Figure 1 5-Deep - Best Bid/Ask

II. BACKGROUND

The Financial Information eXchange (FIX) Protocol is
a series of messaging specifications for the electronic
communication of trade-related messages. Because of
the huge increase in volume of data transferred in
today's markets, the FIX Adapted for STreaming (FAST)
Protocol has been developed as part of the FIX Market
Data Optimization Working Group. FIX messages, like
any self-describing message syntax, have a relatively
high overhead of message descriptor. The FAST Protocol

is a way of eliminating this overhead by exchanging the
message description separately from the message. For
example, in traditional FIX messages each field takes the
form “Tag=Value<SOH>", FAST eliminates redundancy
with a template that describes the message structure.
This technique is known as implicit tagging as the FIX
tags become implicit in the data.

III. HARDWARE

A packet consists of IP header, UDP header and UDP
payload. Each of these components consists of various
length of 8-bit FLIT. This design handles ONE FLIT at a
clock cycle. Thus, based on the length of the packet, it
takes various numbers of cycles to process an order.
However, the overall throughput is 1 flit per clock cycle,
as long as the pipe is filled.

There are five cascaded blocks in this hardware
design, which is a pipeline structure. Each pipe stage
consists of 1 or 2 sub-stage. Please Refer the Figure 2 for
details.

1 Ethernet Driver Block

This block is a hardware diver for the Ethernet port.
As this block may be provided by the manufacturer, we
do not need to build it. However, we require this block to
meet certain specification.
1) Buffer a packet one it is received.
2) Put the next flit on 8 bit output every clock cycle once
selected
3) Send a "END" signal once the packet is finished

2 Packet Processing Block

There are three units in this block, but only one of
them, "Packetizer”, is one the pipeline. Thus, this block
consumes one clock cycle.

Channel select unit basically provides select signal
for 2 input Ethernet ports. When a channel 1 is selected,
an ACK signal is asserted for Driver 1 and O for channel 2.

[Feed Arbitrator & \‘
Flit Extraction /

| Ethernet Driver
AN

if \‘
| Packet Processing |
\ /

S

Meanwhile, the select signal is also given to mux
and Feed Arbitrator to make correct decision.

Packetizer is the main function unit in this Block. It
rips always the IP header and UDP header, only passes
along the IP serial number and UDP payload. It also
calculates the checksum and tosses the flit always in case
the checksum is bad.

3 Feed Arbitration and Flit Extraction Block

Feed Arbitrator Unit and Flit identifier unit is on the
main pipeline. Thus, this block consumes two clock
cycles.

Feed Arbitrator unit is to compare the IP serial
number with previous serial number of the same
channel. If the serial number is added exactly by one,
which indicates correct, the flit is passed along. Else,
some error signal is asserted.

Flit identifier unit is used to identify the ROLE of
each flit. For example, 1st to 42nd flit is IP header and
UDP header. 20t flit is IP serial number. 43rd flit should
be PMAP. 44t flit should be Template ID. After 44th, all
flits are real field data. This block can be used to tell
Template FSM what type of flit they are receiving.
However, it is possible to integrate this block inside the
FSM. Thus, the necessarily of existence of this block is
TBD.

Flit counter unit counts the flit received and input
the count to Flit Identifier.

4 FF Decoding Unit
Feed Arbitrator Unit and Flit identifier unit is on the
main pipeline. Thus, this block consumes two clock

cycles.

Feed Arbitrator unit is to compare the IP serial
number with previous serial number of the same

Figure 2 high-level architecture

FF Decoding /ﬁ (Book Building
\

channel. If the serial number is added exactly by one,
which indicates correct, the flit is passed along. Else,
some error signal is asserted.

Flit identifier unit is used to identify the ROLE of
each flit. For example, 1st to 42nd flit is IP header and
UDP header. 20t flit is IP serial number. 43rd flit should
be PMAP. 44t flit should be Template ID. After 44th, all
flits are real field data. This block can be used to tell
Template FSM what type of flit they are receiving.
However, it is possible to integrate this block inside the
FSM. Thus, the necessity of existence of this block is TBD.

Flit counter unit counts the flit received and input
the count to Flit Identifier.

5 BOOK Building Unit

Blocks before BOOK Building Block are like
"Instruction Fetch & Decode unit" in a CPU. Book
Building Block is the "Execution Unit" in a CPU.

There are three major units in this block.

The command buffer is where decoded instructions
from previous Template FSM are stored. Basically, this
buffer can be a FIFO waiting for Control FSM to execute
its content one by one.

Control FSM is control unit that regulates the
operation inside the block. It first looks at the command
buffer, then based on the property of the command, tells
Book Cache to either Update, Delete, Insert, Fetch or
Write Back. Meanwhile, it must provide accurate address
for memory operation.

Book Cache is the memory where one can store
whole book for a particular symbol. Meanwhile, it can
operate the commands from Control FSM. For example,
if you want to make change to MICROSOFT, the
"Microsoft book" will be fetched from memory. Then the

control FSM will tell Book cache to update certain field.
When finished, "Microsoft book" will be written back to
memory.

Here is an example as shown in following figures.

Bid Ask
Name Quantity Price Name Quantity Price
CLH3 100 89 CLH3 200 90
CLH3 160 88.5 CLH3 150 90.5
CLH3 90 88 CLH3 170 91
CLH3 150 87.6 CLH3 100 91.5
CLH3 120 87.2 CLH3 120 92

Delete Level 4 of Bid of CLH3

Bid Ask
Name Quantity Price Name Quantity Price
CLH3 100 89 CLH3 200 90
CLH3 160 88.5 CLH3 150 90.5
CLH3 90 88 CLH3 170 91
CLH3 120 87.2 CLH3 100 91.5
CLH3 120 92

Insert Bid of CH3 with a Prize of $89.5, 60 slots

Bid Ask
Name Quantity Price Name Quantity Price
CLH3 60 89.5 CLH3 200 90
CLH3 100 89 CLH3 150 90.5
CLH3 160 88.5 CLH3 170 91
CLH3 90 88 CLH3 100 91.5
CLH3 120 87.2 CLH3 120 92

Decrease Level 1 of Ask of CLH3 with a Price of $90, 100 slots

Bid Ask
Name Quantity Price Name Quantity Price
CLH3 60 89.5 CLH3 100 90
CLH3 100 89 CLH3 150 90.5
CLH3 160 88.5 CLH3 170 91
CLH3 90 88 CLH3 100 91.5
CLH3 120 87.2 CLH3 120 92

IV. SOFTWARE

The software being written for validation would
build books based on different messages(which are in
fact, queries): modify, insert and delete. These messages
are fed into the validation software in a similar fashion
as that to the VHDL modules so that there will be a
consistency between the hardware and software-based
book-building operations and hence the validation
turning out to be correct.

The software thus built would be targeted for an
x86 machine with an AoE card in it. And this machine(PC)
would be receiving UDP packets wherein each packet
represent a single book structure which can contain a
maximum of N entries where N is pre-determined one.
More specifically, ‘book snapshots’(all 10 levels for both
bid/ask) will be sent to this x86 software over

PCl-express bus. And the software will be able to read
data off the FPGA using the APIs provided. In addition, a
‘ticker plant’ would also be built which would take the
same ‘book snapshot’ and send it over the network as
UDP packets. This ‘ticker plant’ approach would leverage
the usage of the same UDP packets in both broadcasting
out onto the network and also sending to the Solarflare
ASIC which is then passed to the regular software
running pn the PCIE listening for packets.

In addition, the validation software written in C will use
one of the OpenSource software-based decoders capable
of parsing the XML content(representing various
templates identified by an ID which is the TemplateID
for the respective template) and processing the different
types of book-update messages. By using the parsed
content, a VHDL module is generated which will be
associated with the specific instruments and the
corresponding information stored in terms of layout
called Books. The software written
would simultaneously track say 5-500 symbols to decide
upon the templates in this regard.

The software written will be tested upon the
decoded content given by the C++ decoder available at
CME group
website(http: //www.cmegroup.com/globex/resources/
fix-fast-decoder-agreement-thanks.html).

V. RESPONSIBILITY

In this project, Danqing Hua and Junkang Ren are
responsible for the hardware part and software part
would be done by Chang Liu and Raghavan Santhanam.

